
Assessment of Post-Stroke Functioning using Machine Vision

Sonya Allin
Carnegie Mellon University

Pittsburgh, PA

Deva Ramanan
Toyota Technical Institute

Chicago, IL

Abstract

We present a system to automatically assess the
functional performance of stroke survivors along axes
defined by the Arm Motor Ability Test (AMAT). The
upper body motion of seven stroke survivors was mea-
sured in a laboratory environment using a commercial
motion capture device and a novel kinematic tracker of
our design. Statistics generated by each individual were
related to expert-determined assessments of functional
health. Results indicate several kinematic targets that
correlate with and predict opinions of health. These
include recorded motion of the torso during the per-
formance of tasks and flexion about the elbow on the
hemiparetic (impaired) side. We show that both kine-
matic statistics can be cheaply and robustly measured
with video cameras while still preserving their diagnos-
tic value. Such cheap and robust measurements will
ultimately facilitate assessment outside of clinics and
in places where functioning is valuable to individuals,
such as homes and workplaces.

1 Introduction

Stroke is one of the leading causes of chronic dis-
ability in the United States. Evidence increasingly
suggests that individuals who have been disabled by
stroke can achieve functional motor improvements for
many months, if not years, after their injury [14]. Oc-
cupational and physical therapy, however, is not com-
monly covered by U.S. insurance for the length of time
that post stroke recovery is possible. In this paper, we
suggest the use of cheap and robust monitoring tech-
nologies to help fill gaps in therapeutic care. More
specifically, we explore the capacity for robust kine-
matic tracking tools to extract statistics of upper body
motion that correlate with and predict expert opinions
of functional health after a stroke. Our motivating vi-
sion is one in which these clinically meaningful statis-
tics can be cheaply and robustly recorded, thereby en-
abling retrospective reporting about motions that take
place in the real world.

Perhaps the main contribution of this paper to the
field of computer vision is its use of clinical metrics
to evaluate the quality of kinematic tracking. Recent
years have seen many instances in which kinematic re-
constructions, be they based on single or multi-view
camera input, are numerically judged relative to mo-
tion capture data [13]. Evaluation criteria include
squared error in 3D point reconstruction, joint angle
error, or false-positive/missed-detection rates based on
the overlap between estimated body configurations and
configurations provided by motion capture. In the
many cases where motion capture is not available, nu-
meric evaluations have been based on comparisons with

kinematic estimates or re-projection error [7]. Even
given ground-truth motion capture data, however, the
right evaluation metric is not clear [5]. We circumvent
these issues altogether. In our case, a good kinematic
reconstruction is one that can relate well to and predict
a clinician’s functional score.

To develop our system we used motion capture to
identify kinematic features that contain diagnostic in-
formation relating to the performance of different func-
tional tasks. We are now reproducing the diagnostic
content of salient kinematics using more cost effective
and portable devices.

2 Methods

The clinical assessment we chose to be our ’ground
truth is called the Arm Motor Ability Test (AMAT).
This test was chosen from a range of instruments em-
ployed by therapists for post-stroke evaluation. The
test has been shown to have high inter-rater reliabil-
ity, sensitivity to change, and concurrent validity with
other leading assessments, including the Wolf Motor
Function Test [6]. To perform the assessment, thera-
pists watch as clients simulate the performance of sev-
eral upper body tasks, like raising a comb to the hair
or dialing a telephone (see Table 1). Each subtask is
scored on a 5 point scale (0-4) according to the quality
of the underlying motion (i.e. its smoothness, fluid-
ity) as well as its functional efficacy. An individual
who receives a 0 may be completely flaccid on his or
her hemiparetic side and unable to complete any given
task on the assessment. An individual who receives a 4,
by contrast, may have motion that is indistinguishable
from an individual who has never had a stroke. Various
post-stroke symptoms may be manifest among individ-
uals with intermediate scores, such as muscle synergy
(i.e. increased flexion in characteristic patterns [2]),
spasticity, or jerky, uncoordinated motions. In prac-
tice, therapists tend to conflate evaluations of quality
and functional efficacy on the AMAT [6]. In work pre-
sented here, then, we asked therapists to use a single
scale for their performance evaluations.

To test our ability to extract mobility statistics from
visual data that correlate with scores on the AMAT,
seven stroke survivors were asked to perform tasks
on the AMAT assessment while seated at a desktop.
The desktop was instrumented with six commercial
camcorders, as illustrated in Figure 1. Each camera
recorded at a rate of 30 frames per second and was
synchronized with the others using red LEDs placed
close to the camera lenses.

All video was captured at a resolution of 740x240
and compressed to MPEG2 in real time using an AXIS
250S Video Servers. Compressed data was stored on
external hard drives and subsequently spatially down-



Figure 1: At left, the experimental setup. At right, a
colored jersey used to facilitate tracking.

Table 1: Examples of elements on the Arm Motor Ability
Test (AMAT). Performance of each subtask is evaluated on
a 5 point scale (0-4). Evaluations consider both quality of
motion and functional efficacy. In this paper, all reported
scores are the sum of scores across performed subtasks.

Task Subtask
Cut Meat 1. Pick up knife and fork

2. Cut meat
3. Fork to mouth

Sandwich 4. Pick up sandwich
5. Sandwich to mouth

Use Spoon 6. Pick up spoon
7. Collect dried kidney bean
8. Spoon to mouth

sampled by a factor of 4. Images that were processed,
then, were 185x120 pixels in dimension. While record-
ings were made, each subject wore a colored jersey to
facilitate the localization of individual limb segments
of the upper body. They also wore a selection of IR
reflective markers on key anatomical locations of the
upper body, so that we had access to 3D reconstruc-
tions provided by commercial motion capture.

As subjects performed the AMAT, an expert in oc-
cupational therapy generated a functional score based
on his or her observations. The assessments that were
generated for each subject are given in Table 2.

Table 2: Subject demographics. ”Side” denotes the side
of the brain that was damaged by stroke. ”Dom” is the
subject’s dominant hand. ”AMAT” is the subject’s AMAT
score. All tasks were performed with the side of the body
that was most affected by stroke. ’FMA’ is a score on the
upper body portion of an assessment that tests specifically
for muscle synergy called the Fugl-Meyer [2].

ID Sex Age Side Dom AMAT FMA
1 M 75 Right Right 56 64
2 M 60 Left Right 32 37
3 M 47 Right Right 45 51
4 M 82 Left Right 52 60
5 M 58 Left Right 63 73
6 F 78 Right Right 36 40
7 F 63 Right Right 52 58

2.1 Data Processing

A. ’Potential limb segments were detected
based on their color. For each color of the jersey

that was worn, we trained a quadratic logistic regres-
sion classifier, as in [10]. A single image from each cam-
era view was used for training purposes; pixels inside
selected limb segments were labeled ’positives and re-
maining pixels labeled ’negatives’. At every frame, de-
tected image regions corresponding to each color were
grouped into ellipsoidal ’blobs’. Each blob was param-
eterized according to its location, size and eccentricity.

B. ’Potential limb segments were filtered with
simple kinematic trees. To remove blobs that did
not relate to limb segments, we employed two simple
kinematic trees in a fashion inspired by [12, 10]. Each
tree was made up of three segments spanning a single
arm, and defined by the following equation:

P (p1, p2, p3|I) =
∏

(i,j)εE

P (pi|pj)
3∏

i=1

P (pi|I) (1)

In this equation each pi is a limb segment (hand, lower
arm or upper arm) and E denotes the links between
segments in a given three link model. P (pi|pj) was
determined based on a single training image from each
view. The relative angle between the major axes of any
two limb segments was computed in training images as
well as the difference between any two adjacent seg-
ments centroids. P (pi|pj) was defined to be a normal
distribution centered at these idealized angles and rel-
ative locations. P (pi|I), by contrast, was determined
based on the color and eccentricity of a given blob rel-
ative to given ideals.

C. Filtered ’parts were combined across mul-
tiple views. Next, the filtered limb segments were
combined across multiple views to yield 3D estimates
of each limb segment’s location. To do this, each 2D el-
lipsoid was first re-parameterized as a set of four points;
two points were located at extreme positions on the el-
lipsoid’s major axis and two points were located on the
minor axis. Sets of 2D points were combined across
multiple views by solving the following linear system,
as in [4]:

N∑

i

(wi(Id− uiu
′
i))P =

N∑

i

(wi(Id− uiu
′
i))ci (2)

Here, i is an index referring to an individual camera
view, P is a reconstructed 3D point, ci is the ith cam-
era’s center, and ui is the direction of the ray extending
from the camera’s center to the point. Id is the iden-
tity matrix. Finally, wi is an independent weighting
factor for each view, indicating the level of ”trust we
have in that view. This, in our application, was based
on the value of filtered kinematic trees.

Any four 3 dimensional points that were recon-
structed from corresponding ellipses defined a cylinder
in space. We used these cylinders to estimate the lo-
cation and orientation of target limb segments. Figure
2 illusrates resulting reconstructions. A visual com-
parison of kinematic reconstructions achieved with our
system and a commercial motion capture system (VI-
CON) is illustrated in Figure 3.

D. Resulting 3D data was trimmed. Once the
motion corresponding to the performance of a given
task was reconstructed, data was cropped. All the raw



Figure 2: 3D reconstructions are shown in the top row
and overlaid on the image data. Estimates of elbow angles
over time, for both the right (green) and left (red) arm, are
shown at the bottom.

Figure 3: Elbow angles on the hemiparetic side, over time,
for four subjects. Estimates are shown both based on mo-
tion capture (in blue) and on our system (in red).

movement data was first passed through a median fil-
ter of width 15 and a simple segmentation scheme was
applied. The beginning of a subject’s movement was
said to correspond to the point when the velocity of
his or her hemiparetic hand surpassed 5 percent of its
maximum. The end of movement was located at the
final valley in the hand’s velocity profile. This scheme
was used to segment both motion capture data as well
as the motion data that was generated by video cam-
eras.

E. Kinematic statistics were computed. Fi-
nally, various kinematic statistics were computed in an
effort to locate information that correlated with expert
opinions. Here, we present results that relating to two
statistics: motion of the torso and flexion about the
elbow. We focus on torso motion because stroke sur-
vivors have shown a tendency to compensate for dis-
tal impairments by moving this part of the body [11].
We focus on elbow angles because stroke survivors fre-
quently suffer from spasticity and muscle synergy at
this location; this is defined in part by excess flexion
[2].

Torso motion was defined in the video data as the
derivative of the mean trajectory of the two recon-
structed shoulders. In the motion capture data, torso
motion was defined based on the mean trajectory of
IR markers located on either acromion process. El-
bow flexion in the video data involved first locating the
three dimensional points at the intersections of recon-
structed upper and lower arm segments. Elbow flex-
ion was defined by this point and points at the shoul-
der and wrist. In motion capture data, elbow flexion
was determined by markers placed on the elbow, the
acromion process, and wrist.

3 Results

We report results as they relate to the recorded
performance of the ’sandwich’ task in the battery of
AMAT tasks. A selection of kinematic statistics that
were shown to positively correlate with the functional
opinion of experts follows:

(1) Mean torso displacement. As in the studies
of [8], individuals who were more functionally impaired
tended to exhibit more average motion of the torso dur-
ing the performance of tasks. At the top of Figure 4
we compare computations of torso motion based on
motion capture data and our kinematic data. Diag-
nostic information is carried by all computed statis-
tics. The p-value for linear regressions relating aggre-
gate AMAT scores to the motion capture statistic is
less than .0001, and the r squared value for this fit
alone is .897. Likewise, the p-value for the regression
of our kinematic tracking statistics onto AMAT scores
is less than .001, and the r-squared value is over .9. For
regressions of the same statistics onto the Fugl-Meyer
(FMA) scores, there are slightly higher p-values. The
FMA measures muscle synergy in stroke survivors more
specifically that the AMAT.

(2) Standard deviation in elbow flexion. A
slightly more subtle statistic found to correlate with
functional scores is the range of motion recorded about
the elbow during functional motion; this is illustrated
at the bottom of Figure 4. A linear regression relat-
ing the standard deviation in elbow flexion and AMAT
score carries a p-value of .06 (for motion capture) and
.06 (for our kinematic reconstructions). Limits in el-
bow range of motion reflect a fairly common post-
stroke muscle synergy, which is characterized in the up-
per body by excess flexion [2]. When movement kine-
matics are regressed on assessment scores that specif-
ically test for synergies, similarly significant p-values
are achieved. Regressions relating standard deviation
of elbow flexion and scores on the FMA yield p-values
of .05 both for motion capture and our kinematic track-
ing statistics.

4 Discussion

This paper presents initial work directed at the cre-
ation of a system which will automatically assess in-
dividuals who are recovering from a stroke based on
perceived kinematics. Results indicate that it possible
to use kinematic statistics that are generated by a ro-
bust, region based kinematic tracker to assess the func-
tional behavior of stroke survivors. The accuracy of vi-
sion based kinematic trackers as they currently stand,
then, may be enough to produce clinically meaningful
applications.



Figure 4: At top, estimates of elbow range of motion v.
AMAT score. At bottom, estimates of mean torso displace-
ment per frame v. AMAT score. Red is the statistic from
our system, blue is from motion capture.

The kinematics presented here are by no means the
only statistics, however, that carry diagnostic informa-
tion relating to stroke. Velocity and smoothness of
perceived motion, for example, are movement targets
that are also known to be influenced by stroke. Fu-
ture work, then, must explore a more complete range
of motor statistics.

In addition, future work must explore the degree
to which we can degrade our visual signals while still
yielding clinically meaningful movement information.
Our interest is in tracking that takes place quickly, with
fewer cameras, in much less constrained environments
(like homes or workplaces). The degree to which our
region based approach is robust to signal degradations
has yet to be explored. Other approaches, like those
infused with physics [15], or based on voxel carving
or visual hull constructions [3], may be similarly capa-
ble of yielding clinically significant statistics of motion,
but perhaps less able to perform in a wide variety of

environments.
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