
Patch Mosaic for Fast Motion Deblurring

Hyeoungho Bae,1 Charless C. Fowlkes,2 and Pai H. Chou 1

1 EECS Department, University of California, Irvine
2 Computer Science Department, University of California, Irvine

Abstract. This paper proposes using a mosaic image patches composed
of the most informative edges found in the original blurry image for the
purpose of estimating a motion blur kernel with minimum computational
cost. To select these patches we develop a new image analysis tool to
efficiently locate informative patches we call the informative-edge map.
The combination of patch mosaic and informative patch selection enables
a new motion blur kernel estimation algorithm to recover blur kernels
far more quickly and accurately than existing state-of-the-art methods.
We also show that patch mosaic can form a framework for reducing the
computation time of other motion deblurring algorithms with minimal
modification. Experimental results with various test images show that
our algorithm to be 5-100 times faster than previously published blind
motion deblurring algorithms while achieving equal or better estimation
accuracy.

1 Introduction

Motion blur due to relative motion between the camera and the scene during
camera exposure plagues consumer photographs, particularly under low-light
conditions. Methods that remove such blur from a single photograph are of great
practical interest. Thanks to recent advances in image deblurring algorithms, it
is now possible to recover unblurred images from blurry sources caused by mo-
tion that is not compensated by the optical or mechanical image-stabilization
devices integrated in modern digital cameras. However, due to the intensive
computational requirements, the motion-blur deconvolution process of an HD-
sized image typically takes several to tens of minutes, thereby precluding their
adaptation in mainstream consumer products. The goal of this research is to de-
velop a computationally cheap blind-motion deconvolution algorithm with good
performance.

1.1 Fast Blind Motion Deblurring and Patch Mosaics

The motion blur can be modeled as a point spread function (or a motion blur
kernel) for each point in the image. The relation between the blurry image B,
the latent image I, the motion blur kernel k, and noise n can be defined by
Equation (1):

B(x, y) = I ⊗ kx,y + n (1)

2 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

(a) Patch mosaic-based fast motion-deblurring

(b) Conventional MAPI,k deblurring

Fig. 1. Patch mosaic-based fast motion-deblurring vs Conventional MAPI,k deblurring
algorithm: (a) The patch mosaic-based fast motion-deblurring algorithm - Patch mosaic
can significantly reduces the computation time of the deblurring. (b) Conventional
MAPI,k deblurring algorithm - The patch mosaic algorithm can easily be applied to
most of recent MAPI,k deblurring algorithms.

The motion blur can be due to camera motion relative to the scene (e.g. camera
shake), objects moving within the scene (e.g. running children in the scene),
or both. In such scenarios, the blur kernel is different for each pixel. However,
estimating a spatially-variant blur kernel imposes a significant computational
burden, especially for high-resolution images. For blur generated from small,
translational motions of a camera that is imaging a distant scene, it is often
assumed that the kernel is spatially-invariant (i.e. kx,y = k). In the remainder
of the paper we will focus on this spatially-invariant case.

The typical approach to estimating the latent image is to find a combination
(I, k) that minimizes the difference between the two sides of Equation (1). In
a probabilistic setting, one can either estimate the kernel k while marginalizing
over the latent image I or jointly estimate a kernel and latent image (termed
MAPk and MAPI,k respectively by Levin et al., [1]). MAPk usually takes sig-
nificantly more computation than MAPI,k due to marginalization requirements
for computing p(k|B) from p(I, k|B). However, as Levin et al. point out, the
MAPI,k approach exhibits a strong tendency to return a ‘no-blur’ solution in
which I = B. The MAPI,k approach has still been shown useful in blind image
deconvolution [2–7] although evidence of the ‘no-blur’ preference can be found
in some of the works using a standard image sparsity prior in their energy func-
tion (e.g., [2]). One technique we will exploit for overcoming the no-blur bias
of simple image priors is to use the gradient of the reference image (e.g., the
original blurry image) as a spatial prior for the gradient of the estimated latent
image [3, 4].

Our approach to blur-kernel estimation makes two contributions. The first
is the novel patch mosaic, which summarizes the informative edges found in a

Patch Mosaic for Fast Motion Deblurring 3

blurry image. We construct the patch mosaic by tiling informative image patches
to synthesize a new, compact blurry image. Using the patch mosaic, we can
effectively reduce the blur-kernel estimation time. Since only the informative
part of the image is used, there is no need to calculate sophisticated masks for
occluding unwanted parts (saturated or filled with narrow edges) of the image
for every single iteration such as those found in [4, 6].

To locate patches containing informative edges efficiently, we develop a tool
named informative-edge map. It can locate edges satisfying several attributes of
informative edges including contrast, orientation angle, straightness [8], and use-
fulness [4]. Through the performance evaluation, we show that the informative-
edge map locates the most appropriate area within the blurry image to estimate
the blur kernel and yields the most accurate results while consuming only 4% of
the computation time of the kernel estimation process.

We integrated these two components into a new, fast motion-deblurring algo-
rithm. The computation time of our algorithm is 5 to 40 times faster than those
in the comparison group, while the benchmark estimation accuracy is the best
among the group, which is shown in Section 3. Our algorithm implemented in
MATLAB takes 15 seconds to estimate a 2256×1504-pixel latent color image on
a Intel Core i7 processor. Since our framework (shown in Fig. 1) is compatible
with most of the recent MAPI,k motion-deblurring algorithms, we can apply the
patch mosaic framework as a generic tool for reducing computation time of other
blind motion-deblurring algorithms. To demonstrate the feasibility of this idea,
we modified the deblurring algorithm by Krishnan et al. [9]. The results show
that the modified algorithm runs 4.7 times faster than the original algorithm
with similar estimation accuracy.

1.2 Related Work

To our best knowledge, there has been no previous work that uses an image
patch mosaic for blur-kernel estimation. We briefly discuss two closely related
lines of work: patch-based image analysis and fast motion deblurring.

Patch-based image analysis: Jia suggested using small fractions of an im-
age for blind deconvolution [5]. However, their work needs user intervention for
selecting appropriate areas and foreground and background colors for alpha-
blending calculation. A larger number of patches increases the complexity of
the energy function for estimating the blur kernel and latent image. If there is
little distinction between the foreground and background objects, the algorithm
yields inaccurate estimation results as shown in [3]. Joshi et al. analyzed the
edge profile of an image to predict the latent edge [6]. This is related to the
filter-based sharp edge prediction method as in [2–4], but is limited to blurry
edges caused by simple motions orthogonal to the edge. In contrast, our measure
seeks patches that individually contain many different orientation angles. In the
area of spatially variant motion-deblurring algorithms, Gupta et al. estimated
the camera trajectory by patch-based analysis of the scene [10]. However, they
applied the blind deconvolution algorithm of [3] for the entire image area first.
Then, they used RANSAC-based approach to select appropriate results among

4 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

initially deblurred image patches to reconstruct the camera motion. We use our
image-patch locating algorithm to find the most informative image patches be-
fore estimating the blur kernel. Our method requires neither user intervention
during the selecting process nor computationally expensive initial deconvolution
step.

Fast motion deblurring algorithms: Several works address reducing the com-
putation time of blind motion-deblurring algorithms [2,4,6,11]. Cho and Lee take
the MAPI,k approach and use discrete Fourier transform to reduce the compu-
tation time. However, they still need to use the whole image area to estimate
the blur kernel, which requires their compiled C++ binary 4 to 6 times more
computation time compared to our interpreted Matlab script. As mentioned ear-
lier, their algorithm also seems to prefers ‘no-blur’ results for some cases. Even
though the accuracy of Xu and Jia’s algorithm is remarkable, the computation
time of their C++ binary code is more than 27 times slower than our Matlab
script due to the sophisticated masking and the larger number of iterations to
increase the accuracy [4]. By using the patch mosaic, we can achieve even better
accuracy, as quantitative analysis will show in Section 3. Krishnan et al. take
a MAPI,k approach but with l1/l2 regularization to predict the latent image
in a coarse-to-fine iteration [11]. However, they still need more than 5 minutes
to estimate a color latent image of 558×858 pixels. The authors of [4] has de-
veloped a fast deblurring software using GPU. However, our work is targeting
more light-weight platforms like smart phones or portable cameras. So we don’t
think that kind of approach can be regarded as our competitor since it requires
huge computation resources compared to ours. There is also work on speeding
up non-blind deconvolution [9, 12] where the kernel is known. Such work could
be used as a final step in combination with our approach for quickly estimating
the kernel.

2 Blur-Kernel Estimation Algorithm

The blur-kernel estimation algorithm (Fig. 1) is composed of four parts: (1)
Image-patch selection, (2) Patch-mosaic construction, (3) Blur-kernel estimation
and (4) Latent image-patch estimation. In image-patch selection, the algorithm
finds a set of patches that cover all possible edge-orientation angles and are likely
to be informative for estimating blur. After selecting the image patches, the
selected image patches are combined to construct the patch mosaic for the blur-
kernel estimation step. We estimate the kernel from this mosaic using a coarse-
to-fine iteration where in each step the estimated blur kernel is deconvolved
with the individual image patches to estimate the latent image patches. These
deblurred patches are then upsampled and used as the image prior for the next
iteration.

2.1 Image-Patch Selection

The main concern of our approach is how to reduce the amount of data to process
without sacrificing estimation accuracy. As described in several publications,

Patch Mosaic for Fast Motion Deblurring 5

(a) Located patches (b) IE map

50 100 150 200 250 300 350 400

50

100

150

200

250

300 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) Straightness map

50 100 150 200 250 300 350 400

50

100

150

200

250

300 0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d) Usability map

Fig. 2. Selected image area: (a) The location of selected image patches . (b) The
informative edge map from Equation (2). The edges of highest IE value located in
the rectangle box with angle between −9◦ and 9◦. (c) The straightness map (d) The
usability map.

edges found in the original blurry image are particularly useful for estimating
the blur kernel caused by motion. There are several important characteristics
of edges in motion deblurring; gradient magnitude, orientation angle, width of
the edges, and straightness of the edges [2–8,13]. Applying masks on top of the
blurry image is a common approach to make the estimation algorithm focus on
the most informative areas in the image [4, 6, 8, 10]. However, this does not
reduce the actual amount of data to be processed. Moreover, computation of
complex masks takes significant additional time [4, 8]. For this reason, some
previous works require user intervention to select the most informative area in
the image [9, 13]. By using the patch mosaic, our approach avoids the need to
construct a sophisticated mask for the whole image.

Fig. 2 shows an illustrative example of the image-patch selection process.
We use the gradient magnitude of a downsampled image to locate the sharpest
edges. The blurred trajectory of an edge provides information for estimating
one-dimensional motion that is perpendicular to the edge orientation. To secure
sufficient information about all possible directions of motion and to recover the
full 2D kernel, it is necessary to analyze edges that span the full range of orien-
tations. We start with a pixel-wise measure of informativeness that incorporates
our desired criteria. We specify the informativeness of a pixel by

IE = M ◦ (sR > τs) ◦ (U > τu), (2)

where IE means the validity of information of the edge, M is the gradient mag-
nitude of the image, and sR and U are the straightness map from by Cho [8] and
usability map by Xu et al. [4], respectively. τs and τu are the threshold values
for filtering non-straight edges and less-usable edges, respectively. To ensure that
we can recover motion in any direction, we also ensure diversity in the angles of
the edges in selected patches. We define a pixel-wise angle mask that identifies
those pixels whose gradient falls in given range of angles

angle maski = Qi
n

[
arctan

(
5By

5Bx

)]
, (3)

where Qi
n means the quantization function to make the ith angle mask among n

groups. For example, in Fig. 2(b), IE is masked to pick out angles between −9◦

and 9◦.

6 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

Algorithm 1 Patch Selection

Input: M , sR, U , angle mask , maxpatch
P ← {}
A← set of angles to cover
while (|P | < max patch)&(|A| > 0) do

IE ←M ◦
(∑

i∈A angle maski
)
◦ (sR > τs) ◦ (U > τu)

x← largest element of IE
P ← P ∪ {x}
A← A− angle(x)
M ←M − near(x)

end while
Output: patch locations P

angle(x) is the range of angles in which x falls
near(x) is the elements near the coordinate of x

The pseudo code for selecting image patches is shown in Algorithm 1. During
the iteration, the IE map is masked using the orientation angles not yet cov-
ered, so that orientation angles already contained in the set of selected image
patches will not be included in the sum of the angle mask in Equation (2). Since
the usefulness map and the straightness map used in the equation have a high
computational cost, we downsample the original image. Unlike [4], our algorithm
does not need to use mask for noisy edges or saturated area since we use rel-
atively small areas filled with strong edges of homogeneous orientation angles
compared to other algorithms using the entire image area. In our performance
evaluation, we choose the size of image patch to be 5 times that of the initial
kernel size, which is 3× 3 pixels.

2.2 Patch Mosaic Construction

The tricky part of using multiple image patches is estimating a single blur kernel
satisfying all the patches. The authors of [5] introduced multiple alpha-blending
variables into the energy function, while [8] merge using the inverse Radon trans-
form. However, these approaches are computationally expensive, and we have
found that the latter introduces noise into the final result. Instead, we merge the
patches to make a single patch mosaic that contains sufficient information to
estimate the blur kernel with minimum computation cost (see Fig. 3(a)). Since
we use a single image, we do not need to introduce multiple variables into the
energy function. Even though our patch mosaic is composed of patches contain-
ing single orientation angles, we do not suffer from noise caused by the 1-D blur
integration profile analysis and inverse Radon transform for merging the kernel
estimation of individual patches. Instead, the merging happens implicitly in the
de-convolution by the constraint of the kernel being spatially invariant.

Simply tiling the image patches from different areas of an image introduces
a discontinuity of gradient between adjacent patches and introduces errors in
the recovered kernel (shown in Fig. 3(a)). To solve this problem, we mask out

Patch Mosaic for Fast Motion Deblurring 7

(a) Patch mosaic (b) With mask

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(c) With mask

5 10 15 20 25 30 35

5

10

15

20

25

30

35

(d) Without mask

Fig. 3. The mask for image patch boundary: (a) Patch mosaic without the mask. (b)
Patch mosaic with the mask. (c) Estimated blur kernel using the boundary mask. (d)
Estimated blur kernel without using the mask.

Algorithm 2 Coarse-to-fine blur kernel estimation using the patch mosaic I

INPUT: O,x,y
Let Oi be O downsampled to scale(i)
Sample O1 to get image patches p11, ...p

m
1 using x,y

Construct the blurry image patch mosaic B1 using pj∈1,...,m1

Filter the patches and construct the initial latent patch mosaic I1
for i = 1 . . . nscales do

Estimate blur kernel k̂ from Ii and Bi by minimizing Eqn. (4)
Estimate latent patches l̂j∈1,...,mi from Bi, k̂, Ii by minimizing Eqn. (6)

Upsample and filter l̂j∈1,...,mi to get Ii+1

Construct the blurry image patch mosaic Bi+1

end for
OUTPUT: k̂

O is the original blurry image
x,y are the image patch coordinates from the image patch selector

the boundaries between the patches (Fig. 3(b)). This is done by assigning zero
weight to the appropriate terms in the error function used for estimating the
kernel (see Equation (4)). Stacking the patches vertically minimizes the masked
region. Since the most important information of each patch lies in the middle of
the patch, we can mask without losing the estimation accuracy (Fig. 3(c)).

2.3 Blur-Kernel Estimation

Blur-kernel estimation is carried out in a coarse-to-fine manner, starting with
a downsampled version of the original blurry image. The main advantage of this
approach is that it can effectively keep the estimation algorithm from falling into
local minima [2–4, 13]. The original image is downsampled to several different
resolutions. The algorithm starts to estimate the blur kernel on the downsam-
pled version of the image patches. It estimates the latent image patches using
the resulting low-resolution blur-kernel estimate. These estimated latent image
patches are then upsampled and provide the latent image prior used in the next
iteration. Since edges in the upsampled images are necessarily missing high fre-
quencies, we apply sharpening using bilateral and shock filtering to localize the

8 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

(a) Patch mosaic during the kernel estimation

(b) Original image (c) Estimated latent image

Fig. 4. Patch mosaic based blur kernel estimation: (a) Patch mosaic during the kernel
estimation - Bi, Ii, and ki represent the blurry patch mosaic, latent patch mosaic and
the estimated blur kernel, respectively. (b) The original blurry image (c) The estimated
latent image

edges. As mentioned previously, image-patch selection is also carried out on the
low-resolution version of the blurry image.

Given an estimate of the latent image I, the energy function used for esti-
mating the blur kernel is given by:

k̂ = arg min
k

[
‖5I ⊗ k −5B‖2M + γ‖k‖2

]
, (4)

where I is the latent estimation for the patch mosaic, k is the blur kernel, and B is
the original patch mosaic. The squared error is only computed on those unmasked
pixels specified by the mask M . We set the coefficient (γ) value as 0.001. During
the blur kernel estimation process, we used energy function having L2 norm form,
which is computationally cheap. According to Plancherel’s theorem, the Fourier
transform is an isometry so we can analyze the squared error in the frequency
domain. This means that minimizing Equation (4) is an identical process to
minimizing the frequency domain version of it [14].

k̂ = F−1

(
F(5Īx,M) ◦ F(5Bx,M) + F(5Īy,M) ◦ F(5By,M)

F(5Īx,M) ◦ F(5Īx,M) + F(5Īy,M) ◦ F(5Īy,M) + γ

)
, (5)

where Ī means the predicted latent image from the blurry image. To prevent
the boundary artifact, the mask mentioned in Section 2.2 is applied after taking
the gradient. We use the predicted latent image from the previous iteration as

Patch Mosaic for Fast Motion Deblurring 9

0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

2 0 9 . 0 4 s e c

9 8 0 . 9 4 s e c

K r i s h n a n (m o d .)

K r i s h n a n (o r g .)
tim

e (
se

c)

F e r g u s e t a l .

C h o e t a l .

X u e t a l .

O u r s
1 4 . 9 5 s e c

4 0 5 . 7 5 s e c

7 2 . 1 1 s e c

1 2 6 0 . 9 0 s e c

(a) Computation time

0 . 4 1 %4 %
4 . 8 2 %

1 0 . 8 8 %

1 4 . 6 9 %
2 4 . 7 6 %

4 0 . 4 5 % l a t e n t i m a g e p r e d i c t i o n l a t e n t i m a g e e s t i m a t i o n
 p a t c h m o s a i c c o n s t r u c t i o n k e r n e l t h r e s h o l d
 k e r n e l e s t i m a t i o n i m a g e p a t c h l o c a t i n g
 e t c

C o m p u t i n g t i m e a n a l y s i s o f b l u r k e r n e l e s t i m a t i o n l o o p

(b) Blur kernel estimation loop

Fig. 5. Computation time analysis: (a) Computation time comparison between the
algorithms. (b) The computation time analysis during the blur-kernel estimation loop.

a prior for the latent-image estimation to avoid the bias towards the ‘no-blur’
solution (discussed in Section 1).

Î = arg min
I

[
‖I ⊗ k̂ −B‖2 + ω‖5I −5Ī‖2

]
(6)

Since Equation (6) is used to estimate individual image patches (the latent image
patch estimation part of Fig. 1(a)), the boundary mask is not required for the
equation. Since we process only small portions of the entire image, the time
required to get k̂ and Î is far less than the entire image area. Detailed timing
analysis will be provided in Section 3.1. After estimating the blur kernel, we
use the equation (6) to get the latent image. For the color image, we use the
same blur kernel for each color channel, (R, G, B). Algorithm 2 gives the pseudo
code of the blur-kernel estimation process. For the evaluation in Section 3.2, we
used 7 iterations of the loop in running Algorithm 2. The size of the images is
upscaled to

√
2 of that of the previous stage. The example of the patch mosaic

based blur-kernel estimation is shown in Fig. 4. As illustrated in Fig. 1(a), the
patch mosaic of blurry image (Bi) and the patch mosaic of latent image (Ii) are
made for each iteration to estimate the blur kernel (ki).

To minimize the equation (4) and (6), we use fast fourier transform approach,
which can introduce the ringing artifact around high frequency components in
the blurry image (especially when minimizing the equation (6)). The two main
reasons of the artifact are: 1) the discontinuity at the boundary of the image, and
2) inaccurate blur kernel (also mentioned in [3]). To address the first reason, we
taper the edge of the boundary of the blurry image patch using Gaussian filter.
After estimating the latent image for the next stage, we applied the boundary
mask on the left and right side of the patch to prevent the artifact from spreading
into the center of the patch (as shown in Fig. 4).

3 Results

We compare performance of our proposed algorithm with several competitive
blind spatially invariant motion-blur estimation algorithms including the works

10 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

(a) Test images

1 . 5 2 . 0 2 . 5 3 . 0 3 . 5 4 . 0
0

2 0

4 0

6 0

8 0

1 0 0

pe
rce

nta
ge

E r r o r r a t i o

 O u r s
 X u e t a l
 C h o e t a l
 F e r g u s e t a l
 K r i s h n a n (o r g .)
 K r i s h n a n (m o d .)

(b) Error ratio comparison

Fig. 6. Performance comparison: (a) Test images: From the top-left corner in clock-
wise order, “Downtown”, “Fisherman”, “Sealion”, and “Storybook”, (b) Error ratio
comparison.

of Fergus et al., Krishnan et al., Cho and Lee, and Xu and Jia [2, 4, 11, 13].
The evaluation is based on three criteria: (1) computation time, (2) quantita-
tive analysis on the estimation accuracy using the test images with known blur
kernels, and (3) tests for real-world images 1.

3.1 Computation Time

We compared the computation time with the competitive algorithms using the
test images of 2256×1504 resolution used in Section 3.2 (Fig. 5). Our and Fer-
gus’s algorithms are written in Matlab script. Xu and Jia’s and Cho and Lee’s
algorithms are C/C++ compiled binaries. The experimental platform was a lap-
top with an Intel Core-i7 processor with 6 GB RAM. In Fig. 5(a), the average
computation time of our algorithm is 14.95 seconds, which is 4.8 times faster
than the compiled binary version of the fastest algorithm (Cho and Lee’s). Our
algorithm is 27 times faster than Xu and Jia’s and 84 times faster than Fergus
et al.’s. Since our algorithm is not a C/C++ compiled binaries, we expect a
compiled version of our algorithm will achieve even faster runtime.

Fig. 5(b) shows the timing breakdown of our algorithm: 44% (6.55 sec) is used
for the final latent-image estimation for calculating with Equation (6) from [15]
and 53% of the time is used for our blur-kernel estimation algorithm. The most
time-consuming part is the latent-image prediction, which uses bilateral/shock
filters for sharpening the upsampled latent image patches in each iteration. The
second largest portion is used for the patch-mosaic construction step. Only 25.5%
of the time is used for calculating Equations (4) and (6) during the estimation
process. It is also worth noting that once the kernel has been estimated, the
non-blind deblurring of the whole image takes a significant proportion of the
time (43.4%, 6.5 sec from 14.95 sec). The patch location and mosaic construction
take only 14.8% of the total time for the whole deblurring process. If we consider

1 The executable of our algorithm can be downloaded from http://cecs.uci.edu/

~hyeoungho/image_deblur.html

Patch Mosaic for Fast Motion Deblurring 11

(a) Original image (b) Ours (c) Xu and Jia [4]

(d) Cho and Lee [2] (e) Fergus et al. [13] (f) Krishnan et al. [11]

Fig. 7. Image deblurring results of one blurry “Downtown” image: (a) is the cropped
area from the original blurry image.

the time reduction in the blur-kernel estimation process enabled by the patch
mosaic, the portion will be much less than that. We thus achieve more than 400%
performance improvement in computation time over competitive algorithms for
kernel estimation.

3.2 Estimation Accuracy

For the quantitative analysis of the accuracy of estimated blur kernel, we use the
analysis methodology of Levin et al. [16]. We use the kernels that Levin et al.
used in their work 2 and the four images of 2256×1504 pixels shown in Fig. 6(a)
to make 32 different blurry images. Fig. 6(b) compares the performance of the
four algorithms including ours.3 SSDE stands for the sum of squared differences
between the two images. The error ratio is used to evaluate the accuracy of
estimated blur kernels independently of the error introduced by deconvolution.
For this purpose, Richardson-Lucy non-blind image deconvolution algorithm is
used for the latent image estimation [17,18].

Generally, our algorithm yields the most accurate blur kernels compared to
other competitive algorithms in the group. The blur kernels estimated by our
algorithm have the error ratio of less than 2 over all the test images. For 62.5%
of the test images (20 out of 32), the estimation accuracy of our algorithm is
better than Xu and Jia’s. Considering the fact that our script is 27 times faster
than their compiled binary code, this is a remarkable improvement. In Fig. 7,
one of the deblurring results from those algorithms are provided. The images are
the results of their own latent image estimation algorithms. All the images are
close-ups from the whole images. The original blurry image is shown in Fig. 7(a).
The estimated latent images using the suggested algorithm, Xu and Jia’s, Cho
and Lee’s and Fergus et al.’s are provided in Figs. 7(b) through 7(e), respectively.

2 www.wisdom.weizmann.ac.il/~levina/papers/LevinEtalCVPR09Data.zip
3 We fixed the parameters of all the algorithms during the evaluation.

12 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

(a) Original (b) Zoomed-in (c) Ours

(d) Xu and Jia (e) Cho and Lee (f) Krishnan et al.

Fig. 8. ‘pietro.jpg’ deblur results (from [11])

(a) Original image (b) Zoomed-in (c) Ours

(d) Xu and Jia (e) Cho and Lee (f) Fergus et al.

Fig. 9. ‘Lyndsey2.jpg’ from [13]

3.3 Real-World Images

In this section, we show some deblurred results from the real-world blurry images
from different blind deconvolution papers. The estimated latent-image results are
from their own non-blind deconvolution algorithms. In Fig. 8, we compared our
result with Xu and Jia, Cho and Lee, and Krishnan et al. [11]. Ours and Krishnan
et al.’s estimated the most accurate blur kernels among the comparison groups.
The light that is reflected in the eye (top-right corner of Fig. 8(c) - Fig. 8(f))
is effectively deblurred to be a spot in both Figs. 8(c) and 8(f). The estimated
blur kernels from Xu and Jia’s and Cho and Lee’s algorithms are not accurate

Patch Mosaic for Fast Motion Deblurring 13

compared to our result; the deblurred light in the eye is not a spot (Xu and Jia’s
result shown in Fig. 8(d)) or unobservable (Cho and Lee’s result in Fig. 8(e)).

In Fig. 9, we compare our result with those of Xu and Jia, Cho and Lee, and
Fergus et al. using the image from [13]. The estimated blur kernels are shown at
the right-bottom side of each image. In this case, Cho and Lee’s algorithm shows
a preference to ‘no-blur’ result in their kernel estimation. Moreover, the latent
image shows some loss of edges. On the other hand, the result of Xu and Jia
shows larger noise compared to other results. Considering their estimated kernel
is similar to ours, the artifact can be attributed to their non-blind deconvolution
algorithm.

3.4 Patch Mosaic as a General Framework

To show that our patch mosaic can be used to reduce the computation time of
other motion deblurring algorithms, we selected Krishnan et al’s algorithm [9]4.
We used the approach illustrated in Fig. 1(a). The image that is fed into the
estimation algorithm is synthesized by the patch mosaic algorithm for every step
of the coarse-to-fine iteration of their algorithm. The performance of the modified
algorithm is shown in Fig. 5 and 6. On average, the modified algorithm is 4.7
times faster than the original algorithm with the cost of 17.8% increased error
ratio. The average error ratio of the modified algorithm is 2.13, which is slightly
higher than the original algorithm of 1.81 (see Krishnan (org.) vs. Krishnan
(mod.) in Figs. 5(a) and 6(b)). However, the computation time of the modified
one is only 209 sec compared to 980 sec of the original algorithm.

4 Conclusions

We propose the patch mosaic and a fast, accurate deblurring algorithm based on
the patch mosaic for spatially invariant blur-kernel estimation. A MATLAB im-
plementation of our deblurring algorithm runs 4.7 times faster than the nearest
competitor (the C++ binary of [2]) when estimating a latent image of 2256×1504
pixels. Our algorithm achieves equal or better accuracy than other algorithms
published to date. The patch mosaic can not only improve the computation
time but also exclude saturated and uniform image regions that typically mis-
lead the estimation process [4, 13]. We also show that the patch mosaic can be
used for other deblurring algorithms to reduce the computation time with min-
imal loss of the estimation accuracy. The time analysis shows that our patch
mosaic-based algorithm can effectively reduce the computation time with min-
imal overhead. Since more than 40% of the time in the estimation loop is used
for the latent image prediction, faster filtering solutions may yield further in-
creases in computation speed [19]. Our algorithm may also be combined with
external sensors to further reduce the computation time and provide stronger
priors [20]. For example, a triaxial accelerometer can be used to aid the image

4 http://cs.nyu.edu/~dilip/research/blind-deconvolution/

14 Hyeoungho Bae, Charless C. Fowlkes, and Pai H. Chou

patch locating algorithm to focus on the edges sensitive to the direction of the
motion detected by the sensor. Our algorithmic ideas can also be extended to
solving for more complex spatially variant blur-kernel estimation problems in a
timely manner [10].

Acknowledgement. This work was sponsored by the National Science Foun-
dation grant CBET-0933694 and Air Force Office of Scientific Research grant
FA9550-10-1-0538. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

References

1. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Efficient marginal likelihood
optimization in blind deconvolution. CVPR (2011)

2. Cho, S., Lee, S.: Fast motion deblurring. ACM Transactions on Graphics 28 (2009)
3. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single

image. ACM Transactions on Graphics 27 (2008)
4. Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. ECCV

(2010) 157–170
5. Jia, J.: Single image motion deblurring using transparency. CVPR (2007)
6. Joshi, N., Szeliski, R., Kriegman, D.: Psf estimation using sharp edge prediction.

CVPR (2008)
7. Yuan, L., Sun, J., Quan, L., Shum, H.: Image deblurring with blurred/noisy image

pairs. ACM Transactions on Graphics 26 (2007)
8. Cho, T.: Motion blur removal from photographs. M.I.T Ph.D dissertation (2010)
9. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-laplacian priors.

Neural Information Processing Systems (2009)
10. Gupta, A., Joshi, N., Zitnick, L., Cohen, M., Curless, B.: Single image deblurring

using motion density functions. In: ECCV ’10: Proceedings of the 10th European
Conference on Computer Vision. (2010)

11. Krishnan, D., Tay, T., Fergus, R.: Blind deconvolution using a normalized sparsity
measure. CVPR (2011)

12. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm
for total variation image reconstruction. SIAM Journal of Imaging Science 1 (2009)

13. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing
camera shake from a single photograph. ACM Transactions on Graphics 25 (2006)

14. Bracewell, R.N.: The Fourier Transform and Its Applications. McGraw-Hill (1999)
15. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Deconvolution using natural im-

age priors. http://groups.csail.mit.edu/graphics/CodedAperture /SparseDeconv-
LevinEtAl07.pdf (2007)

16. Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding and evaluating
blind deconvolution algorithms. CVPR (2009)

17. Richardson, W.H.: Bayesian-based iterative method of image restoration. Journal
of Optics (1972)

18. Lucy, L.B.: An iterative technique for the rectification of observed distributions.
Astronomical Journal (1974)

19. Yang, Q., Tan, K., Ahuja, N.: Real-time o(1) bilateral filtering. CVPR (2009)
20. Joshi, N., Kang, S.B., Zitnick, C.L., Szeliski, R.: Image deblurring using inertial

measurement sensors. ACM Transactions on Graphics 29 (2010)

