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Abstract

We describe a simple model for parsing pedestrians
based on shape. Our model assembles candidate parts from
an oversegmentation of the image and matches them to a
library of exemplars. Our matching uses a hierarchical de-
composition into a variable number of parts and computes
scores on partial matchings in order to prune the search
space of candidate segment. Simple constraints enforce
consistent layout of parts. Because our model is shape-
based, it generalizes well. We use exemplars from a con-
trolled dataset of poses but achieve good test performance
on unconstrained images of pedestrians in street scenes. We
demonstrate results of parsing detections returned from a
standard scanning-window pedestrian detector and use the
resulting parse to perform viewpoint prediction and detec-
tion re-scoring.

1. Introduction
A fundamental problem in scene understanding is com-

bining top-down information provided by object detection
and recognition with information on object localization pro-
vided by bottom-up segmentation. There has been a variety
of proposals in the last 10 years for combining segmentation
and recognition [32, 16, 29, 2, 15, 17], but perhaps the sim-
plest approach is a feed-forward model in which candidate
objects are first detected and then each object is segmented
using an object specific model. In order to provide a mech-
anism for feedback, the resulting segmentations can be used
to either rescore detections (see e.g., [23]) and/or combined
to yield a consistent interpretation of the entire scene (see
e.g., [31]).

In this paper we focus on the problem of segmenting hu-
man figures. Segmenting humans poses a particularly good
testbed for object specific segmentation since human fig-
ures are highly articulated and vary widely in appearance
due to clothing. One proposal for bridging the gap be-
tween bottom-up segmentation and this high-level task of
segmenting a heterogeneous, articulated object, is to search

Figure 1. Overview of processing. A large pool of candidate seg-
ments are generated by directed aggregation of superpixels. Can-
didate regions are scored based on shape similarity to a database
of shape exemplars. Simple constraints between parts enforce con-
sistent layout (e.g. upper-body must appear above lower-body) in
the labeling of regions. Assemblies with variable numbers of parts
are scored using a simplified hierarchical model of appearance.

over assemblies of small, bottom-up segments (also known
as superpixels) in order to find the human figure [20, 28].

The fundamental challenges to be solved in such an ap-
proach are dealing with the combinatorial complexity of as-
sembling a large number of potential superpixels and choos-
ing appropriate scoring functions for evaluating the shape
and appearance of a given assembly. We tackle both of these
issues using a hierarchical description of segment shapes.
This allows us to model both constraints between segments
(as are captured by standard approaches to recovering artic-
ulated pose [9, 24, 11]) as well as correlations in appearance
between parts and sub-parts.

Hierarchical composition is an appealing approach and
has been explored in several vision contexts primarily for
recognition (see e.g., [13, 14]). Our model is closely related

2265



to the AND/OR graph framework of [7, 33] which was used
to parse human body poses in [34]. The primary distinc-
tion with the work on AND/OR graphs is that our model is
built on segments (rather than edges) and the likelihood of
our intermediate parts involve appearance features in addi-
tion to part-part and part-subpart interactions. We also use
hard constraints in the pairwise interactions which allows
for simple pruning of the search space.

Unlike other approaches to image understanding that at-
tempt to perform a “semantic parse” of the image based on
high-level concepts, we focus on performing a mid-level
“syntactic parsing” of an image into visual components. For
example, rather than attempting to divide a human arm into
upper and lower arm (kinematic parts which may not be
readily apparent in an image) we divide it into clothed and
unclothed visual components. This is desirable since the
mapping from semantic parts to visual appearance is cer-
tainly not one-to-one. Defining an intermediate structure of
visual components1 allows us to focus our modeling on vi-
sual features and defer semantic reasoning to a later stage
of processing.

Figure 1 gives a birds-eye view of the proposed algo-
rithm. Pools of candidate parts are generated from bottom-
up segmentation and each segment scored based on shape
and appearance. These segments are assembled in a bottom-
up parse tree which enforces constraints among parts at a
given level of the tree and between parents and children.
The final result is a hierarchical segmentation of the im-
age into a variable number of parts and background. In
the following sections we describe details of the parsing
constraints, part segment generation, scoring and assembly
procedures. We then describe an experimental quantifica-
tion of segmentation accuracy on a set of scenes of pedes-
trians in the wild. We also describe how to leverage the
parsing model to perform viewpoint classification and de-
tector rescoring.

2. A Compositional Model for Pedestrians
Figure 2 shows the structure of our parsing model. We

decompose the pedestrian into three major parts (head,
upper-body, lower-body). Each of these components
in turn may consist of sub-parts (hair,face,upper-clothes,
arms,lower-clothes,legs). We refer to these components all
generically as parts. Unlike the large body of work on hu-
man pose analysis, this decomposition into parts is not kine-
matic. Instead our parts are appearance based. Face and hair
are separate parts because for viewpoints (and individuals)
these parts are photometrically distinct. Likewise, the divi-
sion into upper-clothes and arms only applies in those cases

1Throughout the rest of the paper we abuse terminology and refer to
the visual components in our model generically as “parts” but they should
be thought of as visual (parts of the image) rather than semantic (parts of
the object).

Figure 2. Our hierarchical model for pedestrians includes head,
upper-body and lower-body. Each of these regions in turn may
be further subdivided depending on the pose of the pedestrian
into hair, face, upper-clothes, arms, lower-clothes and legs. The
dashed arrows show “optional” production rules which may not
apply to a given image. For example, from a back view only the
hair is visible but not the face.

where the two are distinct (i.e. short shirt sleeves).
In parsing a candidate pedestrian bounding box, we en-

force that each part appears only once and that a part may
only appear if its parent part also appears. In addition, we
impose the following set of hard geometric constraints on
the segments corresponding to parts of the model.

• head should appear above upper-body which should
appear above lower-body

• x coordinates of head, upper- and lower-body should
be within 25% of the overall bounding box width

• head, upper body and lower body should not overlap
by too much or be separated by too great a distance

• arms should be adjacent to, or overlap the upper-
clothes

• legs should be adjacent to and below lower-clothes

• face and hair should be adjacent

The thresholds for these constraints are set from training
data. In our final parsing, we will only consider labelings of
segments which satisfy these constraints.

3. Generating Candidate Part Segments

We derive candidate parts from the superpixels produced
by the gPb-OWT-UCM segmentation code of [1]. This seg-
mentation algorithm achieves state-of-the art performance
on general purpose segmentation benchmarks and a fast im-
plementation is available which exploits computation on the
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GPU to segment an image in a few seconds [6]. The algo-
rithm returns as output a hierarchical segmentation repre-
sented by a weighted boundary map termed an Ultramet-
ric Contour Map (UCM). Thresholding the contour map at
larger values produces coarser segmentations of the image.

While the segmentation quality is quite good, we found
that the hierarchy it produces is seldom aligned with the
hierarchy of pedestrian parts. Furthermore, it is seldom
possible to choose a threshold that results in the pedestrian
or parts of the pedestrian appearing as a single segment
(see UCM examples in Figure 5). Markings on clothes
and shadows are often higher contrast than those bound-
aries separating the pedestrian from the background mak-
ing simple bottom-up segmentation impossible. Instead,
we produce a whole collection of segments by selecting a
range of possible thresholds of the UCM as well as con-
sidering additional assemblies. This approach is grounded
in a long line of work starting with Ren and Malik [25]
which scores multiple bottom-up segmentation hypothe-
ses [21, 20, 26, 19, 5, 18].

If we start from the collection of segments given by the
UCM, there are a large number of candidate assemblies.
Without any constraints, on N segments it quickly becomes
infeasible to naively consider all 2N combinations as can-
didate parts since N is on the order of 100. One route is
to use a segment scoring function which decomposes over
superpixels (e.g., [8, 35, 10]) in order to utilize efficient
combinatorial algorithms. We take a different approach,
instead defining arbitrary scoring functions for each part
of our model but use these scoring functions along with
constraints between parts to direct exploration and greed-
ily prune the space of possible assemblies.

4. Scoring Candidate Part Segments
For each candidate segment, we would like to score

the likelihood that the segment is part of a pedes-
trian. Let Li be the label of segment i where
Li ∈ {head, torso, legs, ..., pedestrian, background}.
We build an independent model for the shape and appear-
ance of each of these parts.

4.1. Segment Shape and Appearance

Let Xi be the observed shape and appearance features
for a given candidate segment i. For modeling parts we use
a shape feature built from a spatial histogram of the segment
edge orientations (similar to [12]). This shape feature is
computed for two different coordinate frames: a relative co-
ordinate frame which is placed tightly around the segment,
and an “absolute” coordinate frame which is computed rel-
ative to the whole pedestrian. In each case, the bounding
box is grided up into 11 by 11 spatial bins and 9 orientation
bins. For scoring the clothed parts (upper/lower-body and
upper/lower-clothes), only the shape descriptor is used. For

unclothed parts (face, hair, arms and legs), we also use color
and texture histograms to capture the appearance.

We estimate the label for each segment by comparing it
to a library of exemplar segments. Let Xe be the feature
vector associated with a exemplar e and Sk be the set of
all exemplars of part type k. We model the probability as a
logistic function of the feature vector distance

P (Li = k|Xi) = max
e∈Sk

1

1 + e‖Xi−Xe‖2

4.2. Segment Area and Location

Let Ai be the area of the candidate segment. We model
the area of part k by a Gaussian distribution

P (Li = k|Ai) ∝ e
(Ai−µk)2

2σ2
k

To model location, we construct an average shape mask
Mk(x) which records the frequency with which a pixel at
coordinate x relative to the pedestrian centered coordinate
system belongs to the part k. Let Bi be the set of pixels
associated with the candidate segment i. For a given candi-
date, we score the location as:

P (Li = k|Bi) =
∏
x∈Bi

Mk(x)
(1/Ai)

Finally, we assemble these three cues under a naive
Bayes assumption to yield a final probability for a given
label of candidate segment i.

P (Li|Ai, Bi, Xi) ∝ P (Li|Ai)P (Li|Bi)P (Li|Xi)

In practice, we find that only having a single location
map per part type is restrictive, particularly for upper and
lower body parts which are articulated. To allow for a richer
representation, we cluster the training exemplars for a given
part and use a mixture model to capture these modes. This
can be handled with the above notation by allowing multiple
subsets of exemplars {Sk1

, Sk2
, . . .} for each part type k.

Figure 3 shows examples of average shape masks Mkm(x)
of the mixture components for upper and lower body parts.

5. Directed and Constrained Region Merging
In order to generate candidate segments for each part k,

we start by choosing a seed segment sampled from a high
probability location for the given part type. We then carry
out a greedy region merging operation by successively ap-
pending additional segments to the seed. This merging op-
eration is carried out as a best-first search which only con-
siders adding segments that are adjacent to the candidate as-
sembly and scores them using the features described above.
The search terminates when the candidate segment area ex-
ceeds a threshold set relative to the largest area for that part
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Figure 3. Average shape masks for upper- and lower-body part
location used in the part likelihood computation. For each of these
parts, we fit a mixture of 16 components to the training data to
capture the range of locations relative to the bounding box. The
left and right symmetric pairs arise naturally from the training data
which includes views from all sides.

seen in the training data set. Each segment generated by this
merging process is added to the pool of candidate segments
for the given part type.

Since the superpixel boundaries are determined primar-
ily based on local edge information, they may not ade-
quately exploit segment level properties such as uniform
hue. We carry out an additional refinement step for each
candidate segment by using it as initialization for perform-
ing a graph-cuts based segmentation [4]. We first create
a foreground mask by eroding the candidate segment sup-
port. We then use this foreground mask to estimate the fore-
ground color and perform a graph-cut segmentation where
the mask pixels are constrained to take on the foreground
label and perimeter pixels are constrained to take on back-
ground. While this step usually has little effect on the over-
all candidate part shape, we found that it did improve the
precise boundary localization of the final segmentation. Af-
ter refinement, we remove near duplicate candidates from
the pool.

6. Bottom-up Parsing
We assemble a parse of the image by selecting high scor-

ing parts from the candidate pools using a bottom-up parse.
Thus, we first generate candidate segments for upper/lower
clothes, arms and legs, and then generate candidate seg-
ments for upper and lower-body that contain those potential
arms and legs respectively, and so on. The final assembly is
scored using the whole pedestrian shape model.

Since the depth of our parse tree is limited, this exhaus-
tive approach is possible but still unwieldy. We use two

Figure 4. Training exemplars from the walking actions in the Hu-
manEVA dataset [27]. A total of 937 exemplars from 4 individuals
were segmented by hand into the 6 body parts. Exemplars were
also labeled with one of 8 canonical viewpoints (front, left-front,
left, ...) for use in the viewpoint estimation experiment. Note lim-
ited range of appearances present. Since our parsing algorithm is
based primarily on the measurements of the shape and location of
each part, it is able to generalize to the different, richer distribution
of appearances in the test dataset.

techniques for pruning the space of parses. First, since
our model uses hard part-part and part-subpart constraints
(rather than probabilistic versions) we can enforce these
constraints at every step to prune away infeasible combina-
tions of parts. For example, we only need consider combi-
nations of lower- and upper-body which satisfy the relative
location constraints.

Second, after generating a pool of candidate parts at
a given level (either individual parts assembled from seg-
ments or intermediates assembled from individual parts),
we greedily prune the pool to a fixed size, keeping only the
top scoring candidates. The size is selected to keep sub-
sequent running times reasonable. In our experiments, we
keep the top 20% of candidates at any given stage of parsing
which typically amounts to 75-100 candidate segments for
each part.

7. Experiments
For training exemplars, we use images taken from the

HumanEva dataset [27]. This dataset consists of several
video sequences of four different human actors perform-
ing various activities along with motion-capture and other
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Part Accuracy
Hair 44.90 %
Face 60.79 %
Upper Clothes 74.83 %
Arms 26.21 %
Lower Clothes 71.23 %
Legs 42.04 %
Background 81.05 %
Average 57.29 %

Component Accuracy
Head 51.82 %
Upper Body 73.57 %
Lower Body 71.62 %
Background 81.05 %
Average 69.51 %
Segment Accuracy
Foreground 73.27 %
Background 81.05 %
Average 77.17 %

Table 1. Per-pixel segmentation accuracy on Penn-Fudan pedes-
trian database [30]. Accuracies are compiled for individual parts,
intermediate parts and the entire pedestrian. Because the parts are
nested, the background accuracy is the same for all levels of the
hierarchy.

auxiliary data. We use only the color images from walk-
ing sequences. For each frame we created a ground-truth
segmentation using a simple interface for gluing together
UCM superpixels to label the parts of our model. Since the
dataset includes actors with both short and long clothes we
were able to collect exemplars for all the parts in our pars-
ing model. Figure 4 shows examples of the training images
used along with the ground-truth segmentation.

From this dataset we extract 937 total exemplars. This
data is split across 16 mixture components each to model
the shapes and locations of the upper and lower body and
upper and lower clothes.

7.1. Segmentation

To test parsing performance we use the Penn-Fudan
database [30] which consists of multiple pedestrians in out-
door street scenes. We first consider the ability of the algo-
rithm to correctly segment out each part of the pedestrian.
For this purpose, we take tightly cropped image patches
containing pedestrians from the dataset. Figure 5 shows
example cropped pedestrian images, the UCM from which
candidate parts are generated, and the final parsing results.
We compare the accuracy of this parsing to ground-truth
segmentations in Table 1.

Unfortunately there seems to be a lack of baselines and
standard datasets for evaluating body-part segmentation ac-
curacy. Previous work has typically scored accuracy of de-
tection or pose estimation (e.g., [21, 30]) or whole body
segmentation accuracy (e.g., [28]) for which our algorithm
seems to perform comparably. The work of Bourdev et al.
[3] on poselets demonstrates part segmentation but quanti-
tative measures of accuracy on the H3D dataset were not
reported. We have made our ground-truth annotations for
the Penn-Fudan database available online to allow future
comparisons to the results here (http://vision.ics.
uci.edu/datasets/).
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Figure 7. Confusion matrix for predicting viewpoint from the com-
bined shapes of the head, upper and lower-body parts. We achieve
an average accuracy of 37% across all viewpoints.

7.2. Viewpoint Detection

We consider the use of our shape comparison to perform
viewpoint prediction on the resulting parsed pedestrians.
We label each exemplar with one of 8 ground-truth view-
points (front, left-front, left, etc). This gives a distribution
over viewpoints for each exemplar cluster and for each part.
Let V denote the viewpoint of a given detected pedestrian.
To estimate the viewpoint implied by a given parse we con-
sider each part i in turn and compute:

P (V = j|Xi) =
∑
m

P (V = j|Li = km, Xi)P (Li = km|Xi)

where the sum is over all mixture components associated
with part type k. To make a final determination of viewpoint
for the whole pedestrian we combine the per-part predic-
tions assuming independence and uniform prior over view-
ing directions

V ∗ = argmax
∏
i

P (V = j|Xi)

where the product ranges over the set of segments belonging
to the final parse.

Figure 7 shows the confusion matrix of predicted versus
ground-truth viewpoints for the Penn-Fudan test set. On
average we achieve a prediction accuracy of 37% across all
viewpoints with the most confusion arising in prediction of
diagonal views.

7.3. Detector Rescoring

To test our parsing model in a more realistic setting, we
use the multi-resolution HOG-based pedestrian detector of
[22] to first detect candidate bounding boxes and then parse
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Figure 5. Example parses of pedestrians from tightly cropped bounding boxes. Rows show original image, Ultrametric Contour Map
(UCM) from which candidate segments are assembled, and final top scoring segmentation result.
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Figure 8. Detection rescoring using whole pedestrian shape score
boosts performance in the high precision regime.

each detection returned. For the Penn-Fudan dataset, we
set the detector to search over a range of scales where the

resulting bounding boxes were 200 pixels or taller. This de-
tector returns a list of candidate bounding boxes ordered
by a detector confidence score. On the dataset of 100
test images the detector returned 175 candidate windows.
Of these candidate windows, 60.5% are correct detections
which overlap with a ground-truth bounding box by more
than 50%.

Figure 6 shows example results of running the parser on
bounding boxes returned by the template based pedestrian
detector. In each case we report the top scoring parse for
that subwindow. When the detector works well and returns
a close-cropped bounding box, the parsing system also per-
forms reasonably. However, the detector also returns false-
positives which are not centered on a pedestrian (see exam-
ples in the bottom-row of Figure 6). For these subwindows
the best parsing typically looks far less pedestrian-like.

We can exploit this fact in order to rescore the detection,
similar to the work of [23]. We combine the detector score
with the best match score computed for the whole pedes-
trian segmentation using a sigmoid function to convert the
SVM output into a probability. Figure 8 shows the resulting
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Figure 6. Example parses of pedestrians output from 175 bounding boxes produced by a multi-scale template based pedestrian detector[22].
Top row shows 20 highest ranked pedestrian parses based on combined detector and segmentation score. Bottom row shows the 20 lowest
ranked pedestrian parses.

classification performance for this rescoring on the set of
175 candidate windows. Here, a bounding box which over-
laps with a ground-truth by more than 50% is considered
a true detection. The precision-recall curve shows that in-
cluding the shape score gives a boost in performance in the
high-precision regime.

8. Conclusion

We have described a simple compositional model for
parsing images of pedestrians into visual parts. We are able
to get good segmentation performance on realistic street
scenes based largely on segment shapes learned from an
entirely different dataset. While we have no doubt that a
specialized, discriminatively trained classifier could outper-
form this approach in task of viewpoint and detector rescor-
ing, we find it promising that simply using probabilistic es-
timates based on the shape training dataset yields decent
results.

Much of this generalization ability rests on having good
quality bottom-up segmentation. In cluttered, low-contrast
images where shapes of candidate segments are small and
indistinct, greedy assembly can often fail to discover good
candidate parses. For example, Figure 9 shows examples
of difficult images in which the top-scoring parse quality is
poor. We expect that solving such cases will require having
stronger models of shape and utilizing top-down feedback

to refine segment boundaries where local image contrast is
insufficient.
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