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Abstract

Contours and junctions are important cues for percep-
tual organization and shape recognition. Detecting junc-
tions locally has proved problematic because the image in-
tensity surface is confusing in the neighborhood of a junc-
tion. Edge detectors also do not perform well near junc-
tions. Current leading approaches to junction detection,
such as the Harris operator, are based on 2D variation in
the intensity signal. However, a drawback of this strategy is
that it confuses textured regions with junctions. We believe
that the right approach to junction detection should take
advantage of the contours that are incident at a junction;
contours themselves can be detected by processes that use
more global approaches. In this paper, we develop a new
high-performance contour detector using a combination of
local and global cues. This contour detector provides the
best performance to date (F=0.70) on the Berkeley Seg-
mentation Dataset (BSDS) benchmark. From the resulting
contours, we detect and localize candidate junctions, taking
into account both contour salience and geometric con�gu-
ration. We show that improvements in our contour model
lead to better junctions. Our contour and junction detec-
tors both provide state of the art performance.

1. Introduction

We present a new, high-performance detector for con-
tours in natural images, and use its output to detect and lo-
calize image junctions. These are each well-studied prob-
lems in computer vision; our novel contributions are the fol-
lowing:

� Contour Detection: We combine the use of local in-
formation derived from brightness, color, and texture
signals, with global information obtained from spec-
tral partitioning, to produce a contour detector. On the
BSDS benchmark of 100 images, this provides the best
results to date (comparison data is available for several
algorithms tested over the last 4 years [10]).

� Junction Detection and Localization: Local junc-
tion detection is dif�cult, even for humans [18]. Yet
much previous work in the computer vision commu-
nity focused on operators based on local image patches
[5, 8, 11, 14, 23]. These approaches detect the pres-
ence of edge energy at mutiple orientations, as might
happen in textured areas, and as such provide a use-
ful signal for structure from motion and object recog-
nition. We are interested in a more classic notion of
junctions, as in line drawing interpretation and percep-
tual organization. Our approach is based on detect-
ing junctions as the approximate intersection points of
contours in a way that makes us immune to the well-
known problems of contour detectors in the neighbor-
hood of a junction. Benchmarks for junction detection
seem non-existent, so we develop a new one based on
the BSDS. We compare our junction detector to base-
lines built on variants of the Harris detector [11].

The two main sections of this paper present our approach
to and results on these twin problems. Discussions of rel-
evant past work on contour and junction detection are em-
bedded in their respective sections.

2. Contour Detection

There is an extensive literature on contour detection.
For the purposes of this paper, we consider two main ap-
proaches to this task. A �rst family of methods aims at
quantifying the presence of a boundary at a given image lo-
cation through local measurements. Early local approaches,
such as the Canny detector [3], model edges as sharp dis-
continuities in the brightness channel. A richer description
can be obtained by considering the response of the image
to a family of �lters of different scales and orientations. An
example is the Oriented Energy approach [19, 21], in which
the �lterbank is composed of quadrature pairs of even and
odd symmetric �lters. More recent approaches also take
into account color and texture information and make use of
learning techniques for cue combination [17, 6].

A second family of methods relies on integrating global



Figure 1.Top: Original image and �rst four generalized eigenvectors.Bottom: Maximum response over orientations� of sP b(x; y; � ),
and ofsP bv j (x; y; � ) for each eigenvectorv j .

image information into the grouping process. Spectral
graph theory [4] has often been used for this purpose, partic-
ularly, the Normalized Cuts criterion [16, 25]. In this frame-
work, given an af�nity matrixW whose entries encode the
similarity between pixels, one de�nesD ii =

P
j Wij and

solves for the generalized eigenvectors of the linear system:

(D � W )v = �D v (1)

Traditionally, after this step, clustering is applied to
obtain a segmentation into regions. This approach often
breaks uniform regions where the eigenvectors have smooth
gradients. One solution is to reweight the af�nity matrix
[26]; others have proposed alternative graph partitioning
formulations [9, 27, 29]. Recently, Zhuet al. [30] proposed
detecting closed topological cycles in a directed edgel graph
by considering the complex eigenvectors of the normalized
random walk matrix. Although contour detection methods
based on spectral partitioning have been reported to do well
in the high precision / low recall regime, their performance
is generally poor in the high recall / low precision regime
[9, 29].

There is of course a much larger tradition in boundary
detection and region segmentation. Classic approaches in-
clude the variational formulation introduced by Mumford
and Shah [20], level-set methods [24] and techniques based
on perceptual organization of contour outputs [15, 28]. Re-
cent methods in contour detection include [7], where salient
smooth curves are extracted by using a greedy approximate
solution to the minimum-cover problem; [22], where the
Conditional Random Fields framework is used to enforce
curvilinear continuity of contours; and [1], where Ultramet-
ric Contour Maps are obtained from hierarchical agglomer-
ative clustering of regions.

2.1. Combining Local and Global Contours

We consider in this paper the detector of [17], whose
outputP b� (x; y; � ) predicts the posterior probability of a

boundary at each image pixel by measuring the difference in
several feature channels on the two halves of a disc of radius
� centered at(x; y) and divided by a diameter at angle� .
In our experiments, we sample� at 8 orientations in the
interval[0; � ).

In order to detect �ne as well as coarse structures, we
consider brightness, color, and texture gradients at three
scales: [ �

2 ; �; 2� ], where� is the default scale of theP b
detector. We then combine linearly the local cues, denoted
f Gi g, in a single multiscale oriented signal:

mP b(x; y; � ) =
9X

i =1

� i � Gi (x; y; � ) (2)

In order to introduce global information, we consider
the �rst k + 1 generalized eigenvectors of the system (1),
noted f v0 ; :::; vk g, where the corresponding eigenvalues
f � 0; :::; � k g are such that0 = � 0 � ::: � � k . In our exper-
iments, we usek = 8 .

We construct the af�nity matrixW by using theinterven-
ing contourcue [9, 13], the maximal value ofmP b along
a line connecting two pixels. We then reshape eachv j in
the size of the original image and extract its contours us-
ing Gaussian directional derivatives at multiple orientations
� , obtaining an oriented signalsP bv j (x; y; � ). The informa-
tion from different eigenvectors is then combined to provide
the “spectral” component of our boundary detector:

sP b(x; y; � ) =
kX

j =1

1
p

� j
� sP bv j (x; y; � ) (3)

where the choice of the weights is motivated by the physical
interpretation of generalized eigensystems as mass-spring
systems [2]. Figure 1 presents an example. Note that, by
extracting an oriented contour signal from the eigenvectors
instead of producing hard segmentations, we eliminate the
problem of large uniform regions sometimes being broken
up by the Normalized Cuts algorithm.
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Figure 2. Evaluation of boundary detectors.Left: Comparison of the detectors in this paper. The spectral detector sP b improves the
precision of the local signalmP b, while their combinationgP bprovides uniformly better performance.Middle: Comparison ofgP b
with leading boundary detectors on grayscale images.Right: Comparison ofgP bwith leading boundary detectors on color images.gP b
obtains the highest F-measure(2 � P recision � Recall=(P recision + Recall)) to date on the BSDS benchmark.

The signalsmP bandsP bconvey different information,
as the former �res at all the edges while the latter extracts
only the most salient curves in the image. We found that
a simple linear combination is enough to bene�t from both
behaviors. Our �nalglobalized probability of boundary
is then written as:

gP b(x; y; � ) =
9X

i =1

� i � Gi (x; y; � ) + 
 � sP b(x; y; � ) (4)

where the weights are learned by gradient ascent on the F-
measure.

A thinned, real-valued contour image can be obtained
from gP bby considering the maximal response over ori-
entations at each location and applying non-maximum sup-
pression [3, 12].

2.2. Evaluation

Figure 2 presents the evaluation of our boundary detec-
tion results using the BSDS benchmark [10]. The precision-
recall curves show that the reduction of false positives due
to the use of global information insP bis concentrated in the
high thresholds, whilegP btakes the best of both worlds, re-
lying on sP b in the high precision regime and onmP b in
the high recall regime. The mean improvement in precision
of gP bwith respect to the single scaleP bis 10%in the re-
call range[0:1; 0:9]. The gain in precision of the grayscale
version ofgP bwith respect to the Canny detector is17%
in the same recall range. Qualitatively, this improvement
translates as reduction of clutter edges and completion of
contours in the output, as shown in Figure 3. The central
and right panels of Figure 2 show thatgP bcompares fa-
vorably with the leading contour detection techniques eval-
uated on the BSDS [1, 3, 6, 7, 17, 22, 29, 30].

3. Junction Detection

Evidence from psychophysics [18] suggests that junc-
tions are dif�cult to detect locally. However, much previ-
ous work in the computer vision community has focused on
the development of operators based on local image patches
[5, 8, 11, 14, 23]. While our approach still analyzes an im-
age neighborhood, we do not necessarily rely on image in-
formation in the immediate vicinity of a junction. Rather,
we choose the support of the neighborhood large enough
with respect to the support of the boundary operator so that
our algorithm may recover from errors in contour detection
near a junction.

3.1. Local Operators

We use a version of the Harris operator [11] as a base-
line with which to compare our algorithm. Given imageI
let G be a two-dimensional Gaussian smoothing kernel and
de�ne:

A(x; y) = G � [r I r I T ]
�
�
(x;y ) (5)

where� denotes convolution [14].
Let � 1 and� 2 be the eigenvalues ofA(x; y). The Harris

corner operator is based on the observation that near a cor-
ner, both� 1 and� 2 are large and positive, whereas near an
edge or featureless region, at least one of� 1; � 2 � 0. We
de�ne our Harris operator to be:

H (x; y) = � 1� 2=(� 1 + � 2) (6)

Applying non-maximum suppression toH (x; y) yields can-
didate junction locations.

Reliance on the grayscale image derivativer I leaves the
Harris operator vulnerable to erroneous responses in tex-
tured regions. The next section describes a novel junction



Figure 3. When compared with the local detectorP b, our detectorgP b reduces clutter and completes contours.From left to right:
Original image, thresholdedP b, thresholdedgP b, andgP b. The thresholds shown correspond to the points of maximal F-measure on the
curves in Figure 2.

detection algorithm based onP bor its variantsmP b, gP b,
etc. To illustrate that our gains are partially due to this al-
gorithm and not just the result of a better image derivative
estimate, we include as a comparison point the Harris oper-
ator withr I computed fromP b(x; y; � ).

3.2. Contour­based Approach

Junctions may be viewed as points at which two or more
distinct contours intersect. For each junction, we would like
to recover its location and salience, and also identify the
contours passing through it.

Given a set of contours de�ned by the non-maximum

suppressed output ofP b (or a similar boundary detector),
if one knew the junction locations, it would be easy to iden-
tify the associated contours. Conversely, if one knew which
contours intersect at each junction, it would be easy to es-
timate the optimal locations. This suggests an EM-style al-
gorithm. For an image neighborhoodI N :

1. Estimate the optimal junction locationL = ( xL ; yL )
by minimizing its weighted distance from the contours
f Ci g 2 I N

L = argmin (x;y )2 I N

X

i

wi d(Ci ; (x; y)) (7)



whered(Ci ; (x; y)) is the distance from contourCi to
point (x; y). In practice, we approximate each contour
fragmentCi as a line segment and letd(�; �) be the dis-
tance from a point to the line containing this segment.
Hence,d(�; �) is small provided the smooth continua-
tion of the contour intersects the junction.

2. Update the weightwi of each contourCi in order to se-
lect only those contours passing close to the junction:

wi = jCi j � exp(� d(Ci ; L )2=�2) (8)

wherejCi j =
P

(x;y )2 C i
P b(x; y) is the total contrast

of contourCi and� is a parameter controlling the dis-
tance tolerance.

3. Repeat the above two steps for a set number of itera-
tions or until the optimal junction locationL reaches a
�xed point. In practice, convergence is fast and in our
experiments we capped the number of iterations at5.

The weights are initialized by settingwi = jCi j 8i .

Figure 4 provides an example of a set of contour frag-
ments in an image neighborhood and their line segment
approximations. Step 1 minimizes a weighted distance to
these lines. Notice that some contours do not participate in
the junction. Step 2 removes such distractors.

The error measure minimized in Step 1 is similar in spirit
to that used by Forstner and Gulch [8] for corner localiza-
tion. However, they minimize a sum of squared distances
from lines through directed pixels and are vulnerable to
clutter without the reweighting step.

Note that we need only consider neighborhoodsI N

likely to contain a junction: those near existing endpoints
of our approximately linear contour fragments.

Figure 4. Contour fragments in an image neighborhood. We sub-
divide contours into approximately linear pieces and consider the
corresponding straight line segments when localizing junctions.

Figure 5 shows the results of our junction localization
algorithm. The left panel contains theP b response in the

Figure 5. Junction localization.Left: Contours detected in an im-
age neighborhood.Right: Contours reweighted according to their
intersection with the detected junction (red star). Our reweighting
technique removes clutter which is not part of the junction.The
surviving contours are precisely those participating in the junction.

neighborhood of a junction. The right panel displays each
pixel with intensity equal to the weight of its corresponding
contour after localization. Reweighting removes interfering
contours which pass through the image neighborhood, but
not the junction.

The above approach leaves open the question of junction
salience. We would like a quantitative measure of junction
strength in order to compare our results to local operators
such as Harris. We design a “probability of junction” oper-
ator,P j , motivated by the following considerations:

� Contours meeting at a junction should be salient.

� Junctions should be sharp. The intersecting contours
should be nearly orthogonal.

� We wish to treat all junction types in the same frame-
work. Letn be the degree of a junction (usually2 or 3).
We evaluate ann-junction by regarding it as the maxi-
mally salient2-junction formed by its components.



The following P j measure satis�es all three of these
constraints:

P j (xL ; yL ) / maxCu ;C v 2 I N f
p

wu wv � sin(� (Cu ; Cv ))g
(9)

where� (Cu ; Cv ) is the angle between contour fragments
Cu and Cv at the junction location(xL ; yL ). The term
sin(� (Cu ; Cv )) is a counterpart to extracting the component
perpendicular to the dominant orientation, analogous to the
second eigenvector ofr I r I T .

3.3. Junction Benchmark

To our knowledge, no standard dataset exists in the com-
puter vision community for the purpose of benchmark-
ing junction detection algorithms. We adapt the human
ground truth of the BSDS to serve as a junction bench-
mark. From the ground truth segmentations, we extract3-
junctions as places where three or more regions intersect,
and2-junctions as locations of high curvature along human
drawn boundaries. Just as for contour detection, the corre-
spondence between machine and human marked junctions
is used to produce a precision-recall curve for each junction
detection algorithm.
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Figure 6. Human agreement on junction detection. Junction loca-
tions are automatically extracted from human marked groundtruth
contours in the BSDS. Points represent all pairwise comparisons
of junction locations between subjects who marked the same im-
age. The X's represent average agreement for each image. The
overall average agreement is the maximum performance a junc-
tion detection algorithm could expect to achieve.

Human agreement on the junction detection task, as
shown in Figure 6, is lower that human agreement on the
boundary detection task. Contours added or omitted can
more drastically change the junction structure, as can the
degree to which subjects traced sharp details. Hence, we use
a larger tolerance (6 pixels) for junction agreement. Thereis
a lower ceiling (in terms of F-measure) on this task than on

boundary detection. However, as the next section will show,
the junction benchmark can distinguish the performance of
our contour-based approach from that of traditional local
operators.
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Pj on gPb              [F = 0.41]
Pj on Pb                [F = 0.38]
Pj on Canny          [F = 0.35]
Harris on Pb          [F = 0.34]
Harris                    [F = 0.28]
Human agreement  [F = 0.47]

Figure 7. Evaluation of junction detectors. Performance improve-
ments come from two sources: a better contour signal (noticethe
difference between standard Harris and Harris onP b, as well as
the difference betweenP j on Canny,P j onP b, andP j ongP b),
and a better junction measure (notice the difference between Har-
ris onP bandP j onP b).

3.4. Evaluation

Figure 7 presents the results of evaluating several junc-
tion detectors on our BSDS-based junction benchmark. The
baseline Harris operator on the grayscale image performs
worst of all, with an F-measure of0:28. UsingP b to esti-
mate the derivatives serving as input to Harris boosts its F-
measure to0:34. Our contour-based junction detectorP j ,
using the best contour signalgP b, performs best of all at
F=0:41. Human agreement on this task yields a ceiling of
F=0:47. Figure 8 illustrates the qualitative aspects of our
junction detector in comparison to the baseline Harris oper-
ator.

Our junction detector determines which contours partici-
pate in a junction (see Figure 5) in addition to estimating the
junction salience. Figure 9 shows that we can use this infor-
mation to restore missing contours near salient junctions.

4. Conclusion

In this paper, we have presented a uni�ed framework for
contour and junction detection and shown leading results on
the BSDS benchmark. Since we have connectivity informa-
tion associating junctions and contours, this allows us to go
partway to producing idealized line drawings. We believe
these results will serve as useful input for later stages of
perceptual organization and object recognition.



Figure 8. Comparison ofP j with the Harris operator.From left to right: Original image, top junctions detected by Harris, top junctions
detected byP j , junctions (P j ) (in red) overlayed on contours (gP b). For the purposes of display, we placed a Gaussian blob at each
junction location, with brightness corresponding to junction salience. In each of the center images, we show the same number (25) of
junctions. Additional results are provided in the supplemental material.
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