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Abstract

Using a large set of human segmented natural images, we study the statistics of region boundaries.
We observe several power law distributions which likely arise from both multi-scale structure within
individual objects and from arbitrary viewing distance. Accordingly, we develop a scale-invariant
representation of images from the bottom up, using a piecewise linear approximation of contours and
constrained Delaunay triangulation to complete gaps. We model curvilinear grouping on top of this
graphical/geometric structure using a conditional random field to capture the statistics of continuity
and different junction types. Quantitative evaluations on several large datasets show that our contour
grouping algorithm consistently dominates and significantly improves on local edge detection.

1. Introduction
Finding the boundaries of objects and surfaces in a scene is a problem of fundamental importance for
computer vision. For example, there is a large body of work on object recognition which relies on bound-
ary detection to provide information about object shape (e.g. [7, 20, 4, 12]). Even in cases where simple
intensity features are sufficient for object detection, e.g. faces, it is still desirable to incorporate bound-
ary detection in order to provide precise object segmentation (e.g. [6, 51, 59]). The availability of high
quality estimates of boundary location will ultimately govern whether these algorithms are successful in
real-world scenes where clutter and texture abound.

The problem of boundary detection has been attacked at several different levels:

1. Local edge detection: this is the traditional approach to boundary detection and has been an
area of central research since the early days of computer vision. A local edge detector typically
considers a small patch centered at each image location, measures oriented brightness gradients,
and outputs this contrast as the boundary likelihood. The Canny edge detector [8] is perhaps the
most influential and popular algorithm in this category. More recent approaches [24, 32] train a
classifier on a collection of natural images in order to combine local gradient cues.
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By nature of its locality, edge detection is necessarily limited in how much information it can
extract about boundary presence. Recent psychophysical studies [33] have suggested that cur-
rent techniques may not be far from this limit: when presented with only local patches, human
observers perform no better than a gradient based classifier [32]. It seems that utilizing greater
contextual information is necessary to further improve boundary detection.

2. Mid-level inference: since boundaries and regions interact over large parts of the image, it makes
sense to define global criteria for determining the correct boundaries (e.g. [15]). Work in this
category is often motivated by classical studies in human visual perception [37], particularly the
Gestalt movement which emphasized many non-local phenomena in perception. Region group-
ing or segmentation focuses on the association of similar regional elements. The dual approach,
curvilinear continuity, focuses on exploiting the spatial continuity of bounding contours.

3. High-level knowledge: a recent trend in computer vision is to combine object knowledge with
low- and mid-level processing [6, 51, 59]. If by using shape or appearance-based templates, one
could recognize objects in an image, it becomes relatively straightforward to locate the boundaries
of the detected objects. High-level knowledge is a very powerful cue and quite effective where
it applies. However, it is statistically and computationally expensive to model multiple object
categories and poses. One may also argue that, as human subjects can easily detect boundaries
of novel objects without explicitly recognizing them, boundary detection should primarily be an
input to object recognition, not vice versa.

Our work falls in the category of mid-level approaches to boundary detection. We utilize curvilinear
continuity, a well-studied contextual cue, to integrate local measurements of edge contrast. Our moti-
vation is both to understand the extent to which curvilinear continuity informs boundary detection, if at
all, and to build a mid-level boundary detector that achieves better performance than local approaches
by exploiting this information.

1.1 Related Work on Curvilinear Continuity
The study of curvilinear continuity has a long and influential history in psychophysics as well as neu-
rophysiology, starting with good continuation, described in Wertheimer’s work [55]; illusory contours,
studied and popularized by Kanizsa [22]; the discovery of related neural mechanisms in V2 [52]; and the
more recent theory of relatability [23], which characterizes geometric conditions under which contour
completion takes place.

In computer vision there also exists a rich literature on how to model curvilinear continuity (e.g., [46,
38,17,35,56]). A typical approach consists of detecting contour fragments based on brightness contrast
and then linking up fragments using some measure of continuity. A popular family of approaches model
continuity by a stochastic motion of tangents [35, 56, 50] and are fairly successful in modeling illusory
contours. More recent developments focus on finding salient closed contours [11, 57, 21] and make use
of closure to locate the most salient cycle in an image.

Unfortunately, most existing approaches have only been demonstrated on a few synthetic or simple
real images. Such limited experiments are far from convincing: while we may be able to complete low-
contrast edges using continuity, spurious completions are often introduced in the process. Is the net effect
positive or negative? This question can only be answered empirically by quantitative measurements. To
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the best of our knowledge, no such measurements have been made on a large, diverse set of real-world
images. We expect this may explain why, despite the large amount of work on contour completion in the
last 15 years, completion has not become a standard pre-processing step every time a boundary map is
needed.

1.2 Our Approach
Central to our approach is the use of human-segmented images of natural scenes. Three such datasets
are utilized in this work: a set of 30 news photos of baseball players [34], 344 images of horses [6]
and the Berkeley Segmentation Dataset [31], containing 1000 images of various natural scenes. These
datasets are used for two distinctive purposes:

1. To gain insights about the problem: we study the statistical properties of human-marked bound-
aries in these datasets. Empirical work along this line has confirmed the ecological validity of
curvilinear continuity [14, 42, 10]. An important finding from our study is that the statistics of
boundary contours obey power-law distributions suggestive of scale invariance (see Section 2).

2. To quantitatively evaluate models of continuity: we use human-marked ground-truth boundaries
to train the models, and evaluate them on held out test data. We measure precision and recall of
the models and compare them to local edge operators.

The contribution of this paper is a probabilistic model of continuity and closure built on a scale-
invariant geometric structure which yields boundary estimates that are quantifiably better than the input
provided by a local detector. Our algorithm starts with local estimates of the probability of boundary
(Pb) based on brightness and texture gradients [32]. The resulting edge map is discretized into a set of
piecewise linear segments and potential completions are generated utilizing the constrained Delaunay
triangulation, as described in Section 3. We show how to carry out this construction in a scale-invariant
manner and that the resulting geometric structure empirically captures a vast majority of the true image
boundaries, while typically reducing the complexity from hundreds of thousands of pixels to a thousand
candidate line segments.

In Section 4 we develop two models of curvilinear continuity on top of this geometric structure: a
simple local model which classifies each pair of neighboring edges independently and a global model
which uses a conditional random field [27] in order to enforce both continuity and long-range probabilis-
tic constraints on junctions. Performance evaluations of both the local and global models are presented
in Section 5 along with exemplary results. 1

2. Empirical Studies of Contours in Natural Images
We begin with a study of the statistical properties of boundary contour shape in natural scenes. For this
purpose, we use the Berkeley Segmentation Dataset [31] which consists of 1000 images of resolution
320-by-480 from the Corel stock photo database, covering a wide variety of natural scenes containing
humans and other animals, landscapes and architecture.

1The software and datasets used in this work have been made available through the following link:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/ijcv2006/
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Figure 1: The empirical distribution of tangent change between two adjacent locations along a contour
C. This distribution is sharply peaked around zero and has a heavy tail, suggesting that boundaries are
mostly smooth but make occasional sharp turns.

2.1 Testing the Markov model
An influential probabilistic model of contours is the first order Markov model explored in [35,56]. Sup-
pose a contour C is parameterized by arc-length s, then if its curvature κ(s) is random and independent
from location to location, the tangent direction t(s) is a random walk. The Markov property states
that the distribution of the tangent t(s + 1) at the next location s + 1 is dependent only on t(s). This
model is appealing since the Markov property enables efficient computation (i.e. dynamic program-
ming) [56, 60, 42].

To empirically study contours in natural images, we trace out human marked segment boundaries
in the dataset and numerically estimate the derivatives of each resulting contour C 2. Figure 1 shows
the empirical distribution of the tangent angle change, P (t(s + 1) − t(s)). This distribution exhibits
two non-Gaussian properties often observed in natural images: (1) the distribution is sharply peaked
around zero, i.e. in most cases boundaries are smooth; and (2) the distribution has a heavy tail, i.e.
occasionally boundaries do make sudden turns 3 . This is consistent with empirical findings in other
related studies [60, 10].

In the Markov model, curvature κ(s) is assumed to be independent from location to location. As
s increases, at each step there is a constant probability p that a high curvature event {κ(s) > κ0}
occurs. Therefore, if we look at a contour segment L between two high curvature locations, the waiting
time between these two independent events is given by the length |L| and should obey an exponential
distribution: P (|L| = t) = p(1− p)t.

This observation leads to an empirical test of the validity of the Markov contour model. We estimate
the curvature along a contour C and break it at locations where the curvature is above a threshold and is
at a local maximum. Thus a contour C is decomposed into segments where each contour segment L is
smooth. Figure 2 shows a few examples of this decomposition.

Figure 3 shows the empirical distribution of contour segment length |L|, on a log-log scale in (a) and
a semi-log scale in (b). We fit a line in both cases, for a range of lengths between 10 and 200 pixels.
The r2 statistic, a measure of the goodness of fit, is 0.9917 for the power law fit, and 0.9391 for the

2We apply a simple 1-D Gaussian smoothing along C before estimating derivatives
3Although there are man-made objects in the dataset, there seems to be no special role associated with 90-degree angles.
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Figure 2: We take each boundary contour C and break it up at local curvature maxima (corners). Shown
are a few examples of this decomposition. The contour segment length |L| is large for large-scale
features such as the back of an animal, and is small in the vicinity of fine-scale details such as the head.
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Figure 3: Empirical distributions of approximately straight contour segment length |L|. (a) the marginal
distribution of |L| on a log-log scale. It closely follows a power law with α = 2.40, in direct contra-
diction with the Markov model that predicts an exponential distribution. (b) as a comparison, the same
distribution on a semi-log scale and an exponential fit. The power law fits the data much better than the
exponential.

exponential fit.
Limited by image resolution, the empirical data we study spans only one order of magnitude. Never-

theless, a power law fits the data almost perfectly4, much better than an exponential distribution. This is
a fairly robust result: if we change the smoothing and/or the curvature threshold, the exponent may drift
a bit, but the power law still holds. This is in direct contradiction with the exponential prediction under
the Markov model. We therefore conclude that the Markov assumption is empirically false.

In some ways, the failure of the first-order Markov contour model for natural images is not so surpris-
ing since the model cannot enforce long range structure. In particular, straight lines are very uncommon
in the Markov model, as they require tangent changes to be small for a long period of time. Typical con-
tours sampled from this model are random walks and lack the large-scale structures evident in natural
contours.

4Deviations from this power law at fine scales may be attributed to the resolution limits of the pixel grid and patience of
human segmenters. Deviations at large scales are inevitable due to finite image size.
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Figure 4: Two sources of multi-scale structure in natural scenes: (a) Imaging geometry is free to vary so
the same object can appear at any distance from the observer, resulting in scaled versions appearing in
the image. (b) Objects consist of a collection of parts which have different characteristic scales. Here
the torso, leg, head and fingers consist of roughly parallel boundaries at vastly different scales. In either
case, it is desirable that vision algorithms adapt to the appropriate scale at each image location.

2.2 Sources of multi-scale structure
Power law distributions are typically associated with scale-invariance phenomena, and have been dis-
covered in many studies of natural image statistics. For example, the power spectra and wavelet coef-
ficients of natural images typically follow a power law distribution [44, 18], as do geometric quantities
such as the area of homogeneous regions [1]. These power laws have confirmed the near scale-invariance
of natural images and have inspired many efforts in developing scale-invariant statistical models for
generic images (e.g. [43, 28]). The power law in Figure 3 is no exception: it suggests that contours are
multi-scale in nature.

Introspection suggests there are at least two potential sources of multi-scale structure in natural scenes:

1. Arbitrary viewing distance: an object may appear at any distance to the observer. Figure 4(a)
shows a line-drawing illustration of an object viewed at two distances, hence appearing at two
different scales.

2. Hierarchy of parts in a single object: objects in the natural world are themselves multi-scale as
they consist of parts at various scales. For example, Figure 4(b) shows the boundary of a human
body which has a hierarchy of parts: head, torso, arms, legs, fingers, hair, each with its own distinct
scale.

Arbitrary viewing distance implies that the collection of all natural images should exhibit invariant statis-
tics over a continuum of scales. However, this imposes few constraints on the appearance of any specific
image. In contrast, hierarchical or “fractal-like” structure typically involves a discrete set of relevant
scales rather than a continuum, but can exist within a single image.

If scaling behavior is due solely to arbitrariness in viewing distance (e.g. [43]), a nearby object would
have smoother boundaries and therefore a higher probability for long straight segments |L|, while a
small, far away object would have more high-curvature points along its boundary and shorter segments.
We can test this prediction by using |C|, the length of the entire boundary, as an indication of the object
scale. In Figure 5(a), we show the empirical distributions of |L|, where the contour segments are divided
into four groups, from small |C| to large |C|. We find that the distributions are almost identical; there is
no indication that larger |C| leads to significantly higher probability for large |L|. A similar phenomenon
is observed in the case of contour curvature, as shown in Figure 5(b).
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Figure 5: We use |C|, the length of an entire boundary, as an indication of the object scale. (a) the
distributions of smooth segment lengths |L| conditioned on |C|. If arbitrary viewing distance were
the only source of scale-invariance, larger |C| would be correlated with smoother contours and higher
probabilities of large |L|. Instead, we find that the empirical distributions are very similar for different
ranges of |C|, showing no such correlation. This indicates that multi-scale nature of individual objects
also plays an important role. In (b) a similar phenomenon is observed in the conditional distributions of
R = 1/κ, the radius of curvature. The distributions of R are also very similar for different ranges of |C|.

We take these results as a strong evidence that arbitrariness of viewing distance is not the sole source
of scale-invariance; the multi-scale nature of individual objects is also important. While scale invariance
has been studied mostly as a phenomenon in large ensembles of images, properties that hold for individ-
ual objects have more immediate implications in practice. Any model of boundaries should clearly take
both factors into consideration.

3. A Scale-Invariant Representation of Contours
The empirical studies in the previous section provide guidance in designing a model of contour com-
pletion. Since contour segments show non-Markov, multi-scale structure, an appropriate model for the
contours of an object should allow for long range dependencies that simultaneously capture both large
and small scale features. Furthermore, since that object can appear at any distance from the camera,
these connections should co-vary with the scale of the object in the scene. Similarly, the representation
of contours in an entire scene should be independent of image resolution (at least over a range of scales
where this is possible).

3.1 Decomposition into linear segments
Consider the contour decomposition shown in Figure 2. Here contours are decomposed in such a way
that each contour segment is approximately straight and the collection of straight line approximations
efficiently describes different scale structures within the depicted objects. Large-scale features (smooth
contour segments), such as the back of an animal, are conserved and not broken into fragments. On the
other hand, fine-scale parts are further sub-divided; hence the “sampling density” is high in places where
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Figure 6: Building a discrete graph structure from bottom-up. (a) we take a contour detected by a
local edge operator Pb and recursively split it until the angle θ (a scale-invariant quantity) is below a
threshold. (b) We complete this piecewise linear structure with constrained Delaunay triangulation.
G-edges (gradient edges detected by Pb) are in black and C-edges (completed by CDT) in green. The
resulting triangulation graph is an efficient representation of the image and covaries with the object
scale, as illustrated in this example: the internal triangulation of the two objects (in particular the “true”
completions) are the same, regardless of the scale change.

local curvature maxima abound. Interestingly, this is consistent with the classical theory that information
along contours is concentrated in regions of high magnitude of curvature [2].

While such a decomposition captures the multi-scale structure within an object, it does not covary with
the viewing distance as it depends on curvature (measured in camera coordinates). However, replacing
curvature with a truly scale-invariant quantity, e.g. turning angle, yields a representation that satisfies
our criteria above.

We construct our contour segment based representation as follows: given an input image, first we use
the local Pb operator [32] to detect low-level edges. Canny’s hysteresis thresholding is used to trace out
the detected contours. We set the threshold fairly low such that most edges with low-level contrast are
retained. We then recursively split these contours until each segment is approximately straight.

Figure 6(a) shows an illustration of this splitting procedure: for a given contour, let θ be the angle
between segments ca and cb. Pick the set of points {a, b, c}, in a coarse-to-fine search, such that the
angle θ is maximized. If θ is above a threshold, split the contour by adding a vertex at c and continue
5. In our implementation, we fix a and b to be the two end points of the curve, and vary the point c to
maximize θ.

In general, this angle-based decomposition could be “unstable” when processing a curve with near
constant curvature (i.e. an arc of a circle) close to the threshold. However, as we have observed in the
empirical statistics, contours in natural images tend to have sharp turns or corners which anchor the
decomposition and make it stable under normal circumstances.

3.2 Completion with Constrained Delaunay Triangulation
In real images, a local edge operator may miss some low-contrast contours, leaving gaps in our repre-
sentation. We use the constrained Delaunay triangulation algorithm to span these gaps, completing the

5Due to the non-maximum suppression in Pb, edges near T-junctions are sometimes missing. A heuristic is added to
handle T-junctions: when a vertex is very close to another line (relative to line length), we split this line and insert an
additional vertex.
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piecewise linear approximation. The Delaunay triangulation (DT) is the dual of the Voronoi diagram
and is the unique triangulation of a set of vertices in the plane such that no vertex is inside the circumcir-
cle of any triangle. The constrained Delaunay triangulation (CDT) is a variant of the DT in which a set
of user-specified edges must lie in the triangulation. The CDT retains many nice properties of DT and
is widely used in geometric modeling and finite element analysis. It was used to find convex contours
in [19] and also recently applied to image segmentation by [58].

In the context of contour completion, the CDT’s ability to complete contours across gaps in the local
detector output is of particular interest. A typical scenario of contour completion is one low-contrast
contour segment (missed by Pb) in between two high-contrast segments (both detected by Pb). If the
low-contrast segment is short in length, it is likely that no other vertices lie in the circumcircle and CDT
will correctly complete the gap by connecting the two high-contrast segments. This is closely related to
the medial axis and ligature analysis used in [3]. We show some example completions in Figure 7.

We used the TRIANGLE program [48] to produce CDTs as shown in Figure 7. The linearized edges
extracted from the Pb contours, which we refer to as gradient edges or G-edges, become constrained
edges in the triangulation. The remaining completion edges or C-edges are filled in by the CDT. The
process also partitions the image into disjoint triangular regions.

Figure 6(b) shows the output triangulations for our toy example : although the two views of the “ob-
ject” greatly differ in scale, the line approximations of their contours are almost identical and so are the
triangulations. This invariance leads to interesting applications of this representation for object recogni-
tion [41, 40]. We note, however, that the edge detector we use, Pb, is not scale invariant. The computed
edge maps may differ at different image resolutions; hence the scale invariance of our representation is
only approximate over some range of scales.

3.3 Using the Triangulation Graph
In the remainder of the paper, we will describe models of curvilinear continuity built on top of the
triangulation graph. The CDT graph has many advantages over using the pixel grid:

• It is (approximately) invariant to image resolution and object scale, while efficiently representing
multi-scale structure within individual objects (i.e. both long straight lines and fine-scale details)

• By moving from ≈ 100, 000 pixels to ≈ 1000 edges, it achieves high computational efficiency,
independent of image resolution.

• By using contour segments (instead of pixels) as tokens, the CDT graph allows modeling of longer-
range interactions.

• By restricting completions to the edges in the graph, it partially solves the problem of having too
many spurious completions.

The triangulation graph is an image-dependent structure built from low-level signals. It is far more
concise than generic, image-independent multi-scale representations (e.g. multi-scale Markov random
fields [29, 30] or Beamlets [9]). For example, existing multi-scale contour grouping algorithms [45, 42]
operate on a pyramid of fixed pixel grids and combine completions across scales. In comparison, the
triangulation graph provides a single mid-level structure which makes inference (and learning) much
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Figure 7: An example of the CDT completion. G-edges are in black and C-edges in green. Note
how the CDT manages to complete gaps on the front legs of the elephant (red highlight on the inset at
right). These gaps are commonly formed when an object contour passes in front of a background whose
appearance (brightness/texture) is similar to that of the object.

more efficient; no propagation of information is needed inside each edgel. It also allows us to explicitly
represent junction geometry and connectivity.

Before we proceed, a natural question to ask is how good the triangulation graph is as an approxima-
tion of the input image? How much important image structure is lost in the triangulation process? To
answer this, as well as perform quantitative training and testing, we first need to establish a technique
for transferring our ground-truth human segmentations from the pixel grid onto the triangulated graph.

For training, we set binary ground-truth labels on CDT edges by running a maximum-cardinality
bipartite matching between the human marked boundaries and the CDT edges with a fixed distance
threshold. We label a CDT edge as boundary if 75% of the pixels lying under the edge are matched to
human boundaries; otherwise we label it as non-boundary. For testing, we always project the boundary
estimate of CDT edges back to the pixel-grid, allowing direct comparison with traditional edge detectors.

Throughout the rest of this paper, performance is evaluated with using a precision-recall curve which
shows the trade-off between false positives and missed detections. For each given thresholding t of the
algorithm output, boundary points above threshold are matched to human-marked boundaries H and the
precision P = P (H(x, y) = 1|Pb(x, y) > t) and recall R = P (Pb(x, y) > t|H(x, y) = 1) are recorded
(see [32] for more discussion).

Using this performance measure, we can show empirically that very little of the true boundary struc-
ture is lost in this discretization process. Figure 8 gives the performance of the local boundary detector
Pb as well as the performance when we assign the average underlying Pb to each CDT edge. In ad-
dition, we show an upper-bound curve by assigning soft ground-truth labels to the CDT edges: similar
to the evaluation process, we run a bipartite matching between ground-truth boundary pixels and pixels

10



0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

Recall

P
re

ci
si

on

BSDS

low−level pb estimate
pb averaged over cdt edges
groundtruth on cdt edges

Figure 8: This Precision-Recall curve verifies that moving from pixels to the CDT completion doesn’t
give up any boundaries found by the local measurement. For comparison, we also show an upper-bound
curve given by assigning labels to the CDT edges using ground-truth. The upper bound curve has a
precision near 1 even at high recall and achieves a greater asymptotic recall than the local boundary
detector, indicating it is completing some gradientless gaps.

on the CDT edges. The soft ground-truth labels are the percentage of pixels on the CDT edges that are
matched to human marked pixels. This gives the “best” possible boundary labeling constrained by the
CDT representation.

These empirical results show that assigning a single probability of boundary to an entire CDT edge
does not hurt performance and that the CDT graph contains most edges found by Pb. Moreover, the
precision of the upper-bound curve is close to 100% even at high-recall, which clearly indicates that
little image structure is lost in the triangulation process. The gap between the asymptotic recall of Pb
and the upper-bound curve shows that the CDT is completing some contours that are completely illusory
(i.e. contours with no local evidence).

3.4 Alternative Completion Schemes
The CDT is not the only scale-invariant scheme for generating completions from a set of detected edgels.
One likely alternative is to connect each vertex with up to k of its nearest neighbors subject to the
visibility constraint that added completion edges do not cross gradient edges detected locally. We refer
to this as k-nearest visible neighbor (k-NVN) completion .

As k increases, chances are higher that boundary gaps are correctly completed, at the cost of more
spurious completions. To quantitatively compare these completion schemes, we test them on the human-
annotated datasets, estimating two quantities for each scheme: m̄, average number of completions per
image; and R0, the asymptotic recall rate (percentage of ground-truth boundary pixels being detected
if all the edges are turned on). A good completion scheme should have a small m̄ and a high R0. The
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Figure 9: This figure shows the relative merits of the CDT versus an alternate completion scheme
based on connecting each vertex to the k-nearest visible vertices for k = {1, 3, 5, 7}. The plot shows the
asymptotic recall rate (the number of illusory contours found) versus the average number of potential
completions which need to be considered. An ideal algorithm would achieve asymptotic recall of 1
with very few potential completions. The single filled marker shows performance of the CDT based
completion while the curve shows performance over a range of choices of k. For each dataset, we find
that the CDT based completion gives better recall rate at a given number of potential completions the
than k-nearest visible neighbor algorithm.

results are shown in Figure 9. For all three datasets, we find that the CDT based completion is more
efficient than k-NVN. In addition, the CDT yields a planar graph which is conceptually simple to work
with.

4. Modeling Curvilinear Continuity
In the previous section we described how to construct a discrete, scale-invariant structure, the CDT
graph, from low-level edges. We will associate a random variable Xe to every edge e in the CDT graph,
where Xe = 1 if e corresponds to a true boundary contour and Xe = 0 otherwise. The variables {Xe}
interact with each other through vertices or junctions in the graph. Our goal is to build a probabilistic
model of continuity and junction frequency on the CDT graph and make inferences about {Xe}.

We will introduce two models: one for local continuity and one for global continuity and junctions.
The local continuity model considers only the immediate neighbors of each edge e, estimating the cor-
responding Xe independently based on its local context. This serves as a baseline model and is a con-
venient place to study the relevant features (which are all defined locally). The global continuity model
uses conditional random fields in order to build a joint probabilistic model over the collection of all
edges in the CDT. We fit model parameters and estimate the marginals of the random field on Xe using
loopy belief propagation.
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4.1 A baseline model of local continuity
Each edge e in a CDT graph is naturally associated with a set of features including the average Pb
estimated for pixels along the edge e and whether it is a G-edge (detected in Pb) or C-edge (completed
by the CDT). The local context of e includes these features and those of neighboring edges in the CDT
graph.

Consider the simplest case of context: a pair of connected edges (shown in Figure 10(a) ). Each edge
can be declared a true boundary or not, yielding four possible labelings of the pair. We observe that
the ground-truth contours in our datasets are almost always closed; line endings and junctions are rare.
Therefore we make the simplifying assumption that there are only two possible labelings: either both
edgels are on, or both are off. Modeling local continuity thus becomes a binary classification problem.

Our best local model uses as features Pb, the average Pb over the pair of edges; G, an indicator
variable whether both of the edges are G-edges, and θ, the angle formed at the connection of the pair.
We use logistic regression to fit a linear model to these features. We found that logistic regression
performed as well as other classifiers (we also tested support vector machines and hierarchical mixture
of experts). It has the advantage of being computationally efficient and simple to interpret.

To apply the local continuity model, we use the classifier to assign a new “probability of boundary”
value to each edge e. Consider Figure 10(b): evidence of continuity comes from both ends of an edge
e0, as a contour at e0 would have to continue in both directions. We assume that these two sources of
information are independent and take a product of their probabilities. Recall that Xe = 1 if the pixels
corresponding to e lie on a true boundary and 0 otherwise. The logistic model gives an estimate of
P (Xe0 = 1, Xe1 = 1), the posterior probability that the pair of edges (e0, e1) are both true. Let S1 and
S2 be the two sets of edges connecting to e0 at the two ends respectively. We define the new boundary
operator PbL under the 2-edge product model to be:

PbL = max
e1∈S1

P (Xe0=1, Xe1=1) · max
e2∈S2

P (Xe0=1, Xe2=1)

We experimented with various additional features, such as: maximum Pb and minimum Pb of the
edge pair, length of the edges, length of C-edges, region-based similarity (i.e. brightness and texture
similarity between the regions on the two sides of the edge pair), and whether one or both edges have an
alternative continuation that is better in terms of θ. These features gave at most a marginal improvement
in performance. We do not consider them further in the remainder of this paper.

We also considered several classifier variants such as: a second-layer classifier, trained to combine
information from the two ends of e0; a 3-edge classifier which directly takes as input the features from
triples of edges, hence removing the independence assumption between two pairs; and simultaneous
4-way classification on pairs of edges. The simplest 2-edge product model described above performed
as well as any of these variants.

4.2 A random field model of global continuity
The local model described in the previous section makes an independent decision for each edge. This
model has the short-coming that the decision of whether an edge e is turned on or off is only dependent on
the local pattern of gradients but does not depend on whether some neighboring edge, e′, is turned on. As
a result, information about boundary probability cannot be propagated between CDT edges. Figure 11
gives an example where completion based on such local decisions is ambiguous. In this section we
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Figure 10: (a) A simple 2-edge model of local curvilinear continuity. Each edge has associated features:
the average Pb and whether it is a G-edge or C-edge. Continuity is measured by the angle θ. The edge
pair is either classified as a continuation (Xe0 = 1, Xe1 = 1) or not. In the 2-edge product model, (b),
evidence of continuity come from both ends of edge e0. The new “probability of boundary” for e0 is the
product of the 2-edge model on both pairs (e0, e1) and (e0, e2).

describe a global probabilistic model that is based on the same image measurements as the local model
(Pb,G,θ) but also captures the statistical dependencies between neighboring boundary variables.

A natural probabilistic structure for modeling spatial dependencies is the Markov Random Field
(MRF) in which random variables, representing for example true pixel gray values, are independent
conditioned on some immediate spatial neighborhood [5]. In the computer vision literature, there is
a large body of research applying MRF models to vision problems such as texture, segmentation, de-
noising, super-resolution and stereo (see for example [15, 30, 61, 13]).

We use a variant on the MRF, introduced by [27], which is referred to as a conditional random field
(CRF). Unlike generative MRF models that attempt to capture the joint distribution of image measure-
ments and hidden labels, a CRF focus directly on the conditional distribution of labels given the obser-
vations. One key advantage from our perspective is that the observed variables need not be conditionally
independent given the hidden variables. This allows much greater freedom in choosing model features.

Conditional random fields have been considered as a method for image segmentation by [26, 47, 16],
however, the focus has been on pixel-level labeling which is tied directly to the image resolution. Moving
to scale free, mid-level tokens is a key ingredient to handling objects at a continuum of scales. For
example, the multi-scale approach of [16] uses features at three different scales relative to the image,
but the features are different for each scale. To make such a model scale-invariant requires adding a set
of features for every possible object scale and tying the parameters together across scales. In our case,
because the CDT structure and input features are approximately scale-invariant, a simple random field
suffices.

We base the independence structure of our edge variables on the topology given by the CDT. Recall
the random variableXe which is 1 if the pixels corresponding to e lie on a true boundary and 0 otherwise.
Let XV be the collection of variables for all edges that intersect at a vertex V of the CDT. We consider
log-linear distributions over the collection of edges of the form

P (X|I,Θ) =
1

Z(I,Θ)
e−{

P
e φ(Xe|I,Θ)+

P
V ψ(XV |I,Θ)}
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Figure 11: Local Ambiguity: A scenario in which completion cannot be resolved locally. The edge
detector reports the same contrast for the boundary of a closed figure and some background clutter. The
local continuity model can correctly suppress isolated clutter but potential completions (two green lines)
cannot always be distinguished locally. Our global model builds a random field over the set of potential
edges which allows for interdependence of neighboring edge decisions.

Note that the partition function

Z(I,Θ) =
∑
X∈X

e−{
P

e φ(Xe|I,Θ)+
P

V ψ(XV |I,Θ)}

is dependent on the observed image I as well as the collection of model parameters, Θ. Figure 12 shows
a CDT and the corresponding factor graph displaying the conditional independence structure in this
random field.

The energy function φ captures the extent to which the image evidence I supports the presence of a
boundary under edge e. The edge energy function is given by

φ(Xe|I,Θ) = −β log(Pbe)Xe

where Pbe is the average Pb recorded over the pixels corresponding to edge e. Continuity conditions at
a junction between contour segments are described by the vertex energy

ψ(XV |I,Θ) = −
∑
i,j

αi,j1{degg=i,degc=j}

− γ1{degg +degc=2}f(θ)

where degg is the number of G-edges at vertex V which are turned on (i.e. Xe = 1) and similarly degc is
the number of C-edges which are turned on. (degg, degc) indexes the “junction type” for every possible
assignment of XV : for example, a total degree of one, degg + degc = 1, corresponds to a line ending,
2 is a continuation and 3 is a T-junction. The model associates a separate weight αi,j to each possible
junction type. Figure 14 shows examples of different junction types and their associated indices. Since
high degree junctions do not occur in the training data, we do not consider configurationsX which result
in junctions with degg > 4 or degc > 4.

When the total degree of a vertex is 2 (exactly two edges are turned on at a junction), γ weights the
continuity of the two edges. Let θ be the angle formed between them as in the local model (Figure 10).
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Figure 12: The factor graph representing our conditional random field model for global continuity. The
CDT provides both the geometric and graphical structure for our model. Each edge in the CDT corre-
sponds to a variable Xe (represented by circles) which is 1 if pixels corresponding to edge e constitute a
true boundary. Potential functions (squares) consist of a singleton potential for each edge which encodes
the underlying Pb measurement and continuity/closure potentials at the vertices whose values are de-
pendent on both the angles between incoming line segments and the numbers of C- and G-edges entering
a junction. Note that unlike the graphical models for typical MRF models on a lattice where potentials
correspond to graph edges, this random field includes potentials involving more than two variables. The
factor graph is a bipartite representation of the resulting hypergraph (see [25]).

To penalize sharp turns, f is a smooth function which is 1 when θ = 0 and falls off to −1 as θ → π. If
the angle θ between the two edges is close to 0, they form a good continuation,−γf(θ) is small and they
are more likely to both be turned on. We use the f given by the logistic fit for 2-edge local continuity
based on angle (as described in the previous section).

The resulting sum of these terms specifies an energy for each configuration of the edge variables (e.g.
X = {1, 0, 0, 1, 1, . . .} ∈ X ). Low energy (high probability) configurations use edges with high Pb,
smooth continuations, and appropriate junction frequencies. In order to gauge the probability that a
given edge e corresponds to a true boundary, we would like to compute its marginal probability under
this model 6, that is

P (Xe = 1|I,Θ) =
∑
X∈X
Xe=1

P (X|I,Θ)

Unlike the sequence modeling tasks where conditional random fields were first investigated our graph
is not tree structured. It contains many triangles (among other loops) resulting in a high tree-width.
Performing exact inference of marginals in such a model has extremely high computational complexity.

We opt to approximate the edge and vertex degree expectations using loopy belief propagation [39,54].
Loopy belief propagation (LBP) has been applied to many vision problems [53, 13, 49], typically on the
4-connected pixel lattice. The connectivity of the CDT graphs we study is much less uniform than
a regular grid. However, in our experiments belief propagation appears to converge quickly (< 10
iterations) to a reasonable solution. Figure 13 shows the rate of convergence of marginal estimates for
the BSDS images. We suspect that there is relatively little frustration in our potentials and we have never
observed any limit-cycle behavior [36].

6Another possibility would be to find the most probable configuration X? = arg max P (X|I,Θ). We opt instead for use
of the marginals in order to get a “soft” value that can be directly compared to the low-level Pb over a range of thresholds.
Maintaining uncertainty in boundary detection can also prove useful during further high-level processing such as recognition.
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Figure 13: Convergence of Loopy Propagation on CDT Graphs: Here we show the change in marginal
beliefs versus iteration for belief propagation on the BSDS. Each curve shows the maximum absolute
change over all edge marginals for a given image (L∞ norm). The marginals quickly converge, reaching
acceptable accuracies in 10 iterations. Convergence behavior was similarly uniform across the baseball
and horse dataset.

4.3 Learning Parameters
Our model has the collection of parameters Θ = {α, β, γ}. A single generic set of parameter values
are learned from a collection of training images and used on all testing images. Since we exclude high
degree junctions, we only need to set αi,j for i, j < 4. This leaves a total of 18 free parameters which
we fit by maximum likelihood.

Since our model lies in the exponential family, the likelihood is convex in the parameters. Taking a
derivative of the log likelihood with respect to any parameter yields a difference of two expectations. For
example, the derivative with respect to the continuation parameter γ for a single training image/ground
truth labeling, (I,X) is:

∂

∂γ
log

(
e−{

P
e φ(Xe|I,Θ)+

P
V ψ(XV |I,Θ)}

Z(I,Θ)

)

=
∑
V

∂

∂γ
{γ1{degg + degc=2}f(θ)} − ∂

∂γ
logZ(I,Θ)

=
∑
V

1{degg +degc=2}f(θ)−
〈∑

V

1{degg+degc=2}f(θ)

〉

P (X|I,Θ)

where we have used the fact that derivatives of the log partition function generate the moment sequence
of P (X|I,Θ). The first term is the observed sum of f(θ) on degree 2 vertices while the second term
is the expectation under the model given our current setting of the parameters (which can be estimated
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degc = 0 degc = 1 degc = 2

degg = 0
α0,0 = 2.46 α0,1 = −0.46 α0,2 = −0.98

degg = 1
α1,0 = 0.87 α1,1 = −0.59 α1,2 = −0.75

degg = 2
α2,0 = 1.14 α2,1 = −0.37 α2,2 = −0.11

degg = 3
α3,0 = 0.01 α3,1 = −0.19 α3,2 = −0.03

Figure 14: Learning about junctions: a weight is associated with each junction type (degg, degc), where
degg is the number of G-edges (gradient edges, shown in black) being turned on, and degc the number
of C-edges (completion edges, shown in green) being turned on. degg + degc = 1 corresponds to the
case of a line ending; degg + degc = 2 a continuation of contour; and degg + degc = 3 a T-junction. It
is interesting to compare these with hand chosen potentials of Geman and Geman [15].
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using LBP). When the model expectations match those observed in the training data, we have found the
maximum likelihood setting of the parameters.

Optimization of the parameters can be achieved with any of several iterative numerical procedures.
State of the art codes based on quasi-Newton schemes typically require the value of a function in addition
to gradients in order to perform line searches in promising directions. Although evaluating P (X|I,Θ)
for a given X is intractable, its value can also be estimated using the converged beliefs to compute the
Bethe free energy in place of the true partition function. For the experiments described here, we found
it was sufficient to use simple gradient descent with a momentum term. Parameters typically converged
after a few hundred iterations.

Figure 14 shows the weights learned for different junction types. We find that the parameters learned
from ground-truth boundary data match our intuition well. For example, the weight α1,0 is smaller than
α2,0, indicating that line endings are less common than continuation and reflecting the prevalence of
closed contours. For degree 2 vertices, we find α2,0 > α1,1 > α0,2, indicating that continuation along
G-edges is preferable to invoking C-edges. Since high degree junctions are very uncommon in the
training data, their corresponding α values tend to be uninformative. However, their impact on the test
performance is limited for the same reason.

5. Results: Is curvilinear continuity useful?
We have described two different algorithms, each outputting a new estimate of the boundary probability
at each pixel: PbL, the local model on the CDT, and PbG, the global random field model. In order to
evaluate these, we use three human-segmented datasets: a set of news photos of baseball players [34]
split into 15 training and 15 testing images, images of horses [6] split into 172 training and 172 test
images, and the Berkeley Segmentation Dataset [31] (BSDS300) which contains 200 training images
and 100 test images of various natural scenes.

Performance on these datasets is quantified using the precision-recall framework as in [32]. Figure 15
shows the precision-recall curves for the three datasets. These quantitative comparisons clearly demon-
strate that mid-level information is useful in a generic setting. Both models of curvilinear continuity
outperform Pb. The global model, which is able to combine local evidence of continuity and global
constraints such as closure, performs the best.

The improvement is most noticeable in the low-recall/high-precision range which corresponds to the
case of boosting the most prominent boundaries and suppressing background noise. These boundaries
are typically smooth; thus continuity helps suppress false positives in the background. This is evident
in the examples shown in Figure 17. We also find that our models push the asymptotic recall rate much
closer to 100% (without loss in precision), reflecting their abilities to complete gradient-less gaps.

We observe that the benefit of continuity on the baseball player and horse dataset is much larger than
that on the BSDS dataset. One reason may be that the baseball and horse datasets are harder (note the
low precision rates for Pb) which makes the role of continuity more important.

In Figure 16 we compare to two representative saliency algorithms: the pixel-based Markovian con-
tour completion algorithm of Williams and Jacobs [56], adapted to the setting of natural images as
in [42]; and the iterative updating saliency algorithm of Shashua and Ullman [46]. The Williams-Jacobs
algorithm operates on the pixel-grid, with transition probabilities learned from data. The Shashua-
Ullman algorithm is applied on the edgels in the CDT triangulation. We see that for the baseball and
horse datasets, both algorithms improve edge detection performance only marginally, much less effec-
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tive than our CRF-based algorithm. For the case of the BSDS, none of the algorithms stands out; the
Williams-Jacobs algorithm does slightly better at the high-recall end.

If we look at these curves, there still exists a huge gap in performance between our models and the
upper bound given by the ground-truth labels. It may be that the remaining gap will ultimately be bridged
by incorporating high-level knowledge, i.e. detecting objects in the scene using the mid-level boundary
map and then “cleaning up” the boundaries in a top-down fashion. In the case of general datasets like
the BSDS, this will require recognizing thousands of object categories.

6. Conclusion
We have described two probabilistic models of curvilinear continuity which have a verifiably favorable
impact on the problem of boundary detection. The local model, though quite simple, yields a significant
performance gain. The global model, by making long-range inferences over local continuity constraints,
is the most successful in utilizing mid-level information.

The key step in our approach to modeling continuity is moving from pixels to the piecewise linear
approximations of contours. Motivated by the ecological statistics of human-marked boundaries, this
scale-invariant geometric representation of images shows promising potential for both mid-level and
high-level visual processing. The shift from 100,000 pixels to 1000 Delaunay edges is also important as
it yields huge gains in both statistical and computational efficiency.

We have shown that the outputs of our algorithms are quantifiably better than a low-level edge detector
on a wide variety of natural images. We feel strongly that continued progress in mid-level vision rests
on being able to make such quantitative comparisons between algorithms. Many recent exciting results
in object recognition and stereo reconstruction could not have occurred without the firm grounding
provided by quantitative evaluation. Work on perceptual organization should be held to the same high
standards.
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Figure 15: Pixel-based precision-recall evaluations comparing the local classifier (PbL), global CRF
(PbG) and raw Pb. Both techniques improve boundary detection on all three datasets and the overall
ordering of the curves is generally preserved.
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Figure 16: Comparing to two representative saliency algorithms: the Markov stochastic completion
model of Williams and Jacobs [56], adapted to natural images as in [42], which operates on the pixel-
grid; and the structural saliency algorithm of Shashua and Ullman [46], which we apply on the CDT
edgels. Our CRF algorithm performs much better on the baseball and horse datasets; none of the algo-
rithms stands out on the BSDS.
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Image Pb Local Global

Figure 17: Examples from the baseball data set. The three columns of edge maps show the local bound-
ary detector Pb, our local model, and our CRF global model respectively. For better visualization, the
output of each algorithm has been thresholded at a level which yields 2000 boundary pixels.
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Image Pb Local Global

Figure 18: More examples from the BSDS and horse data sets. Our algorithm outputs smooth, extended
contours on the foreground and suppresses noise in the background.
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