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Abstract This paper addresses human detection and

pose estimation from monocular images by formulating

it as a classification problem. Our main contribution is

a multi-class pose detector that uses the best compo-

nents of state-of-the-art classifiers including hierarchi-

cal trees, cascades of rejectors as well as randomized

forests. Given a database of images with corresponding

human poses, we define a set of classes by discretiz-

ing camera viewpoint and pose space. A bottom-up

approach is first followed to build a hierarchical tree

by recursively clustering and merging the classes at

each level. For each branch of this decision tree, we

take advantage of the alignment of training images to

build a list of potentially discriminative HOG (His-

tograms of Orientated Gradients) features. We then se-

lect the HOG blocks that show the best rejection per-

formances. We finally grow an ensemble of cascades by

randomly sampling one of these HOG-based rejectors at

each branch of the tree. The resulting multi-class clas-

sifier is then used to scan images in a sliding window

scheme. One of the properties of our algorithm is that

the randomization can be applied on-line at no extra-

cost, therefore classifying each window with a different

ensemble of randomized cascades. Our approach, when

compared to other pose classifiers, gives fast and effi-

cient detection performances with both fixed and mov-
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ing cameras. We present results using different publicly

available training and testing data sets.
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1 Introduction

Full-body human pose analysis from monocular images

constitutes one of the fundamental problems in Com-

puter Vision as shown by the recent special issue of

the journal [47]. It has a wide range of potential ap-

plications such as Human-Computer interfaces, video-

games, video annotation/indexing or surveillance. Given

an input image, an ideal system would be able to lo-

calize any humans present in the scene and recover
their poses. The two stages, known as human detec-

tion and human pose estimation, are usually consid-

ered separately. There is an extensive literature on both

detection [14, 24, 43, 56, 57, 61] and pose estimation

[1, 6, 18, 26, 29, 35, 41, 44, 52] but relatively few pa-

pers consider the two stages together [5, 9, 17, 37, 49].

Most algorithms for pose estimation assume that the

human has been localized and the silhouette has been

recovered, making the problem substantially easier.

Some techniques therefore separate the foreground

from the background and classify a detected (and seg-

mented) object as human or nonhuman. The pose of the

human can then be estimated, for instance fitting a hu-

man model on the resulting blob or silhouette [29, 41],

or applying pose regressors [1, 26]. These methods are

very helpful when a relatively clean background image

can be computed which is not always the case, depend-

ing on the settings and applications: for example if the

goal is to detect humans in an isolated image (not from

a video sequence) or in a moving camera sequence, the
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computation of a background image and consequently

the segmentation of the subject are not trivial.

We consider the problem of simultaneous human de-

tection and pose estimation. We follow a sliding window

approach to jointly localize and classify human pose us-

ing a fast multi-class classifier that combines the best

components of state-of-the-art classifiers including hi-

erarchical trees, cascades of rejectors and randomized

forests. The novelty and properties of the algorithm are:

1. Cascade classifiers are designed to quickly reject a

large majority of negative candidates to focus on

more promising regions, we exploit this property by

learning an ensemble of multi-class hierarchical cas-

cades.

2. At each branch of the hierarchy, our training algo-

rithm selects a small subset of informative features

from a much larger feature space. This approach is

computationally efficient and scalable.

3. Additionally, by randomly sampling from these can-

didate features, each cascade uses different sets of

features to vote which adds some robustness to noise

and helps to prevent over-fitting.

4. Each random cascade can vote for one or more class

so the ensemble outputs a distribution over poses

that can be useful for resolving pose ambiguities.

5. Both randomization and selection of the number of

cascades can be performed on-line at no extra-cost,

therefore classifying each window with a different

ensemble of cascades. This adaptive classification

scheme allows a considerable speed-up and an even

more efficient pose detection than simply using the

same fixed size ensemble over the image.

1.1 Related Previous Work

Exemplar based approaches have been very successful

in pose estimation [35]. However, in a scenario involving

a wide range of viewpoints and poses, a large number

of exemplars would be required. As a result the com-

putational time would be very high to recognize indi-

vidual poses. One approach, based on efficient nearest

neighbor search using histogram of gradient features,

addressed the problem of quick retrieval in large set

of exemplars by using Parameters Sensitive Hashing

(PSH) [44], a variant of the original Locality Sensitive

Hashing algorithm (LSH) [15]. The final pose estimate

is produced by applying locally-weighted regression to

the neighbors found by PSH.

The method of Agarwal and Triggs [1] is also ex-

emplar based. They also use a kernel based regression

but they do not perform a nearest neighbor search for

exemplars, instead using a hopefully sparse subset of

the exemplars learnt by the Relevance Vector Machines

(RVM). Their method has the main disadvantage that

it is silhouette based, and perhaps more serious it can

not model ambiguity in pose as the regression is uni-

modal. In [53], an exemplar-based approach with dy-

namics is proposed for tracking pedestrians. Gavrila

[24] presents a probabilistic approach to hierarchical,

exemplar-based shape matching. This method achieves

a very good detection rate and real time performance

but does not regress to a pose estimation. Similar in

spirit, Stenger [50] uses a hierarchical Bayesian filter for

real-time articulated hand tracking. Recently, Lin and

Davis [31] propose a hierarchical part-template match-

ing for shape-based human detection and segmentation.

Much other work focuses on human detection specif-

ically without considering pose [14, 24, 43, 56, 57, 61].

Dalal and Triggs [14] use a dense grid of Histograms of

Orientated Gradients (HOG) and learn a Support Vec-

tor Machine (SVM) classifier to separate human from

background examples. Later Zhu et al [61] extend this

work by applying integral histograms to efficiently cal-

culate HOG features and use a cascade of rejectors clas-

sifier to achieve near real time detection performance.

Several works attempt to combine localization and

pose estimation. Dimitrijevic et al [17] present a template-

based pose detector and solve the problem of huge datasets

by detecting only human silhouettes in a characteris-

tic postures (sideways opened-leg walking postures in

this case). They extend this work in [22] by inferring

3D poses between consecutive detections using motion

models. This method can be used to track walking peo-

ple even with moving cameras, however, it seems some-

how difficult to generalize to any actions that do not

exhibit characteristic posture. Sminchisescu et al [49]

jointly learn coupled generative-discriminative models

in alternation and integrate detection and pose esti-

mation in a common sliding window framework. Okada

and Soatto [37] learn k kernel SVMs to discriminate be-

tween k predefined pose clusters, and then learn linear

regressors from feature to pose space. They extend this

method to localization by adding an additional cluster

that contains only images of background. The poselet

work of [9] presents a two-layer classification/regression

model for detecting people and localizing body com-

ponents. The first layer consists of poselet classifiers

trained to detect local patterns in the image. The sec-

ond layer combines the output of the classifiers in a

max-margin framework. Ferrari et al. [21] use an upper-

body detector to localize a human in an image, find a

rough segmentation using a foreground and background

model calculated using the detection window location,

and then apply a pictorial structure model [19] in re-

gions of interest. Such part-based methods are another
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successful approach to simultaneous human detection

and pose estimation [2, 36, 40] . Typically however they

require multiple classifiers or appearance models to rep-

resent each of the the body parts.

We introduce a novel algorithm that jointly tack-

les human detection and pose estimation in a similar

way to template tree approaches [24, 50], while exploit-

ing some advantages of AdaBoost style cascade classi-

fiers [55, 61] and Random Forests [11]. Random Forests

(RF) have seen a great deal of success in many varied

applications such as object recognition [8] or clustering

[34, 45]. RF have shown to be fast and robust classifi-

cation techniques that can handle multi-class problems

[30], so makes them ideal for use in human pose esti-

mation. Recently, Shotton et al [46] trained a decision

forest to estimate body parts from depth images with

excellent results on pose estimation.

1.2 Motivation and Overview of the Approach

Many different types of features have been considered

for human detection and pose estimation: silhouette [1],

shape [24], edges [17], HOG descriptors [14, 20, 61],

Haar filters [56], motion and appearance patches [6],

edgelet feature [57], shapelet features [43] or SIFT [32].

Driven by the recent success of HOG descriptors for

both human detection [14, 61] and pose estimation [44],

and that they can be implemented efficiently to achieve

near real time speeds [61], we chose to use HOG de-

scriptors as a feature in our algorithm. For pose es-

timation, an ideal dataset should contain variation in

subject pose, camera viewpoint, appearance and physi-

cal attributes. Combining the dataset with a very dense
image feature set such as HOG captures discriminative

details between very similar poses [37] but also consid-

erably increases the dimension of the training set.

Random Forests [11] allow for a better handling of

large datasets as they can be faster to train and are

less prone to over-fitting than selecting features from an

exhaustive search over all features1. We performed an

initial test of pose classification (see Fig. 1 and Sect. 4)

and identified two main drawbacks with the algorithm

and the existing implementation: as illustrated in Fig. 1

using denser HOG feature grids improves pose classifi-

cation accuracy. Neighboring classes can be very close

1 RF are grown by randomly selecting a subset of features
at each node of the tree to help avoid a single tree over fitting
the training data. The best split is found for each dimension
mi by evaluating all possible splits along that dimension us-
ing a measure such as information gain [8]. The dimension
m∗ that best splits the data according to that score is used
to partition the data at that node. This process continues
recursively until all the data has been split and each node
contains a single class of data.

to one another in image space, and in practice are only

separable by some sparse subset of features. This means

that, having randomly picked an arbitrary feature to

project on from a high dimensional feature space, it is

highly unlikely that an informative split in this projec-

tion (i.e. one that improves the information measure)

exists. While we do not need perfect trees, informative

trees are still rare and finding them naively requires us

to generate an infeasible number of trees.

Fig. 1 Random Forest preliminary results. An initial test was
performed on the MoBo walking dataset [25]: dense grid of
HOG features are extracted for 15 different subjects from
around 50,000 images which are grouped in 64 pose classes.
We build the training subset by randomly sampling 10 sub-
jects and keep the remaining 5 subjects for testing. We run
the same test for 3 different grids of HOG and show the classi-
fication results varying the number of trees used in the forest.
Using denser HOG grids improves pose classification accuracy
but we are quickly facing memory issues that prevent us from
working with denser grids.

Another drawback of the Random Forests algorithm

is that it is not very well adapted for sliding window ap-

proaches. Even if on-demand feature extraction can be

considered as in [16], for each scanned sub-image, the

trees still have to be completely traversed to produce

a vote/classification. This means that a non-negligible

amount of features have to be extracted for each pro-

cessed window, making the algorithm less efficient than

existing approaches like cascades-of-rejectors that quickly

reject most of the negative candidates using a very small

subset of features. Works such as [55, 61] use AdaBoost

to learn a cascade structure using very few features at

the first level of the cascade, and increasing the num-

ber of features used for later stages. Other approaches

such as those described in [33, 60] for multi-view face

detection, organize the cascade in to a hierarchy struc-

ture consisting of two types of classifier; face/non-face,

and face view detection. Zhang et al [59] present a

probabilistic boosting network for joint real-time object
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detection and pose estimation. Their graph structured

network also alternates binary foreground/background

and multi-class pose classifiers.

Inspired by these ideas, we train multi-class hierar-

chical cascades for human pose detection. First a class

hierarchy is built by recursively clustering and merg-

ing the predefined pose classes. Hierarchical template

trees have been shown to be very effective for real time

systems [24, 50], and we extend this approach to non-

segmented images. For each branch of this tree-like struc-

ture, we use a novel algorithm to build a list of poten-

tially discriminative HOG descriptor blocks. We then

train a weak classifier on each one of these blocks and

select the ones that show the best performances. We

finally grow an ensemble of cascades by randomly sam-

pling one of these HOG-based rejectors at each branch

of the hierarchy. By randomly sampling the features,

each cascade uses different sets of features to vote and

adds some robustness to noise and prevents over fitting

as with RF. Each cascade can vote for one or more class

so the final classification is a distribution over classes.

In the next section, we present a new method for

data driven discriminative feature selection that enables

our proposal to deal with large datasets and high di-

mensional feature spaces. Next, we extend hierarchical

template tree approaches [24, 50] to unsegmented im-

ages. Finally, we explain how we use random feature

selection inspired by Random Forests to build an en-

semble of multi-class cascade classifiers. The work pre-

sented in this paper is an extension of [42]. We take

steps toward generalizing the algorithm and analyze

two of its properties that allow a considerable speed-up

of the pose detection. We have carried out an exhaus-

tive experimentation to validate our approach with a

numerical evaluation (using different publicly available

training and testing datasets) and present a compari-

son with state-of-the-art methods for 3 different levels

of analysis: human detection, human pose classification

and pose estimation (with body joints localization).

Our approach gives promising fast pose detection

performances with both fixed and moving cameras. In

the presented work, we focus on specific motion se-

quences (walking), although the algorithm can be gen-

eralized for any action.

2 Sampling of Discriminative HOGs

Feature selection is probably the key point in most

recognition problems. It is very important to select the

relevant and most informative features in order to al-

leviate the effects of the curse of dimensionality. Many

different types of features are used in general recogni-

tion problems. However, only a few of them are useful

for exemplar-based pose estimation. For example, fea-

tures like color and texture are very informative in gen-

eral recognition problems, but because of their variation

due to clothing and lighting conditions, they are seldom

useful in exemplar-based pose estimation. On the other

hand, gradients and edges are more robust cues with

respect to clothing and lighting variations2. Guided by

their success for both human detection [14, 61] and pose

estimation [44] problems, we chose to use HOG descrip-

tors as a feature in our algorithm.

Each HOG block represents the probability distri-

bution of gradient orientation (quantized into a prede-

fined number of histogram bins) over a specific rectan-

gular neighborhood. The usage of HOGs over the entire

training image, usually in a grid, leads to a very large

feature vector where all the individual HOG blocks are

concatenated. So an important question is how to se-

lect the most informative blocks in the feature vector.

Some works have addressed this question for human

detection and pose estimation problems using SVMs or

RVMs [5, 14, 37, 61]. However, such learning methods

are computationally inefficient for very large datasets.

AdaBoost is often used for discriminative feature

selection such as in [54, 58]. Instead of an exhaustive

search over all possible features, or uniformly sampling

a random subset from these features, we introduce a

guided sampling scheme based on log-likelihood gradi-

ent distribution. Collins and Liu [13] also use a log-

likelihood ratio based approach in the context of adap-

tive on-line tracking, and select the most discriminative

features from a set of 49 RGB features that separate a

foreground object from the background. In our case, we

have a much higher set of possible features (histogram

bins) if we consider all the possible configurations of

HOG blocks at all locations exhaustively. So to make

the problem more tractable, rather than selecting in-

dividual features in a dense HOG vector, entire HOG

blocks are randomly selected using a log-likelihood ra-

tio derived from the edge gradients of the training data.

Dimitrijevic et al [17] use statistical learning techniques

during the training phase to estimate and store the rel-

evance of the different silhouette parts to the recogni-

tion task. We use a similar idea to learn relevant gradi-

ent features, although slightly different because of the

absence of silhouette information. In what follows, we

present our method to select the most discriminative

and informative HOG blocks for human pose classifi-

cation. The basic idea is to take advantage of accurate

image alignment and study gradient distribution over

the entire training set to favor locations that we ex-

2 Clothing could still be a problem if there are very few
subjects in the training set: some edges due to clothing could
be considered as discriminative edges when they should not.
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 2 Log-likelihood ratio for human pose. (a to e): examples of aligned images belonging to the same class (for different
subjects and cameras) as defined in Sect. 4.1.1 using HumanEVA dataset [48]. Resulting gradient probability map p(E|B) (f)
and log-likelihood ratio L(B,C) (g) for this same class vs all the other classes. Hot colors in (g) indicate the discriminative
areas. The sampled HOG blocks are represented on top of the likelihood map in (h).

pect to be more discriminative between different classes.

Intra-class and inter-class probability density maps of

gradient/edge distribution are used to select the best

location for the HOG blocks.

2.1 Formulation

Here we describe a simple Bayesian formulation to com-

pute the log-likelihood ratios which can be used to de-

termine the importance of different regions in the image

when discriminating between different classes. Given a

set of classes C, the probability that the classes repre-

sented by C could be explained by the observed edges

E can be defined using a simple Bayes rule:

p(C|E) =
p(E|C)p(C)

p(E)
. (1)

The likelihood term p(E|C) of the edges being ob-

served given classes C, can be estimated using the train-

ing data edges for the respective classes. Let T = {(Ii, ci)}
be a set of aligned training images, each with a corre-

sponding class label. Let TC = {(I, c) ∈ T | c ∈ C}
be the set of training instances for the set of classes

C = {ci}. Then the likelihood of observing an edge

given a set of classes C can be estimated as follows:

p(E|C) =
1

|TC |
∑

(I,c)∈TC

∇(I), (2)

where ∇(·) calculates a normalized oriented gradient

edge map for a given image I, with the value at any

point being in the range [0, 1]. Note that an accurate

alignment of the positive samples is required to com-

pute p(E|C). We refer the reader to the automatic align-

ment method proposed for human pose in Sect. 4.1.1 for

a solution to this problem. Class specific information is

represented by high values of p(E|C) from locations

where edge gradients occur most frequently across the

training instances. Edge gradients at locations that oc-

cur in only a few training instances (e.g. due to back-

ground or appearance) will tend to average out to low

values. To increase robustness toward background noise

the likelihood can be thresholded by a lower bound:

p(E|C) =

{
p(E|C) if p(E|C) > τ ,

0 otherwise.
(3)

Suppose we have a subset of classes B ⊂ C. Discrimina-

tive edge gradients will be those that are strong across

the instances within B but are not common across the

instances within C. Using the log-likelihood ratio be-

tween the two likelihoods p(E|B) and p(E|C) gives:

L(B,C) = log

(
p(E|B)

p(E|C)

)
. (4)

The log-likelihood distribution defines a gradient prior

for the subset B. High values in this function give an

indication of where informative gradient features may

be located to discriminate between instances belonging

to subset B and the rest of classes in C. For the ex-

ample given in Fig. 2, we can see how the right knee

is a very discriminative region for this particular class

(see Fig. 2g). In Fig. 3, we present the log-likelihood

distributions for 5 different facial expressions.

Gradient orientation can be included by decompos-

ing the gradient map into nθ separate orientation chan-

nels according to gradient orientation. The log-likelihood

Lθ(B,C) is then computed separately for each chan-

nel, thereby increasing the discriminatory power of the

likelihood function, especially in cases when there are

many noisy edge points present in the images. Maximiz-

ing over the nθ orientation channels, the log-likelihood

gradient distribution for class B then becomes3:

L(B,C) = max
θ

(Lθ(B,C)) . (5)

We also obtain the corresponding orientation map:

Θ(B,C) = argmax
θ

(Lθ(B,C)) . (6)

Uninformative edges from a varied dataset will gen-

erally be present for only a few instances and not be

3 L(B,C) = L(B,C) if no separated orientation channels
are considered.
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Fig. 3 Log-likelihood ratio for face expressions. We used a
subset of [27] composed by 20 different individuals acting 5
basic emotions besides the neutral face: joy, anger, surprise,
sadness and disgust. All images were normalized, i.e. cropped
and manually rectified. Gradient probability map (left) and
log-likelihood ratio (right) are represented for each one of the
6 classes. Hot colors indicate the discriminative areas for a
given facial expression.

common across instances from the same class, whereas

common informative edges for pose will be reinforced

across instances belonging to a subset of classes B, and

be easier to discriminate from edges that are common

between B and all classes in parent set C. Even if back-

ground edges were shared by many images (e.g. if pos-

itive training samples consist of images of standing ac-

tions shot by stationary cameras such as the gesture and

the box actions in the HumanEVA dataset [48]), then

these edges become uninteresting as p(E|B) ≈ p(E|C)

and a low log-likelihood value would be returned. How-

ever, when uninformative edges (from background or

clothing) are not common across all training instances

but occur in the images of the same class all the time by

coincidence 4, edges can be falsely considered as poten-

tially discriminative. To address this issue, we create a

varied dataset of instances which is discussed more de-

tail in Sec.4. Given this log-likelihood gradient distri-

bution L(B,C), we can randomly sample HOG blocks

from positions (x, y) where they are expected to be in-

formative, thus reducing the dimension of the feature

space. We then use L(B,C) as distribution proposal to

drive blocks sampling (x(i), y(i)):

(x(i), y(i)) ∼ L(B,C). (7)

Features are then extracted from areas of high gradi-

ent probability across our training set more than ar-

eas with low probability (see Fig. 2h). By using this

information to sample features, the amount of useful

information available to learn efficient classifiers is in-

creased. Results using this feature selection scheme on

facial expression recognition have been reported in [39].

4 We observed that particular case when trying to work
with the Buffy dataset from [21]: all the images for the same
pose (standing with arms folded) correspond to one unique
character with the same clothes and same background scene.

3 Randomized Cascades of Rejectors

The classifier is an ensemble of hierarchical cascade

classifiers. The method takes inspiration from cascade

approaches such as [55, 61], hierarchical template trees

such as [24, 50] and Random Forests [8, 11, 30].

3.1 Bottom-up Hierarchical Tree Construction

Tree structures are a very effective way to deal with

large exemplar sets. Gavrila [24] constructs hierarchical

template trees using human shape exemplars and the

chamfer distance between them. He recursively clusters

together similar shape templates selecting at each node

a single cluster prototype along with a chamfer similar-

ity threshold calculated from all the templates that the

cluster contains. Multiple branches can be explored if

edges from a query image are considered to be similar

to cluster exemplars for more than one branch in the

tree. Stenger [50] follows a similar approach for hierar-

chical template tree construction applied to articulated

hand tracking, the main difference being that the tree is

constructed by partitioning the state space. This state

space includes pose parameters and viewpoint. Inspired

by these two papers, Okada and Stenger [38] present a

method for human motion capture based on tree-based

filtering using a hierarchy of body poses found by clus-

tering the silhouette shapes. Although these existing

template tree techniques are shown to have interesting

qualities in terms of speed, they present some impor-

tant drawbacks for the task we want to achieve. First,

templates need to be stored for each node of the tree

leading to memory issues when dealing with large sets

of templates. The second limitation is that they require

that a clean silhouette or template data is available

from manual segmentation [24] or generated syntheti-

cally from a 3D model [38, 50]. Their methodology can

not be directly applied to unsegmented image frames

because of the presence of too many noisy edges from

background and clothing of the individuals which dom-

inate informative pose-related edges. By using only the

silhouette outlines as image features, the approaches in

[24, 38] ignore the non-negligible amount of information

contained in the internal edges which are very informa-

tive for pose estimation applications. We thus propose a

solution to adapt the construction of such a hierarchical

tree structure for images.

Instead of successively partitioning the state space

at each level of the tree [50] or clustering together sim-

ilar shape templates from bottom-up [24] or top-down

[38], we propose a hybrid algorithm. Given that a para-

metric model of the human pose is available (3D or 2D

joint locations), we first partition the state space into
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(a) (b) (c)

Fig. 4 Bottom-up hierarchical tree construction: the structure S is built using a bottom-up approach by recursively clustering
and merging the classes at each level. We present an example of tree construction from 192 classes (see class definition in
Sect. 4.1.2) on a torus manifold where the dimensions represent gait cycle and camera viewpoint. The matrix presented here
(a) is built from the initial 192 classes and used to merge the classes at the very lowest level of the tree. The similarity matrix
is then recomputed at each level of the tree with the resulting new classes. The resulting hierarchical tree-like structure S is
shown in (b) while the merging process on the torus manifold is depicted in (c). We can observe (b) how the first initial node
acts as a viewpoint classifier.

a series of classes5. Then we construct the hierarchical

tree structure by merging similar classes in a bottom-up

manner as in [24] but using for each class its gradient

map. This process only requires that the cropped train-

ing images have been aligned without the need for clean

silhouettes or templates.

We thus recursively cluster and merge similar classes

based on a similarity matrix that is recomputed at each

level of the tree (Fig. 4a). The similarity matrix M =

{Mi,j} with i, j ∈ {1, · · · , nl} (being nl the number of

classes at each level) is computed using the L2 distance

between the log-likelihood ratios of the set of classes Cn
that represent the classes that fall below each node n of

the current level and the global edge map C constructed

from all the classes together:

Mi,j = ||L(Ci, C)− L(Cj , C)||. (8)

Using the log-likelihood ratio to merge classes reduces

the effect of uninformative edges on the hierarchy con-

struction while at the same time increasing the influ-

ence of discriminative edges. At each level, classes are

clustered by taking the values from the similarity ma-

trix in ascending order and successively merge corre-

sponding classes until they all get merged, then go to

next level. The class hierarchy construction is depicted

in Algorithm 1. This algorithm is fully automatic as it

does not require any threshold to be tuned, and works

5 Two methods have been implemented to obtain the dis-
crete set of classes: the torus manifold discretization (see
Sect. 4.1.2) and 2D pose space clustering (see Sect. 4.2.1).

well with continuous and symmetrical pose spaces like

the ones considered in this paper. However, we have

observed that it fails with non-homogeneous training

data or in presence of outliers. In that case, the use

of a threshold on the similarity value in the second

while loop should be considered to stop the cluster-

ing process before merging together classes which are

too different. This process leads to a hierarchical struc-

ture S (Fig. 4b). The leaves of this tree-like structure

S define the partition of the state space while S is con-

structed in the feature space: the similarity in term of

image features between compared classes increases and

the classification gets more difficult when going down

the tree and reaching lower levels as in [24]. But in our

case each leaf represents a cluster in the state space as

in [50] while in [24], templates corresponding to com-

pletely different poses can end-up being merged in the

same class making the regression to a pose difficult or

even impossible. In [24] the number of branches are se-

lected before growing the tree, potentially forcing dis-

similar templates to merge too early. while in our case,

each node in the final hierarchy can have 2 or more

branches as in [38, 50].

Instead of storing and matching an entire template

prototype at each node as in [24, 38, 50], we now pro-

pose a method to build a reduced list of discriminative

HOG features, thus making the approach more scalable

to the challenging size and complexity of human pose

datasets.
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Algorithm 1: Class Hierarchy Construction.

input : Labeled training images.
output: Hierarchical structure S.

while num. of classes of the level nl > 1 do

for each class n do
Compute new L(Cn, C) (cf. § 2);

Compute the nl × nl similarity matrix M (cf.
Eq. 8);
Set the number of merged classes nm = 0 ;
Set the number of clusters ncl = 0 ;
while nm < nl do

Take the next 2 closest classes (C1, C2) in M ;
– case 1: C1 and C2 have not been merged yet.

Create a new cluster Cncl+1 with C1 and C2:
Cncl+1 = C1 ∪ C2;
Update ncl = ncl + 1 and nm = nm + 2;

– case 2: C1 and C2 already merged together.
Do nothing;

– case 3: C1 has already been merged in Cr.
Merge C2 in Cr: C′r = Cr ∪ C2;
nm = nm + 1;

– case 4: C2 has already been merged in Cs.
Merge C1 in Cs: C′s = Cs ∪ C1;
nm = nm + 1;

– case 5: C1 ∈ Cr and C2 ∈ Cs.
Merge the 2 clusters Cr and Cs: C′r = Cr ∪ Cs ;
ncl = ncl − 1;

Create a new level l with new hyper-classes
{C′n}

ncl
n=1 ;

Update the number of classes for that level
nl = ncl;
Update the structure S′ = S ∪ {C′n}

nl
n=1 ;

3.2 Discriminative HOG Blocks Selection

While other algorithms (PSH, RVMs, SVMs, etc) must

extract the entire feature space for all training instances

during learning, making them less practical when deal-

ing with very large datasets, our method for learning

hierarchical cascades only selects a small set of discrim-

inative features extracted from a small subset of the

training instances at a time. This makes it much more

scalable for very large training sets.

For each branch of our structure S, we use our algo-

rithm for feature selection to build a list of potentially

discriminative features, in our case a vector of HOG de-

scriptors. HOG blocks need only to be placed near areas

of high edge probability for a particular class. Feature

sampling will then be concentrated in locations that

are considered discriminative following the discrimina-

tive log-likelihood maps (discussed in Sect. 2). For each

node, let the set of classes that fall under this node

be Cn and the subset of classes belonging to one of its

branches b be Cb. Then for each branch b, nH loca-

tions are sampled from the distribution L(Cb, Cn) (as

described in Sect. 2.1) to give a set of potentially dis-

criminative locations for HOG descriptors:

Hp = {(x(i), y(i))}nH
i=1 ∼ L(Cb, Cn). (9)

For each of these positions we sample a corresponding

HOG descriptor parameter:

HΨ = {ψ(i)}nH
i=1 ∈ Ψ (10)

from a parameter space Ψ = (W ×B ×A) where W =

{16, 24, 32} is the width of the block in pixels, B =

{(2, 2), (3, 3)} are the cell configurations considered and

A = {(1, 1), (1, 2), (2, 1)} are aspect ratios of the block.

An example is proposed in Fig. 5a for a 16 × 16 HOG

block with 2× 2 cells.

Fig. 5 Example of a selected HOG block from B: we show
the location of the 16 × 16 block (2 × 2 cells) on top of the
log-likelihood map for the corresponding branch of the tree
(a). We represent in (b) the 2 distributions obtained after
training a binary classifier: the green distribution corresponds
to the set of training images T+

b
that should pass through

that branch while the red one corresponds to the set T−
b

that
should not pass. In this example, fi(hi) is the projection of
the block hi on the hyperplane found by Support Vector Ma-
chines (SVM). Finally, we represent in (c) the ROC curve
with True Positive (TP) vs False Positive (FP) rates varying
the decision threshold. We give the precision and recall values
for the selected threshold (red dotted line).

Next, at each location (x(i), y(i)) ∈ Hp HOG fea-

tures are extracted from all positive and negative train-

ing examples using corresponding parameters ψ(i) ∈
HΨ . For each location a positive set T+

b is created by

sampling from instances belonging to Cb and a negative

set T−b is created by sampling from Cn − Cb. An out-

of-bag (OOB) testing set is created by removing 1/3

of the instances from the positive and negative sets. A

discriminative binary classifier gi (e.g. SVM) is trained
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Algorithm 2: HOG Blocks Selection

input : Hierarchical structure S, and training images.
Discriminative classifier g(·).

output: List of discriminative HOG blocks B.

for each level l do
for each node n do

Let Cn = set of classes under n;
for each branch b do

Let Cb = set of classes under branch b;
Compute L(Cb, Cn) (cf. § 2);

Hp = {(x(i), y(i))}nH
i=1 ∼ L(Cb, Cn);

HΨ = {ψ(i)}nH
i=1 ∈ Ψ ;

for i = 1 to nH do

(x(i), y(i)) ∈ Hp;
ψi ∈ HΨ ;

Let T+
b
∈ Cb;

Let T−
b
∈ Cn − Cb;

for all images under n do

Extract HOG at (x(i), y(i)) using
ψ(i);

Let h+i = HOG from T+
b

;

Let h−i = HOG from T−
b

;

Train classifier gi on 2
3

of: h+i and h−i ;

Test gi on OOB set 1
3

of: h+i and h−i ;

Rank block (x(i), y(i), ψ(i), gi)

Select nh best blocks,
Bb = {(xj , yj , ψj , gj)}nh

j=1 ;

Update the list B′ = B ∪Bb ;

using these examples. We then test this weak classifier

on the OOB test instances to select a threshold τi and

rank the block according to the actual True Positive

(TP) and False Positive (FP) rates achieved: the over-

all performance of the weak classifier gi is determined

by selecting the point on its ROC curve lying closest

to the upper-left hand corner that represents the best

possible performance (i.e. 100% TP and 0% FP). We

then rank the rejector using the Euclidean distance to

that point. Each weak classifier gi(hi) thus consists of

a function fi, a threshold τi and a parity term pi indi-

cating the direction of the inequality sign:

gi(hi) =

{
1 if pifi(hi) < piτi ,

0 otherwise.
(11)

Here hi is the HOG extracted at location (x(i), y(i)) us-

ing parameters ψ(i). In the example proposed in Fig. 5b,

fi(hi) is the projection of the block hi on the hyper-

plane found by SVM. The corresponding ROC curve is

shown in Fig. 5c. For each branch, the nh best blocks

are kept in the list B which is a bag/pool of HOG blocks

and associated weak classifiers. If nB is the total num-

ber of branches in the tree over all levels, the final list

B has nB×nh block elements. The selection of discrim-

inative HOG blocks is depicted in Alg. 2.

By this process, features are extracted from areas of

high edge probability across our training set more than

areas with low probability. By using this information

to sample features, the proportion of useful information

available for random selection is increased.

3.3 Randomization

Random Forests, as described in [11] are constructed as

follows. Given a set of training examples T = {(yi,xi)},
where yi are class labels and xi the corresponding D-

dimensional feature vectors, a set of random trees F

is created such that for the k-th tree in the forest, a

random vector Φk is used to grow the tree resulting in

a classifier tk(x, Φk). Each element in Φk is a randomly

selected feature index for a node. The resulting forest

classifier F is then used to classify a given feature vector

x by taking the mode of all the classifications made by

the tree classifiers t ∈ F in the forest.

Each vector Φk is generated independently of the

past vectors Φ1..Φk−1, but with the same distribution:

φ ∼ U(1, D),∀φ ∈ Φk, (12)

where U(1, D) is a discrete uniform distribution on the

index space ID = {1, · · · , D}. The dimensionality of

Φk depends on its use in the tree construction (i.e. the

number of branches in the tree). For each tree, a deci-

sion function f(·) splits the training data that reaches

a node at a given level in the tree by selecting the best

feature m* from a subset of m << D randomly sampled

features (typically m =
√
D dimensions). An advantage

of this method over other tree based methods (e.g. sin-
gle decision trees) is that since each tree is trained on a

randomly sampled 2
3 of the training examples [10] and

that only a small random subset of the available di-

mensions are used to split the data, each tree makes a

decision using a different view of the data. Each tree

in the forest F learns quite different decision bound-

aries, but when averaged together the boundaries end

up reasonably fitting the training data.

In Random Forests (RF), the use of randomization

over feature dimensions makes the forest less prone to

over-fitting, more robust to noisy data and better at

handling outliers than single decision trees [11]. We ex-

ploit this random selection of features in our algorithm

so that our classifier will also be less susceptible to over-

fitting and more robust to noise compared to a single

hierarchical decision tree that would use all the selected

features together: a hierarchical tree-structured classi-

fier rk(IN , Φk,S,B), with IN being a normalized input

image, is thus built by randomly sampling one of the

HOG blocks in the list Bb ∈ B at each branch b of
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Fig. 6 Rejector branch decision: shown here is a diagram of a rejector classifier. Note that the structure allows for any number
of branches at each node and is not fixed at 2. The tree-like structure of the classifier is defined by S and the blocks (and
associated weak classifiers) stored during training for each branch for this structure are held in B. The random vector Φk
defines a cascade rk by selecting one of the rejector blocks in Bb at each branch b, being Bb ∈ B the bag of HOG blocks for
branch b.

the hierarchical structure S. This gives a random nB-

dimensional vector Φk where each element corresponds

to a branch in the structure S:

Φk ∈ InB where φ ∼ U(1, nh),∀φ ∈ Φk. (13)

Here U(1, nh) is a discrete uniform distribution on the

index space I = {1, · · · , nh}. The value of each element

in Φk is the index of the randomly selected HOG block

from Bb for its corresponding branch. An ensemble R

of nc hierarchical tree-structured classifiers is grown by

repeating this process nc times:

R(IN ) = {rk(IN , Φk)}nc

k=1, (14)

where S and B are left out for brevity. R thus has 2

design parameters nc and nh whose main effects on

performance will be evaluated in Sect. 4.2. Let Pω be

the path through the tree-structure S from the top

node to the class leaf ω. Pω is in fact an ordered se-

quence of nb
ω branches6: Pω =

(
bω1 , b

ω
2 , · · · , bωnb

ω

)
. For

each classifier rk ∈ R and for each class ω ∈ Ω, where

Ω = {1, · · · , nω}, we have the corresponding ordered se-

quence of HOG blocks and associated weak classifiers:

Hωk = {(xj , yj , ψj , gj)}nb
ω

j=1, (15)

with (xj , yj , ψj , gj) = Bb [Φk(b)], (16)

where the branch index b is the jth element in Pω (i.e

b = Pω[j]) and Bb ∈ B. See Fig. 6a.

For each tree-structured classifier rk, the decision

to explore any branch in the hierarchy is based on a

accept/reject decision of a simple binary classifier gj
that works in a similar way to a cascade decision (see

Fig. 6b). The ensemble classifier R is then, in fact, a se-

ries of Randomized Hierarchical Cascades of Rejectors.

6 Note that nbω could be different for each class ω ∈ Ω

The decision at each node of a hierarchical cascade

classifier rk is made in a one-vs-all manner, between

the branch in question and its sibling branches. In this

way multiple paths can be explored in the cascade that

can potentially vote for more than one class. This is

a useful attribute for classifying potentially ambiguous

classes and allows the randomized cascades classifier to

produce a distribution over multiple likely poses. Each

cascade classifier rk therefore returns a vector of binary

outputs (yes/no) ok =
(
o1k, o

2
k, · · · , o

nω

k

)
where a given

oωk from ok for class index ω, takes a binary value:

oωk =

{
1 if ∀(xj , yj , ψj , gj) ∈ Hωk , gj(hj) = 1 ,

0 otherwise.
(17)

Here hj is the HOG extracted at location (xj , yj) using

parameters ψj . Each output oωk is initialized to zero,

which means that if no leaf is reached during classi-

fication, rk will return a vector of zeros and will not

contribute to the final classification. The uncertainty

associated with each rejector during learning could be

considered to provide a crisp output (i.e. each cascade

voting for only one class) or to compute a soft confi-

dence values of the cascade classifiers. Although other

classifier combination techniques could be considered,

here we choose to use a simple sum rule to combine the

binary votes from the different cascade classifiers in the

ensemble R that outputs the vector O:

O =
(
O1, O2, · · · , Onω

)
= R(I), (18)

where each Oω ∈ [0, nc] represents a number of votes:

Oω =

nc∑
k=1

oωk , (19)
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Fig. 7 Diagram of Image classification using an ensemble of nc randomized cascades (from left to right): When applied to a

normalized input image IN , each cascade classifier rk(IN , Φk,S,B) returns a vector of binary outputs ok =
(
o1k, o

2
k, · · · , o

nω
k

)
.

A sum-rule is used to combine the binary votes from the different cascade classifiers in the ensemble R that outputs the
distribution over classes O = (O1, O2, · · · , Onω ), with Oω =

∑nc

k=1
oωk and Oω ∈ [0, nc], being nω the number of classes and nc

the number of cascades. The image IN can be classified by taking, for instance, the class ω∗ that received more votes, i.e. the
peak in the final distribution over classes. The average 2D pose corresponding to class ω∗ is shown on the right.

and can be used to assign a confidence value7 (or score)

to class ω. O can ultimately be an input in to another

algorithm, e.g. tracking, or a class can be estimated by

majority voting, i.e. taking for instance the mode of all

the classifications as in the example presented in Fig. 7.

Each hierarchical cascade in the ensemble can make

a decision and efficiently reject negative candidates by

only sampling a few features of the available feature

space. This makes our classifier more suitable for sliding

window detectors than RF where the trees have to be

completely traversed to produce a vote.

3.4 Application to Human Pose Detection

Since we learn a classifier that is able to discriminate

between very similar classes, we can also tackle local-
ization. Given an image I, a sliding-window mechanism

then localizes the individual within that image and, at

each visited location (x, y) and scale s, a window Ip can

be extracted and classified by our multi-class pose clas-

sifier R obtaining Op =
(
Oωp
)nω

ω=1
where p = (x, y, s),

is a location vector that defines the classified window.

A multi-scale saliency map M of the classifier re-

sponse can be generated by taking the maximum value

of the distribution for each classified window Ip:

M(x, y, s) = max
ω∈Ω

(Op) = max
ω∈Ω

(
(Oωp)nω

ω=1

)
. (20)

A dense scan (trained on pose only) is shown in Fig. 8a

where many isolated false positives appear where the

classifier responds incorrectly.

Zhang et al [59] tackle joint object detection and

pose estimation by using a graph-structured network

7 Although it can be expressed as a percentage of votes by

dividing by the number of cascades nc, Õω = 1
nc

∑nc

k=1
oωk and

Õω ∈ [0, 1], it does not express a probability (
∑nω

k=1
Õω 6= 1).

that alternates the two tasks of foreground/background

discrimination and pose estimation for rejecting nega-

tives as quickly as possible. Instead of combining binary

foreground/background and multi-class pose classifiers,

we propose to perform the two tasks simultaneously by

including hard background examples in the negative set

T−b (see Fig. 5 and Sect. 3.2) during the training of

our rejectors. To create the hard negatives dataset, the

classifiers trained on pose images only can be run on

negative examples (e.g. from the INRIA dataset [14])

and strong positive classifications are incorporated as

hard negative examples (see details in Sect. 4.2.3). Re-

peating the process of hard negative retraining several

times helps to refine the classifiers as can be appreci-

ated in Fig. 8 b and c. Numerical evaluation is given in

the results Sect. 4.2.

By generating dense scan saliency maps for many

images, we have found that humans tend to have large

“cores” of high confidence value as in Fig. 8c. This

means that a coarse localization can be obtained with

a sparse scan and a local search (e.g. gradient ascend

method) can then be used to find the individual accu-

rately. In the example proposed in Fig. 8, taking the

maximum classification value over the image, (after ex-

ploring all the possible positions and scales) results in

reasonably good localization of a walking pedestrian. In

that case, we have:

p∗ = (x∗, y∗, s∗) = argmax
(x,y,s)

(M(x, y, s)), (21)

and the corresponding distribution over poses O∗ =

Op∗ =
(
Oωp∗

)nω

ω=1
.

Once a human has been detected and classified, 3D

joints for this image can be estimated by weighting the

mean poses of the classes resulting from the distribution

using the distribution values as weights, or regressors

can be learnt as in [37]. The normalized 2D pose is

computed in the same way and re-transformed from the
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(a) 100-cascade
classifier trained
on pose images
only

(b) 100-cascade
classifier after 1
Pass of hard neg-
atives retraining

(c) 100-cascade
classifier after 3
Passes of hard
negatives retrain-
ing

(d) Input image
with the detected
pose from the
“peak” in (c)

(e) 1-cascade
classifier after 3
Passes of hard
negatives retrain-
ing

(f) On-line ran-
domization of a
1-cascade classi-
fier (3 Passes of
hard neg)

(g) On-line ran-
domization of a
100-cascade clas-
sifier (3 Passes of
hard neg)

(h) Input image
with the detected
pose from the
“peak” in (g)

Fig. 8 Cascade classifier response for a dense scan. Left side, from top to down: saliency map M after 0 (a), 1 (b) and 3 (c)
passes of hard negatives retraining (i.e. adding hard negative examples in the cascade learning process). For visualization
purpose we represent M for ground truth scale (i.e. s = 0.6) and show a zoom around the ground truth location. (d) input
image with the pose corresponding to the peak in (c). Right side, from top to down: saliency map M obtained with a 1-cascade
(e), 1 cascade randomized on-line (f), a 100-cascade ensemble randomized on-line (g). In (h) we show the pose corresponding
to the peak in (g).

normalized bounding box to the input image coordinate

system obtaining the 2D joints location (see Fig. 8d).

3.5 Properties of the Random Cascades Classifiers

In addition to the advantages stated so far, our classi-

fier has additional interesting properties. Since the tree

structure S and HOG block rejectors list B remain fixed

after training, a new cascade classifier r̃k(IN , Φ̃k) can be

constructed on-line by simply creating a new random

vector Φ̃k. This means that for each classified window

Ip in an image, a different ensemble Rp can be regen-

erated instantly at no extra-cost:

Rp(IN ) = {r̃k(IN , Φ̃k)}nc

k=1, (22)

where p = (x, y, s), is the location vector that defines

Ip and Φ̃k is sampled using Eq. 13.

The qualitative effects of this on-line randomiza-

tion can be appreciated in Fig. 8: a dense scan (1-pixel

stride) with a 1-cascade classifier (Fig. 8e) produces re-

sponses which are grouped while randomizing Φ on-line

(using a different random cascade at each location) pro-

duces a cloud of responses around the ground truth (see

Fig. 8f). This property will favor an efficient localiza-

tion at a higher search stride, as verified later by the nu-

merical evaluation presented in Sect. 4.2 8. When ran-

domizing a 100-cascade classifier (Fig. 8g), the saliency

map becomes similar to the one obtained with a reg-

ular 100-cascade ensemble without on-line randomiza-

tion (Fig. 8d).

Performing construction on-line, each new random

vector Φ̃k contributes to the final distribution. The prob-

ability that any given randomly generated cascade clas-

sifier r̃k will vote close to an object location increases

as the position gets closer to the true location of the

object. Even if the classification by the initial cascade

for the pose class is wrong, it is generally close to an

area where the object is. Subsequent classifications from

other randomized rejectors push the distribution to-

ward a stable result. As more classifications are made,

the distribution converges and becomes stable as shown

in Fig 9a and Fig 9b where we can observe the higher

8 This property may also be exploited to spread the com-
putation of image classification and localization over time.
They may also be readily parallelized due to the structure S
and B being fixed once the classifier has been trained.
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variability in classification with few cascades compared

to the one obtained using bigger ensembles. This ex-

plains the similarity of the saliency map obtained with

and without on-line randomization (Fig. 8) when con-

sidering a large number of cascades in the ensemble R.

(a) (b)

Fig. 9 On-line Randomization: (a) Detection score (in per-
centage of votes) max(O) = max(100

nc

∑nc

k=1
oωk ), i.e. the peak

of the distribution, obtained when classifying the same loca-
tion (x, y, s) with 100 different randomized ensembles. When
increasing nc, the number of cascades in the ensemble R, all
the curves converge to 20%. In (b), we present the average
and std across all these curves for 2 different locations in the
image: ground truth location and 5 pixels away from ground
truth.

This convergence property can also be exploited for

fast localization using cascade thresholding : a cascade

rk is drawn at random (without replacement) from R

until the aggregated score reaches a sufficient confidence

level. The confidence level can be selected based on
a desired trade-off between speed and accuracy. An-

other possibility is to consider an adaptive cascade fil-

tering by classifying with the entire ensemble R (Rp if

on-line randomization is considered) only the locations

p = (x, y, s) that yield a detection using a single or few

cascades from the ensemble, i.e. filtering with the first

nf cascades of the ensemble:

M(x, y, s) =

{
maxω∈Ω

(
Oωp ∈ Op

)
if Snf

> 0,

0 otherwise,
(23)

where the detection score Snf
is basically:

Snf
= max

ω∈Ω

( nf∑
k=1

oωk

)
. (24)

In other words, if a strong vote for background has been

made with the first nf cascades (i.e. no vote for any hu-

man pose classes and Snf
= 0), then the classifier stops

classifying with the rest of the cascades in the ensemble.

Localizing using this approximate approach means that

a classifier with a few cascades can be used as a region

of interest detector for a more dense classification. The

adaptive cascade filtering combined with on-line ran-

domization will produce an efficient and fast detection,

as verified later in Sect. 4.2.

4 Experiments

4.1 Evaluation using HumanEva dataset

The first dataset we consider is the HumanEva dataset

[48]: HumanEVA I for training and HumanEVA II for

testing. This dataset consists of 4 subjects performing

a number of actions (e.g. walking, running, gesture) all

recorded in a motion capture environment so that ac-

curate ground truth data is available.

4.1.1 Alignment of Training Data

Before training the algorithm, strong correspondences

are established between all the training images.

While other approaches require a manual process

[14] or a clean silhouette shape (either synthetic [1, 17,

44] or from manual labeling [24, 41]) for feature align-

ment, we propose a fully automatic process for accu-

rately aligning real training images. It is assumed that

the 3D mocap data (3D poses) or other pose label-

ing corresponding to the training images are available.

Then by applying a simple but effective way of using

their 2D pose projections in the image plane, all of the

training images are aligned.

The complete process is depicted in Fig. 10: the 3D

joints of every training pose are first projected onto

the corresponding image plane (Fig. 10b). The result-

ing 2D joints are then aligned using rigid-body Pro-

crustes alignment [7], uniformly scaled and centered in

a reference bounding-box (Fig. 10d). For each training

pose, we then estimate the four parameters correspond-

ing to a similarity transformation (one for rotation, two

degrees of freedom for translation and one scale param-

eter) between the original 2D joints locations in the

original input image and the corresponding aligned and

resized 2D joints. This transformation is finally applied

to the original image leading to the cropped and aligned

image (Fig. 10e and f). In this work, we normalize all

the training images to 96× 160 as in [14]. The dataset

(images and poses) is then flipped along the vertical axis

to double the training data size. Applying the process

described above to this data (3 Subjects and 7 camera

views) for training, we generate a very large dataset of

more than 40,000 aligned and normalized 96× 160 im-
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(a) (b)

Fig. 11 Class definition - HumanEVA: (a) Torus manifold with discrete set of classes (12 for gait and 16 for camera viewpoint)
and training sequences (each blue dot represents a training image). (b) Zoom on a particular class (yellow) with corresponding
training images (green dots). Please refer to Fig. 2 where we present 6 examples of aligned images belonging to the class
highlighted in (b).

(a) (b) (c)

(d) (e) (f) (g)

Fig. 10 Alignment of training images. (a) Training 3D poses
from Mocap data. (b) Training images with projected 2D
Poses. (c) Average gradient image over INRIA training exam-
ples (96× 160). (d) Aligned and re-sized 2D poses (96× 160).
(e) and (f) cropped images (96 × 160) with normalized 2D
poses. (g) Average gradient image over aligned HumanEva
[48] training examples.

ages of walking people9, with corresponding 2D and 3D

Poses. After that is done, classes need to be defined to

train our pose classifier.

9 The average gradient image obtained with our training
dataset (Fig. 10g) shows more variability in the lower region
compared to the one obtained from INRIA dataset (Fig. 10c).
This is due to the fact that most of the INRIA images present
standing people.

4.1.2 Class Definition - Torus Manifold Discretization

Since similar 3D poses can have very different appear-

ance depending on the camera viewpoint (see Fig. 10a

and Fig. 10b), the viewpoint information has to be in-

cluded into the class definition. To define the set of

classes, we thus propose to utilize a 2D manifold rep-

resentation where the action (consecutive 3D poses) is

represented by a 1D manifold and the viewpoint by an-

other 1D manifold. Because of the cyclic nature of the

viewpoint parameter, if it is modeled with a circle the

resulting manifold is in fact a cylindrical one. When the

action is cyclic too, as with gait, jog etc., the resulting

2D manifold lies on a “closed cylinder” topologically

equivalent to a torus [18, 41]. The walking sequences

are then mapped on the surface of this torus manifold

and classes are defined by applying a regular grid on

the surface of the torus thus discretizing gait and cam-

era viewpoint10. By this process, we create a set of 192

homogeneous classes with about the same number of

instances (see Fig. 11).

We choose to define non-overlapping class quanti-

zation, due to the property of our hierarchical cascade

classifier that each cascade compares feature similar-

ity rather than make a greedy decision, so can traverse

more than one branch in the hierarchical cascade. When

an image reaches a node with a decision between very

similar classes (and subsequently close in pose space),

then it is possible that a query image that lies close

to a quantization border between those two classes can

arrive at both class leaves.

10 Since we only learnt our pose detector from walking hu-
man sequences, we do not attempt to detect people perform-
ing other actions than walking.
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Fig. 12 Pose detection results on HumanEva II dataset: normalized 96×160 images corresponding to the peak obtained when
applying the pose detection in one of the HumanEva II sequences (subject S2 and Camera 1). For each presented frame (1,
50, 100, 150, 200, 250, 300 and 350) the resulting pose is represented on top of the cropped image.

Fig. 13 Pose detection results on HumanEva II Subject S2-Camera C2. From top to down: for each presented frame (2, 50, 100,
150, 200, 250 and 300) the reprojected 2D pose is represented on top of the input image (top row). The resulting distributions
over the 192 classes after classification using our random cascades classifier is represented on the 3D and 2D representations of
the torus manifold. In the bottom row, we show the distribution after selection (in green) of the most probable classes based
on spatiotemporal constraints (i.e. transitions between neighboring classes on the torus).

Table 1 2D Pose Estimation Error on HumanEva II dataset: mean (and standard deviation) of the 2D joints location error
(in pixels) obtained by other state-of-the-art approaches and our Randomized Cascades.

Subject Camera Frames Rogez et al [41] Gall et al [23] Bergtholdt et al [4] Andriluka et al [3] our approach
S2 C1 1-350 16.96± 4.83 4.10± 1.11 25.48± 13.18 10.49± 2.70 12.98± 3.5
S2 C2 1-350 18.53± 5.97 4.38± 1.36 25.48± 13.18 10.72± 2.44 14.18± 4.38
S4 C1 1-290 16.36± 4.99 3.58± 0.74 38.82± 16.32 - 16.67± 5.66
S4 C2 1-290 14.88± 3.44 3.35± 0.51 38.82± 16.32 - 13.03± 3.49

4.1.3 Pose Estimation

The resulting cascades classifier is first validated in sim-

ilar conditions (i.e. indoor with a fixed camera) using

HumanEVA II dataset (Fig. 12 and Fig. 13). We apply

a simple Kalman filter on the position, scale and rota-

tion parameters along the sequence and locally look for

the maxima, selecting only the probable classes based

on spatiotemporal constraints (i.e. transitions between

neighboring classes on the torus, see [41] for details).

By this process, we do not guarantee to reach the best

result but a reasonably good one in relatively few it-

erations. Quantitative evaluation is provided in Tab.1

together with the results reported by [3, 4, 23, 41].

Gall et al [23] present the best numerical results us-

ing a multi-layer framework based on background sub-

traction with local optimization while Andriluka et al

[3] use extra training data and optimize over the en-

tire sequence. Our results are obtained training on Hu-

manEVA I only and estimating the pose frame by frame

without background subtraction.
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Fig. 14 Pose detection result with a moving camera. Normalized 96×160 images corresponding to the peak obtained applying
the pose detection to a moving camera sequence (from [22]). For each presented frame, the mean 2D pose corresponding to
the “winning” class is represented on top of the cropped image while the corresponding 3D pose is presented just below.

The cascades classifier is also applied to a moving

camera sequence (see Fig. 14): even if the cascade clas-

sifier shows good performances, it can be observed in

Fig. 14 that the classifier is unable to make a good

pose estimate if the gait stride is too wide (e.g. when

the subject was walking at speed). This is due to the

low variability in pose present in HumanEVA walk-

ing database: even if 40,000 images are available, they

are not representative of the variability in terms of

gait style since only 3 subjects walking at the same

speed have been considered. Additionally, HumanEva

has very little background (one unique capture room)

and clothing (capture suit) variation, which make the

classifier unrobust against cluttered background.

4.2 Experimentation using the MoBo Dataset

Our second set of experiments is performed using the

CMU Mobo dataset [25]. Again, we consider the walk-

ing action but this time add more variability in the

dataset by including 15 subjects, two walking speeds

(high and low) and a discretized set of 8 camera view-

points, uniformly distributed between 0 and 2π. Be-

tween 30 and 50 frames of each sequence were selected

in order to capture exactly one gait cycle per subject.

By this process we generate a training database encom-

passing around 8000 images and the corresponding 2D

and 3D pose parameters. The same alignment proce-

dure is applied to this dataset as with the HumanEva

dataset, but in addition we use hand labeled silhouette

information to superimpose each of the instances on

random backgrounds to increase the variability of the

nonhuman area of the image (see Fig. 15). For more

details about manual labeling of silhouettes and pose,

please refer to [41].

Fig. 15 MoBo dataset (from top to bottom): we show an orig-
inal image for each one of the 6 available camera views (1st
row). We then present a normalized 96× 160 binary segmen-
tation per training view (2nd row), the corresponding seg-
mented images (3rd row) and images with a random back-
ground (4th row).

We observed that the classification in section 4.1

was very strict so that very fine alignment was neces-

sary during localization. Looser alignment in the train-

ing should allow for a smoother detection confidence

landscape. Following [28] and [21], the training set is

thus augmented by perturbing the original examples

with small rotations and shears, and by mirroring them
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horizontally. This improves the generalization ability of

the classifier. The augmented training set is 6 times

larger and contains more than 48,000 examples with

different background. The same dataset is generated

for the 3 following configuration: original background,

no background, and random background (see Fig. 15).

This dataset will enable to measure the effect of clut-

tered background on classification. The richer back-

ground variation compared to HumanEva dataset al-

lows a more robust cascade to be learnt, as demon-

strated later by our experiments.

4.2.1 Class Definition - 2D Pose Space Clustering

Class definition is not a trivial problem because changes

in the human motion are continuous and not discrete. In

other words, it is not trivial to decide where a class ends

and where the next one starts. Previously no one has

attempted to efficiently define classes for human pose

classification and detection. In [37] they clustered 3D

pose space and also considered a discrete set of cam-

eras. Gavrila [24] clustered the silhouette space using

binary edge maps. Ferrari et al [21] defined classes as

3D pose but only considered frontal views and a lim-

ited set of poses. In PSH [44], they automatically build

the neighborhood in 3D pose space but only consider

frontal views. This definition produced good results in

the absence of viewpoint changes. However, two poses

which are exactly the same in the pose space could still

have completely different appearances in the images due

to changes in viewpoint (see example in Fig. 10a and

b). Thus it is critical to consider viewpoint information

in the class definition.

Ideally, classes should be defined in the feature space

or, at least, in the 2D pose space (2D projection of the

pose in the image) that takes into account the informa-

tion of the camera viewpoint. When we considered the

HumanEVA dataset (section 4.1), classes were defined

applying a regular grid on the surface of the 2D mani-

fold of pose plus viewpoint (torus manifold). Mapping

training poses on a torus worked nicely with HumanEva

because only 3 subjects with similar aspect and walk-

ing style were considered. When the dataset is richer

(more subjects, more walking speeds and styles, more

variability in morphology), it is more difficult to map

the poses on a torus and the discretization of the man-

ifold produces non-homogeneous classes. Additionally,

the discretization process assigns the same number of

classes for quite different viewpoints. This means that,

for instance, frontal and lateral viewpoints of a walking

cycle were quantized with equal number of classes, de-

spite the difference in appearance variability. However,

since there is much less visual change over the gait cy-

Fig. 16 Class Definition for MoBo dataset: For each training
view, the 2D pose space is clustered and for each number of
clusters, the intra-cluster distances to centroid are computed.
By selecting a thresholding value of this average intra-cluster
distance, the views are quantized into a number of classes
that reflect the variability in appearance for that view. For the
selected threshold (dashed line), frontal views of walking have
a coarser quantization (6 classes) compared to the diagonal
(8 classes) and lateral views (10 classes).

cle when viewed from front or back views than for lat-

eral views, differences between classes do not reflect the

same amount of change in visual information over each

of these views. This over-quantization of visually quite

similar views can make the class data unrealistically

difficult to separate for certain viewpoints, and can in-

troduce some confusion when a cascade must classify

those examples. Therefore it is important to define ho-

mogeneous classes. Too many class clusters become too

specific to a particular subject or pose, and do not gen-

eralize well enough. Too few clusters can merge poses

that are too different and no feature can be found to

represent all the images of the class.

For each training view, the 2D pose space is clus-

tered several times with K-means and for each number

of clusters K, the intra-cluster distances to centroid are

computed in the entire space. This distance indicates

the tightness of the clusters. By selecting a thresholding

value of the average intra-cluster distance (See Fig.16),

the views are quantized into a number of classes that re-

flect the variability in appearance for that view. For the

selected threshold (dashed line) frontal views of walking

have a coarser quantization (6 classes) compared to the

diagonal (8 classes) and lateral views (10 classes)11. We

can see on Fig. 16 that if we choose the same number of

clusters for all the views as we did in section 4.1, the re-

sulting average intra-cluster distances are very different

11 We select this threshold in order to obtain a minimum of
6 clusters in the frontal and back views. See [41] for details.
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(a) (b) (c)

Fig. 18 Pose classification for PSH, Random Forest (1000 trees) and SVMs classifiers trained on a subset of the MoBo
database containing 10 subjects and tested on the remaining 5 subjects. We compare the results using segmented images
without background and images with a random background for 4 different grids of HOG descriptors.

(a) (b) (c)

Fig. 19 Pose classification rates for 4 different ensembles (1, 10, 100 and 1000 cascades) trained on the subset of the MoBo
database containing 10 subjects and tested on the remaining 5 subjects. We compare the results using segmented images
without background and images with a random background for different number nh of sampled HOG blocks.

from a view to another: for example, if we select 6 clus-

ters per view, the resulting clusters from the frontal

view are about two times tighter than the ones from

lateral views.

In the proposed automatic class definition described

here, views are quantized into a number of classes that

reflect the variability in appearance for that view, and

frontal views of walking would have a coarser quanti-

zation (i.e. less classes) compared to the lateral views.

Using this method it is possible to create class defini-

tions that better reflect the differences in variation over

the gait cycle between different views. The resulting 64

classes are presented in Fig. 17.

4.2.2 Classification Results

A training subset is first built by randomly selecting

10 of the 15 available subjects from the database and

a testing subset with the remaining 5 subjects, thus

considering 30,000 images for training and 18,000 for

testing. Benchmark experiments were performed on this

dataset to get initial baseline results with three state-

of-the-art multi-class (pose) classifiers:

– Random Forests [11], inherently good for multi-class

problems, that share similarities with our approach.

– PSH [44] which is a fast and effective way of finding

the neighboring poses of a query image. We will take

the class of the nearest pose as a classification.

– A multi-SVMs classifier, similar in spirit to that

of [37], which learns k one-vs-all linear SVMs to
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Fig. 17 Classes (64) obtained with the class definition
method presented in Fig.16. The 8 rows correspond to the
8 training views available in the dataset. For each class, we
show the average gradient map and average pose.

discriminate between k predefined pose clusters12.

During classification the class is determined by choos-
ing the cluster that has the highest probability p(Ck|x)

from the SVMs. We will refer to this work as multi-

SVMs or SVMs in the rest of the paper.

We tuned the parameters of PSH and RF to get

optimal performances on our 64 class MoBo dataset:

we tailored PSH parameters to the number of images

and used 200 18-bit hash functions and empirically vali-

dated that the optimum numberm of randomly selected

features for RF was near
√
D (as indicated in [11]).

We trained 64 one-vs-all linear SVMs. Two groups of

classifiers are trained using segmented images without

background and images with a random background re-

spectively. We run the same test for 3 different grids of

HOG descriptors. Table 2 gives the corresponding train-

12 As we do not perform pose-dependent feature selection
and use linear SVMs instead of the ARD-Gaussian kernel
SVMs, it is expected to perform a little lower than that of
[37] but the training will be much faster. Since we use linear
SVMs to train our cascade rejectors, we find it is a reasonable
comparison.

ing time and Fig. 18 shows the performances13 when

classifying images with or without background. RF re-

sults are given for a 1000-tree forest since convergence

is reached for that number as observed in Fig. 1.

Table 2 Classifiers training time on an Intel Core Quad Pro-
cessor at 2.00GHz with 8Gb of RAM (see experiments in
Fig. 18).

HOG Grid 4x4 5x5 7x12 3 together
Dimension 1152 1800 2688 5640

Backgrd
RF 5h30 6h45 13h00 21h45

SVMs 2h00 4h00 8h00 17h30
PSH 1h50 2h30 3h00 5h30

No Backgrd
RF 4h40 5h30 11h00 18h30

SVMs 45min 52min 1h00 2h20
PSH 1h20 2h20 3h08 5h30

The first observation we made is that all of the

classifiers trained on segmented images perform poorly

when classifying images with background (see Fig. 18b).

This demonstrates the importance of considering a train-

ing dataset that includes a wider background appear-

ance. The second observation is that using denser HOG

feature grids improves pose classification accuracy but

we are quickly facing memory issues that prevent us

from working with denser grids. The third observation

we can make is that PSH does not perform well in pres-

ence of cluttered background (Fig. 18c) while perform-

ing decently on segmented images (Fig. 18a). PSH tries

to take a decision based on 1-bin splits. That could well

be a reason as the histogram will be altered by the pres-

ence of background and affect that bin. In presence of

cluttered background (Fig. 18c), SVM is the best classi-

fier in terms of accuracy while Random Forest achieves

the highest classification rate when working with seg-

mented images (Fig. 18a).

After constructing the tree structure S (112 branches

using nθ = 1), two lists of HOG block rejectors B are

built using the two same training subsets of the MoBo

database (with and without random background). The

training took about 2 hours (testing 2500 HOG blocks

at each branch) which is much faster than both SVMs

and RF classifier training. Then, different ensembles are

created varying the number nc of cascades and the num-

ber nh of HOG blocks that are considered for sampling.

Corresponding classification rates on MoBo dataset are

given in Fig. 19.

13 If neighboring classes are not considered as misclassifica-
tion, some issues with images on the “boundaries between
classes” are solved and the classification rates increase by
about 15− 20%
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(a) (b)

(c)

Fig. 20 Pose classification experiments on MoBo using ran-
domized cascades: (a) we run the same experiment with our
randomized cascades classifier (trained on the subset contain-
ing 10 subjects and tested the remaining 5 subjects from
MoBo dataset) and compare the results obtained sampling
from different numbers nh of selected HOG blocks at each
branch of the tree. (b) We show the results varying nh with
nc = 1000. (c) We compare the performance of the best
Random Forest vs our randomized cascades classifier (with
nh = 400).

We can observe that the accuracy increases with

both nc and nh for the 3 different tests and the cas-

cades outperform the other classifiers when trained on

images without background (Fig. 19 a and b). In par-

ticular, the cascades show better generalization perfor-

mances when the testing data is significantly different

from the training data (Fig. 19b). Performances seems

to be lower than SVMs and RF when the classifiers are

trained and tested on images with random background

(see Fig. 19c vs Fig. 18c). Detailed results are reported

in Fig. 20 for that concrete case. Fig. 20a shows that

convergence is reached sooner when nh is low and the

accuracy improves when increasing nh until nh = 400

for nc = 1000 (See Fig. 20b). The figure 20c compares

the performances of a cascades classifier grown using

the 400 best HOG blocks with the best RF classifier

from Fig 1. The classification rate of the cascades clas-

sifier converges earlier (300 cascades) because the first

cascades are already very informative compared to the

first trees of the Random Forest: 30% of accuracy for

the first cascade and 10% for the first tree of the RF.

Actually, the accuracy of RF does not seem to converge

to a specific value as every new tree is informative. Our

approach performs better than RF for nc ≤ 1000 and

is slightly less efficient than SVMs.

Fig. 21 Localization dataset: Clockwise from top left: Hu-
manEva, INRIA, movie sequences, lab sequence and CamVid.

4.2.3 Localization Results

To construct our localization dataset, we took images

from several different datasets to compare each of the

algorithms in different environments and at different

subject scales. These images were taken from HumanEva

[48], CamVid [12], INRIA [14], some images of pedes-

trians collected from movie sequences, and some images

captured from a web camera in a simple lab environ-

ment. See Fig. 21 for some selected images from this

dataset. We then manually annotated each of these 120

images so we could determine localization accuracy.

For a fair comparison, we have implemented our cas-

cades, the multi-SVMs and RF classifiers in the same

C++ framework with an efficient on-demand feature

extraction system. In the original HOG implementation

[14], multi-scale searches required the input image to

be re-scaled at every searched scale and scanning win-

dow resolution before extracting HOG features for that

scale. We believe that different scales can be explored

by keeping the source image size fixed and reusing the

integral histograms. The classifier window is rescaled

to the equivalent scale (1/s) and the Integral HOG fea-

tures are resized with respect to the new window size.

Since the integral histogram sampling consists of only

4 coordinate samples for each cell considered, indepen-

dent of the size of the HOG feature, the features can be

scaled with respect to the new window size at no addi-

tional computation time, thus allowing different scales
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(a) (b) (c) (d)

Fig. 22 Detection results on the combined localization dataset using different classifiers trained on Mobo images only (a and
b), trained with a first pass of hard negatives from INRIA (c) and with a second pass (d). For the 1st case, we present results
for 2 different types of multi-scales scanning scheme: scaling the input image and keeping the size of the scanning windows
fixed (a) and scaling the scanning window and keeping the size of the input image fixed (b), while the other 2 graphs (c and
d) are obtained with the second scanning scheme. Note that a log scale is used for c and d to aid visualization.

to be explored at approximately the same computa-

tional cost (See Fig. 23).

Fig. 23 HOG feature scaling: different scales are queried by
rescaling the classifier window, and HOG feature boxes are
rescaled in proportion to the new classifier window scale. The
sampling coordinates for the HOG boxes can be rescaled at
no extra cost in computation time.

SVMs, RF and cascade classifiers trained on MoBo

images in Sect. 4.2.2 were then run on the localization

dataset over 6 discrete scale setting ([0.3, 0.45, 0.75, 1.0,

1.5, 2.0]) with a 4 pixels stride, thus exploring and clas-

sifying a total of 10, 599, 042 sub-images. We used a

state-of-the-art laptop with an Intel Core @ 1.73GHz. A

non-maximum suppression step is used to merge nearby

detections to one final hypothesis. In the first experi-

ment, we compare accuracy and processing time using

the 2 different scanning schemes, i.e. scaling the input

image or scaling the sliding window. As can be seen in

Fig. 22a and Fig. 22b, the results are very similar with

the 2 different scanning methods that do not seem to

affect the detection rate much. The target architecture

for the experiments is an AMD/Intel x86 processor, and

although the results show that scaling the window is

much faster (see Table 3) on a single thread implemen-

tation on a system with local caches, this comparison

is architecture dependent14.

Table 3 Detection times (after hard negative retraining) for
the experiments reported in Fig. 22.

Hard
scaling SVMs

RF (trees) Cascades
negatives 50 200 1000 nc = 50

Pose only
image 15h03 - 8h37 - 19h38

window 11h45 - 2h03 - 18h36

1st Pass
image 20h30 7h19 7h42 8h12 12h48

window 10h55 1h11 1h33 3h07 5h07
2nd Pass window 11h08 1h12 1h32 3h56 5h09

Each of the classifiers were re-trained on human

subjects from the aligned Mobo dataset, and combined

with hard background examples from the INRIA dataset

[14]. To create the hard examples dataset, the classifiers

trained on pose images only from Sect. 4.2.2 were run on

14 As noted by Sugano et al [51] on a parallel SIMD (Single
Instruction Multiple Data) implementations scaling the im-
age can be more suitable for parallel processing and actually
negate the additional impact of resizing the image to different
scales.
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negative examples from the INRIA dataset [14] (with a

4 pixels stride and the same 6 scales), and strong posi-

tive classifications were incorporated as hard examples.

Hard background examples were included in the nega-

tive set T−b (see Fig 5) during the training of each re-

jectors of our cascades. They were added to SVMs and

RF classifiers as a background class so that there are

a total of 65 classes; 1 for background and 64 for pose.

We repeat the process of hard negatives retraining sev-

eral times to refine the classifiers. The detection rates

for the three types of classifiers after hard negatives re-

training are given in Fig. 22c and Fig. 22d while the

corresponding classification times are shown in table 3.

We can observe that the 1st pass of hard negatives re-

training helps to improve the accuracy as the FPPW

rate (False Positive Per Window) is reduced by a factor

of 3. Adding more trees to the RF classifier does not

improve the performances (see Fig. 22c and Fig. 22d).

Both SVMs and RF classifiers reach their best perfor-

mances after one hard negative retraining while our cas-

cade classifier outperforms them after the 2nd pass (see

Table 4). The reference point of 1× 10−4 FPPW is ar-

bitrary but is a reasonable comparison point given that

it has been used in other detection works such as [14].

At this rate we achieve a better detection rate (73.5%)

than both multi-SVMs and RF classifiers (62.79% and

62.53% respectively) at the same FPPW rate, but if a

higher rate of 5 × 10−4 is acceptable, then we achieve

over 90% accuracy as illustrated in Fig. 22d. However

the Random Forests are still faster than this configura-

tion of cascade classifier (see Table 3).

Table 4 Detection rates at 1 × 10−4 FPPW and 1 × 10−3

FPPW for the experiments reported in Fig. 22.

Hard
FPPW SVMs

RF (trees) Cascades
negatives 50 200 1000 nc = 50

Pose only
1.10−4 6.21 - 12.11 - 7.81
1.10−3 62.04 - 59.86 - 54.46

1st Pass
1.10−4 54.89 43.29 49.03 51.93 40.37
1.10−3 94.12 76.82 76.64 76.04 92.97

2nd Pass
1.10−4 62.79 56.13 60.31 62.53 73.5
1.10−3 92.35 78.21 79.67 80.80 94.53

The previous experiments have been carried out us-

ing an ensemble made of 50 cascades built from the best

nh = 30 HOG rejectors at each branch. In Fig. 24, we

show how the number of cascades nc and the number

of HOG blocks nh we sample from affect the detection

and FFPW rates, while the corresponding classification

times are shown in Fig. 26. If we consider a classifier

with 10 or less cascades we can obtain a better and

faster classification than with the best RF (less than

an hour). Adding more cascades allows the hierarchical

cascade classifier to reach higher detection rates but at

a higher cost in terms of FPPW, while sampling from a

smaller subset of HOGs (i.e. using a smaller nh) makes

the classifier more strict. Constraining the features that

our cascades can randomly draw from impairs general-

ization performances and considerably affects pose clas-

sification rates as demonstrated in Fig. 19 and Fig. 20.

A trade-off thus has to be made between the compu-

tational speed, the efficiency in detection and the pose

classification accuracy. One approach to this is to local-

ize using an ensemble built from a small pool of HOG

blocks and then refine the pose classification of a few

selected locations with additional cascades grown by

sampling from a larger pool of rejectors.

Fig. 26 Detection time when scanning the entire localization
dataset for different configurations of the cascades classifiers
after a 3rd pass of hard negative retraining (experiments re-
ported in Fig. 24).

4.2.4 On-line Randomization and Filtering

In addition to the advantages stated in previous sec-

tions, our classifier has 2 very interesting properties

that have not been evaluated yet. First, the on-line

randomization of Φk which allows the generation of a

different classifier rk(IN , Φk,S,B) at each location con-

sidered (i.e. for each sub-image to be classified) at no

extra-cost. The qualitative effects of the on-line ran-

domization on the saliency map can be appreciated

in Fig. 27 where we show the result of a dense scan

(1-pixel stride) with several different cascades classi-

fier. A 1-cascade classifier (Fig. 27a) produces few re-

sponses which are grouped and more likely to be missed

at a higher search stride while using a different cas-

cade at each location (Fig. 27b) produces a cloud of re-

sponses that favors a good detection at a higher search
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(a) (b) (c) (d) (e)

Fig. 24 Detection results for different configurations of the cascades classifiers with a 3rd pass of hard negative retraining: we
present the results with respectively 1 (a), 5 (b), 10 (c), 25 (d) and 50 cascades (e). For each case we vary the number nh of
HOG blocks we sample from at each branch of the tree. The corresponding classification times are shown in in Fig. 26.

(a) (b) (c) (d) (e)

Fig. 25 Detection results for different configurations of the cascades classifiers with a 3rd pass of hard negative retraining and
on-line randomization: we present the results with respectively 1 (a), 5 (b), 10 (c), 25 (d) and 50 cascades (e). For each case
we vary the number nh of HOG blocks we sample from at each branch of the tree.

stride. With a 5-cascade classifier, the benefit of the ran-

domization is less immediately obvious (Fig. 27c and

Fig. 27d). Though this property is less useful with a

100-cascade classifier (Fig. 27e and Fig. 27f). To eval-

uate quantitatively the benefit of this property, we run

the same test on the localization dataset, varying the

number nc of cascades and number nh of HOGs, but

this time randomizing the vectors Φk at each location.

The results are presented in Fig. 25. As expected, if

we compare with Fig. 24, we can see that the on-line

randomization has a great influence for classifiers with

few cascades: the maximum detection rate increases by

about 10% for a 5-cascade classifier while it increases

by over 15% for a single cascade classifier.

Single hierarchical cascades have good approximate

localization performance (see Fig. 24), but the disad-

vantage is that they may misclassify locations that would

have otherwise been correctly classified using more cas-

cades. This leads to the second property of our algo-

rithm: we can adapt the number of cascades in the clas-

sifier on-line, and thus, each sub-image can be classified

using a different number of cascades.

Locations that yield a detection using a few cas-

cades can be classified with more trees until the de-

tection result converges. We will leave for future work
the study and optimization of the convergence criteria

for the cascade thresholding approach as the detection

of this convergence requires a minimum number of cas-

cades to be applied. However, since the goal is to create

a classifier that can make a very fast detection using as

few cascades as possible, we instead exploit the adap-

tive cascade filtering property for efficient localization:

we will use the first nf cascades of the classifier as a

filter and classify with the rest of the cascades only if a

positive vote has been made. A qualitative analysis can

be made from Fig. 27: in the presented example, we can

see that filtering with the first (g) or the first 5 cascades

(h) of a 100-cascade classifier leads to a decent distribu-

tion, almost as good as the ones obtained without any

filtering (e and f) but it is much faster (between 5 and

10 times faster for that example).

We have evaluated the combination of these 2 prop-

erties by running a series of experiments to select the

best cascade classifier: we evaluated detection rates and
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 27 On-line randomization and filtering: the picture
shown in the upper part with a ground truth box (green) is
scanned at a 1-pixel stride. We present the saliency maps for a
region of interest around the ground truth location (red box)
obtained with different cascade classifiers: 1-cascade (a), 1-
cascade randomized(b), 5-cascade (c), 5-cascade randomized
(d), 100-cascade (e), 100-cascade randomized (f), 100-cascade
randomized and filtered with 1st cascade (g) and 100-cascade
randomized and filtered with the first 5 cascades (h). Pro-
cessing times of the entire image are respectively: 13.27s (a),
13.25s(b), 31.66s(c), 28.53s(d), 114.52s(e), 103s(f), 9.34s(g)
and 23s(h).

processing times for different search strides (1, 2, 4, 8

and 16 pixels) using a 100-cascade classifier filtered with
the first, the first 5 and the first 10 cascades. Quanti-

tative results are reported in Fig. 28a and Fig. 28b.

As expected, using a denser search (i.e. using a smaller

stride) considerably improves the detection rate but it

also increases the processing time up to 3 or more hours.

The same observation can be made concerning the num-

ber of cascades used for filtering: more cascades also

increase the detection rates for any search strides but

at a higher computation cost. Classifying every 4 pix-

els and filtering with the first 5 cascades offers a rea-

sonable compromise between accuracy (maximum de-

tection rate of 90%) and computational cost (1h01 i.e

35.5 seconds per image). Our selected cascade classifier

performs slightly better than the best multi-SVMs clas-

sifier but is 10 times faster. It is also slightly faster than

the best RF classifier (1h11) but considerably outper-

forms it in classification (see Fig. 29a).

A detailed analysis of the performances of our clas-

sifier (see Fig. 29b) shows that the best detection rates

are obtained for the HumanEVA and the Lab subsets:

(a) (b)

Fig. 28 Selection of the best cascade classifier: maximum
detection rate varying search stride and number of cascades
used for filtering (a), corresponding processing times are given
in (b). Classifying every 4 pixels and filtering with the first
5 cascades offers a reasonable compromise between accuracy
(maximum detection rate of 90%) and computational cost
(1h01).

(a) (b)

Fig. 29 Detection rate of the selected cascade classifier (100
cascades filtered with the first 5 cascades) compared to other
classifiers for a 4-pixels search stride (a) and corresponding
detailed detection rates over the 5 different types of images
in our localization dataset (b).

for a FPPW rate of 1× 10−4 or higher there is no mis-

detection. This makes perfect sense since our MoBo

training data has been captured in a similar lab en-

vironment and the background is less complex for this

2 subsets. The drop in the classifier performances with
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Fig. 30 Detection results: we present 2 examples of multiple
multi-scale detections in the same image.

INRIA images can be explained by their richer back-

grounds, and are more difficult to correctly classify.

The lower performances on the remaining 2 subsets,

the Camvid and Movies, can be explained by the fact
that the images also present richer backgrounds and

have been captured with a moving camera. More im-

portantly, the humans are much more difficult to de-

tect than in the other subsets. Indeed, the Camvid and

Movies subsets present images with street views where

people wear coats, dresses, hats and all sorts of cloth-

ing completely absent in our lab-type training dataset.

Some severe occlusions also occur in these uncontrolled

environments and the resolution is often not fine enough

to give accurate results. All these observations are vi-

sually confirmed with the examples of pose detection

errors: some False Positives are presented in Fig. 31

while some False Negatives are shown in Fig. 32.

Finally, we present some examples of good detec-

tions for the 5 different subsets in Fig. 33. For each de-

tection, the represented pose corresponds to the “win-

ning class” i.e. the highest peak in the pose distribution.

As we can see, a correct detection does not always re-

turns a correct pose classification. In some cases, the

pose is not well-recognized because it does not belong

Fig. 31 Cascades detection errors - False Positives: we can
observe that the presence of many edges in textured areas and
trees make these regions difficult to classify as background.

Fig. 32 Cascades detection errors - False Negatives: we can
observe that the clothing, occlusions and low resolution make
the detection harder for some subjects in Camvid and Movie
subsets.

to our training dataset and does not correspond to any

of our classes (e.g. walking with hands in pockets). In

other cases, we believe that a proper analysis of the pose

distribution would probably improves the accuracy in

terms of pose but we will leave it for future work.

5 Conclusions and Discussions

In this work, an efficient method to jointly localize and

recognize the pose of humans is proposed, using an ex-

emplar based approach and fast search technique: the

randomized hierarchical cascades classifier. Unlike most

previous works, this pose detection algorithm is appli-

cable to more challenging scenarios involving extensive

viewpoint changes and moving camera, without any

prior assumption on an available segmented silhouette

or normalized input bounding box.

Cascade approaches are efficient at quickly reject-

ing negative examples, and we exploit this property by

learning multi-class hierarchical cascades. By randomly

sampling the feature, each cascade uses different sets

of features to vote, it adds some robustness to noise

that helps to prevent over fitting. Moreover, each cas-

cade can vote for one or more class so the ensemble of
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Fig. 33 Cascades pose detections - True Positives: Each row corresponds to one of the testing sequences (from top to down):
Movies, INRIA, Camvid, Lab and HumanEVA. For each sequence, we show 5 examples of correct pose classification (left)
and 3 examples of wrong pose classification (right). For each presented frame, we present the normalized 96 × 160 image
corresponding to the highest values of the saliency map obtained when applying the pose detector. The pose corresponding to
the “winning class” i.e. the highest peak in the distribution is represented on top of the cropped image.

random cascade classifiers outputs a distribution over

possible poses that can be useful when combined with

tracking algorithms for resolving ambiguities in pose.

Other algorithms require that the full feature space

be available from an image during training. This can

lead to very high dimensional feature vectors being ex-

tracted from an image for large configurations of fea-

tures and potentially leads to memory problems for

training sets with a large number of examples. Our al-

gorithm selects the features it considers to be the most

informative during training, and can build a smaller

more useful feature space by sampling a small set of

features from a much larger configuration of feature de-

scriptors. This approach is computationally efficient as

cascades learning takes around 2 hours while SVM and

RF approaches took respectively 17h30 and 21h45 with

the same training set. We have validated our approach

with a numerical evaluation for 3 different levels of anal-

ysis: human detection/localization, pose classification

and pose estimation (with body joints localization).
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If the search space (locations in the image and scales)

can be reduced, e.g. using a tracking algorithm or lim-

iting the distance to the camera in a Human-Computer

Interface, then our method can reach real-time perfor-

mances. A computationally efficient implementation of

the HOG descriptor, for example, using a GPU imple-

mentation could speed up the detection even further.

Our method finds a distribution over exemplars, an

intriguing direction for future work would be to com-

bine this with a kernel regression to see if this could

produce a method that is both computationally effi-

cient and more accurate in terms of estimated pose.

Finally, this work opens several other interesting

lines for future work: for instance, we could try to effi-

ciently combine different types of features (color, depth,

etc) inside our cascade classifier and extend the algo-

rithm to wider range of motions and actions, or apply

the algorithm to general machine learning problems.
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