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Abstract We present an extensive three year study on

economically annotating video with crowdsourced mar-

ketplaces. Our public framework has annotated thou-

sands of real world videos, including massive data sets

unprecedented for their size, complexity, and cost. To

accomplish this, we designed a state-of-the-art video an-

notation user interface and demonstrate that, despite

common intuition, many contemporary interfaces are

sub-optimal. We present several user studies that eval-

uate different aspects of our system and demonstrate

that minimizing the cognitive load of the user is crucial

when designing an annotation platform. We then deploy

this interface on Amazon Mechanical Turk and discover

expert and talented workers who are capable of anno-

tating difficult videos with dense and closely cropped

labels. We argue that video annotation requires special-

ized skill; most workers are poor annotators, mandat-

ing robust quality control protocols. We show that tra-

ditional crowdsourced micro-tasks are not suitable for

video annotation and instead demonstrate that deploy-

ing time-consuming macro-tasks on MTurk is effective.

Finally, we show that by extracting pixel-based features

from manually labeled key frames, we are able to lever-

age more sophisticated interpolation strategies to maxi-

mize performance given a fixed budget. We validate the

power of our framework on difficult, real-world data sets
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and we demonstrate an inherent trade-off between the

mix of human and cloud computing used vs. the ac-

curacy and cost of the labeling. We further introduce

a novel, cost-based evaluation criteria that compares

vision algorithms by the budget required to achieve an

acceptable performance. We hope our findings will spur

innovation in the creation of massive labeled video data

sets and enable novel data-driven computer vision ap-

plications. (A preliminary version of this work appeared

in ECCV 2010 by Vondrick et al.)

Keywords Video annotation · Large scale annota-

tion · Data sets · Mechanical Turk · Crowdsource

marketplaces · Tracking

1 Introduction

Sorokin and Forsyth (2008) made the influential obser-

vation that image labeling can be crowdsourced at low

costs through platforms such as Amazon’s Mechanical

Turk (MTurk). This approach has revolutionized static

data annotation in vision, and enabled almost all large-

scale image data sets collected since then to be labeled

(Deng et al, 2009; Russell et al, 2008; Kumar et al,

2009). Contemporary computer vision research has sub-

sequently demonstrated the value of massive data sets

of labeled images such as the results from ImageNet

(Deng et al, 2009), PASCAL (Everingham et al, 2010),

LabelMe (Russell et al, 2008), SUN (Xiao et al, 2010),

and TinyImages (Torralba et al, 2008).

The same does not hold true for video despite a

corresponding abundance of data, such as that from

web-cams and public-domain archival footage (Kahle,

2010). We believe that this is due to the dynamic na-

ture of video data which makes frame by frame labeling

necessary but inefficient for manual labor. Inspired by
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popular successes such as (Yuen et al, 2009; Vijaya-

narasimhan and Grauman, 2009; Liu et al, 2008), we

focus on cost effective and high quality video annota-

tion with MTurk. We show the results of three years

of experiments and experience in annotating massive

videos unprecedented for their size and complexity, with

some data sets consisting of millions of frames, costing

tens of thousands of dollars, and requiring up to a year

of continuous work to annotate. This extensive study

has resulted in our release of VATIC (Video Annota-

tion Tool from Irvine, California), an open platform for

monetized, high quality, crowdsource video labeling.

The contributions made in this paper are motivated

by our desire to uncover best-practices for monetized

crowdsourced video labeling. In the remainder of this

paper, we describe our video annotation tool in detail:

In section 2, we briefly review related work in de-

signing image and video annotation tools.

In section 3, we present insights into the design of a

user-interface in which workers track objects through a

continuous video shot (to solve the problem in Fig.1).

To support our claims, we present user studies that

demonstrate contemporary annotation software is sub-

optimal. We have found that video annotation is consid-

erably more complex than image annotation, likely due

to the fact that temporal data is difficult to visualize

and edit.

In section 4, we describe how to best use crowd-

sourcing to annotate videos. In order to collect high-

quality annotations, we find it crucial to validate good

workers and turn away the majority of MTurk workers.

In this sense, we do not use MTurk directly as a crowd-

sourced platform, but rather as a market to identify

reliable workers.

In section 5, we analyze trade-offs particular to bal-

ancing computer and human effort in video annotation

by extending work that minimized labeling cost only

along the dimension of human effort (Vijayanarasimhan

and Grauman, 2009; Vijayanarasimhan et al, 2010). Al-

though the “Turk philosophy” is to completely replace

difficult computer tasks (such as video labeling) with

human effort, this is clearly not efficient given the re-

dundancy of video. In contrast to LabelMe video (Yuen

et al, 2009), we show that one can interpolate nonlinear

least-cost paths with efficient dynamic programming al-

gorithms based on image data and user annotated end-

points.

In section 6, we analyze the total cost of labeling

for various combinations of human workers and cloud-

computing CPU cycles. We further demonstrate that

our cost analysis can be used as a error metric for evalu-

ating vision algorithms; rather than evaluating a tracker

with disconnected measures such as time-to-failure, we

Fig. 1: An example of the difficult problem that our

interactive system addresses. The red boxed player

becomes totally occluded while many players quickly

change pose from standing to a prone position. The ref-

erees commonly enter and leave the scene. The camera

is not stationary. The ball exists in the pile of people,

but even a state-of-the-art vision algorithm is unable to

determine its position.

evaluate trackers using the dollar amount in savings

afforded when used in a monetized, interactive crowd-

sourced platform.

Our hope is that our discoveries will spur innova-

tion in the creation of affordable, massive data sets of

labeled video. To encourage this, our final contribution

is the release of a simple, reusable, and open-source

platform for research video labeling.1

2 Related Work

With the rising popularity and success of massive data

sets in vision, the community has put considerable effort

into designing efficient visual annotation tools. Deng

et al (2009) introduced a crowdsourced image annota-

tion pipeline through ImageNet. Torralba et al (2010)

presented LabelMe as an open platform for dense poly-

gon labeling on static images. Everingham et al (2010)

describe a high quality image collection strategy for the

PASCAL VOC challenge. Von Ahn and Dabbish (2004)

and Von Ahn et al (2006) discovered that games with a

purpose could be used to label images. Ramanan et al

(2007) show that exploiting temporal dependence in

video can automatically build a data set of static faces.

Welinder et al (2010) propose a quality control mech-

anism for annotation on crowdsourced marketplaces.

1 The software and data sets can be downloaded from our
website at http://mit.edu/vondrick/vatic

http://mit.edu/vondrick/vatic
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Vittayakorn and Hays (2011) describe quality control

measures without collecting more data. Endres et al

(2010) study some of the challenges and benefits of

building image datasets with humans in the loop. Yet,

the same principles that assist and motivate users to

annotate static images do not apply to dynamic videos.

Consequently, significant work has been completed

in order to build specialized interfaces tailored for video

annotation. Yuen et al (2009) introduced LabelMe video,

an online, web-based platform that is able to obtain

high-quality video labels with arbitrary polygonal paths

using homography preserving linear interpolation, and

can generate complex event annotations between inter-

acting objects. Mihalcik and Doermann (2003) describe

ViPER, a flexible and extensible video annotation sys-

tem optimized for spatial labeling. Huber (2011) de-

signed a simplified interface for video annotation. Ali

et al (2011) present FlowBoost, a tool that can anno-

tate videos from sparse set of key frame annotations.

Agarwala et al (2004) propose using a tracker as a more

reliable, automatic labeling scheme compared to linear

interpolation. Buchanan and Fitzgibbon (2006) discuss

efficient data structures that enable interactive tracking

for video annotation. Fisher (2004) discuss the labeling

of human activities in videos. Smeaton et al (2006) de-

scribe TRECVID, a large benchmark video database

of annotated television programs. Laptev et al (2008)

further show that using Hollywood movie scripts can

automatically annotate video data sets.

While these tools are effective at building large data

sets, they are not necessarily economical. The state-of-

the-art is optimized to obtain high quality labels, but

as a practical matter, we must also be concerned with

cost. In order to scale up to the next generation of data

sets, we must build a system that can annotate high

quality, massive videos without exhausting our commu-

nity’s funding and tiring our workers. In this paper, we

propose such a system for large scale, high quality and

economical video annotation platform.

3 User Interface

We wish to design an interface that allows workers to

annotate every object of interest in a video. Our users

should be able to both track objects, represented as

spacetime trajectories of bounding boxes, as well as

mark attributes, represented as discrete flags associated

with a trajectory for a time interval. However, since hu-

mans have troubling visualizing space simultaneously

with time, designing this graphical interface presents

subtle, challenging problems that, if not properly ad-

dressed, make video annotation unnecessarily labor in-

tensive. Despite this additional complexity, most con-

(a) Scripted

(b) Basketball

(c) VIRAT

Fig. 2: The three segments from our study that dedi-

cated annotators labeled in order to compare fixed rate

vs. user defined key frames. (a) is a group of people

quickly walking around in a complex manner. (b) con-

sists of a very difficult clip from the basketball game

with ambiguous motion and nonlinear paths. (c) is a

parking lot with a couple of cars driving in the street

and following linear paths.

temporary video annotation interfaces are sub-optimal

because they assume that the same principles that help

users annotate space can be applied to time. In this

section, we present a more efficient interface for video

annotation, shown in Fig.3. We demonstrate, through

extensive user studies, that popular design choices are

sub-optimal and we show that, despite intuition, more

constrained and simpler interfaces provide a superior

annotation experience.

3.1 User Studies

Throughout this section, we evaluate different modes

of annotation by conducting user studies. Since we re-

ject the status quo in video annotation interface de-

sign, we completed the study to support our claims. In

each study, we asked annotators to label videos shown

in Fig.2. We picked these videos because they each

represent common problems in video annotation: the

scripted video has large objects quickly moving with

linear yet dynamic motion; the basketball video is ex-

tremely difficult due to small, similar looking objects

with frequent occlusions and nonlinear motion; and the

VIRAT video (Oh et al, 2011) has slow moving and

stationary cars that follow linear paths.
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Fig. 3: Our online, interactive video annotation user interface. Users can play the video, draw bounding boxes

around objects of interest, and track each object throughout its lifetime. Each object can have multiple attributes

that further describe its actions. Workers can adjust the play back speed, seek throughout the timeline, and mark

objects as occluded or off the screen. Since scenes quickly become cluttered, users can lock objects to prevent

accidental modifications to their paths. Keyboard shortcuts are available.

Scripted Basketball VIRAT
Subject User Fixed Ratio Saved User Fixed Ratio Saved User Fixed Ratio Saved

A 599 463 0.77 136 1,457 1,323 0.91 134 220 244 1.11 -24
B 653 247 0.38 406 4,555 2,275 0.50 2,280 176 178 1.03 -2
C 476 275 0.58 201 1,216 830 0.68 386 338 215 0.64 123
D 772 432 0.56 340 1,505 1,497 0.99 8 489 302 0.62 187

*E 605 371 0.61 234 935 1501 1.61 -566 269 231 0.85 38
*F 654 472 0.72 182 1,672 1,858 1.11 -186 372 326 0.87 46
*G 235 193 0.82 42 591 696 1.18 -105 165 120 0.73 45
*H 312 331 1.06 -19 656 748 1.14 -92 172 164 0.95 8

Mean 538 348 0.66 190 1,573 1,341 0.96 232 275 223 0.83 53

Table 1: A comparison of annotation time on fixed rate vs. user defined key frames. Though almost all existing

annotation systems employ user defined key-frames, our results demonstrate that fixed rate key frames are superior.

We asked dedicated workers to label the three segments shown in Fig.2. Times are in seconds. Ratio is fixed over

user. Averages are arithmetic mean for time, and geometric mean for ratios. Subjects with asterisks did the user

defined keyframes second, so they may have memorized the video when doing user defined key frames. Notice

that basketball speed is strongly correlated with the order of experiments. Our results on the scripted data are

statistically significant (at a p-value of .04).
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We located research subjects both by hiring dedi-

cated users and discovering capable workers on MTurk.

We found subjects on MTurk by contacting our high-

est earning workers and offering them the opportunity

to participate in our user study. Upon accepting our

offer, they were redirected to a private website and re-

quired to read instructions before completing the study.

We compensated MTurk workers at about $7.00 per

hour. Our dedicated workers are experts in computer

vision and were compensated fairly in accordance with

standard university pay scales. In both cases, we asked

annotators to label every video under varying condi-

tions. We randomized the order that annotators labeled

videos, a necessary step to reduce a learning and mem-

orization bias; once an annotator has wrestled with a

video sequence, labeling it again becomes significantly

easier. We then timed how long a user took to anno-

tate each video to evaluate which modes are more ef-

ficient, and we also solicited qualitative feedback, such

as “which interface felt faster?” or “which interface did

you prefer?” Our results are surprising and demonstrate

that contemporary video annotation platforms are sub-

optimal.

3.2 Key Frame Schedules

Since manually labeling every frame in a video is clearly

inefficient, our system requires users to annotate only a

sparse set of key frames. We then use a variety of inter-

polation methods (discussed in section 5) to predict the

annotations on the remaining frames. In the following

experiments, we use simple linear interpolation to vali-

date aspects of our interface. Users are allowed to play-

back the video where they see the linearly-interpolated

paths in real-time. As one might expect, the choice of

key frames can have a significant impact on the user

experience. The more key frames the user must label,

the longer it takes for the user to annotate a video.

Therefore, an optimal key frame strategy will minimize

the number of key frames that a user must annotate.

There are two primary types of key frames: fixed rate

and user defined.

Fixed key-frames: A simple key frame schedule is

to annotate each object on a fixed rate interval where

the user labels every T frames. For difficult videos like

a basketball game with dynamic motion, we require a

high frequency of key frames, so we must set T to be

low, while for easier videos like VIRAT, we can set T

to be much higher. Indeed, fixed rate key frames allow

the user to annotate video mechanically: once the video

pauses, simply update the annotations. However, in or-

der to capture high quality labels, the annotation fre-

quency must be high enough to handle every situation.

If an object has chaotic motion for only a few seconds

but linear motion otherwise, T must be low enough to

handle to the chaotic motion, resulting in wasted clicks

during the linear motion.

User-defined keyframes: To overcome these issues,

we could instead adopt a user defined key frame sched-

ule. This approach would allow the user to pause the

video on any frame and update annotations. When an

object moves in a straight line (such as a car driv-

ing down the street), users can label the end points

of the path and rely on linear interpolation to recover

the remaining annotations. This allows the user to dy-

namically adjust the key frame frequency: for mostly

stationary frames, perhaps only a few annotations are

necessary, but for chaotic frames, the user can label fre-

quently. Assuming the user can quickly pick intelligent

key frames, this approach can lead to an optimal key

frame schedule. Most contemporary video annotation

systems such as LabelMe video or ViPER deploy user-

defined key frames.

User-study results: Although most existing annota-

tion systems employ user defined key-frames, our re-

sults demonstrate that fixed rate key frames are signif-

icantly faster than user defined key frames. Essentially,

users are not accurate at estimating the optimal loca-

tions for user-defined key frames because the in-between

interpolation strategy can be non-intuitive (even for

simple linear interpolation). As a result, users spend

considerable mental effort in deciding when to pause

the video, as well as effort in correcting errors. These

results are summarized in Tab.1. In the user-defined key

frame experiment for the scripted video, users watched

the video multiple times to correct the interpolation

between the key frames. Under a fixed rate approach,

users only had to watch the video once, increasing ef-

ficiency by 33%. We found similar results for VIRAT:

users had difficulty estimating optimal keyframes for

cars which can move nonlinearly due to subtle accel-

erations. On average, users were 17% faster when la-

beling with fixed-rate key frames. The basketball clip

displayed the least improvement (with fixed rate saving

4%). Since the motion was fast, confusing, and nonlin-

ear, annotators would annotate frequently, essentially

resorting to a fixed-rate keyframe schedule even in the

user-defined experiment. For example, Subject B anno-

tated every frame (taking 75 minutes) despite demon-

strating an understanding of interpolation on the other

videos. He was among the fastest workers on every video

except basketball. We still found that workers preferred

the fixed rate key frames since the pausing was auto-

matic. Our study demonstrates that despite the flexi-

bility of user defined key frames, a fixed rate schedule is

more efficient. The overhead of excess annotations with
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Fig. 4: Our user study demonstrates that our interface

can efficiently label the skeleton of a person even in

complex videos by labeling one joint at a time.

fixed rate is offset by the cost of repeatedly watching

the video with a user defined schedule.

3.3 Multiple Object Annotation

A significant annotation burden is labeling a video with

possibly hundreds of objects maneuvering chaotically

throughout a scene. Some objects may be moving inde-

pendently (such as cars and people), while other objects

may be strongly dependent on each other (such as the

joints of a person). Since we want a dense labeling, we

must determine the most efficient method to label every

object under both conditions.

All-objects: A common approach is to annotate ev-

ery object at once. In this method, the user annotates

all of the objects in the first frame, advances to the

next key frame, updates all of the annotations, and re-

peats this process for the entire video. This approach

allows the user to watch the video only once since when

a frame is labeled, the user never needs to return to it.

If the user is able to able to observe the motion of every

object in a video as it plays, then labeling every object

simultaneously may save time. Indeed, annotators al-

ways initially prefer this dense labeling strategy since

it seems to save effort.

Single-objects: An alternative method is to require

workers to only annotate one object at a time. The user

would label a single object for its lifetime, then return to

the beginning of the video to annotate the next object.

This approach would require the user to watch the video

once for each object. Many researchers dismiss single

object labeling because it seems wasteful. However, we

hypothesize that, for videos with many objects, it may

be more efficient since it avoids confounding the user

with the simultaneous tracking of multiple objects.

Groups of objects: As a compromise, a hybrid ap-

proach is to label objects by groups. Instead of anno-

tating all objects or just one object, users can label

all objects in a semantic group. For example, friends

walking down the street often are in close proximity

and maintain similar velocities. In this method, the user

would annotate each person in one group first, rewind

the video, and annotate people in the next group. An-

other example of this scenario is the labeling of human

body parts. Each body part is treated as an object,

and parts belonging to the same person form natural

groups.

User-study results: Our user study reveals that an-

notating one object at a time is not only superior, but

also strongly preferred by MTurk workers. Our results

are summarized in Tab.2. We asked workers to anno-

tate both the players in the basketball game in Fig.2b,

as well as the joints (e.g., hands, feet, elbows, etc) of

the people in the scripted video clip from Fig.2a. Al-

though person joints may appear to be a prime candi-

date for grouping since they are physically dependent

on each other (when the hand moves, so must the el-

bow), our results strongly suggest the opposite: anno-

tating one object/body-part at a time is not only more

efficient, but it also preferred by the users. Some users

even refused to complete the study if they were required

to annotate in groups.

Impact of results: When conducting our user stud-

ies in a controlled environment, we discovered new users

always initially incorrectly annotated in a sub-optimal

grouping strategy by attempting to label every object

at once. Some users would eventually realize that this

strategy was poor, but the thought of making multi-

ple passes through the video did not occur to most.

For those that did learn, they resorted to annotating

in groups. Only rarely and after frequent use of our

system did users eventually converge to labeling one

object at a time. This reveals that users would bene-

fit from explicit instructions guiding them to a single-

object strategy immediately, or moreover, a restricted

interface that forces them to label single objects at a

time.

3.4 Maintaining Track Identity Across Frames

A common mistake among annotators is to confuse the

identity of an object between frames. This failure re-

sults in large errors because two tracks will swap. For

example, the basketball players all look similar; they

are only distinguished by the number on their uniform,

but the low resolution nature of the video makes the

number unreadable. Consequently, users often switch
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Human Joints Basketball
Subject One Group All One Group All Preferred Order

A 1639 1.00 1763 1.07 - - 476 1.00 358 0.75 253 0.53 One OGA
B 2071 1.00 2100 1.01 2440 1.17 1382 1.00 1618 1.17 2403 1.73 One AOG
C 1867 1.00 2106 1.12 - - 681 1.00 813 1.19 599 0.87 One GAO
D 2399 1.00 - - - - 494 1.00 448 0.91 960 1.94 One AOG

Mean 1994 1.00 1989 1.07 2440 1.17 759 1.00 809 0.99 1085 1.12

Table 2: A comparison of annotation time on labeling one object at a time, objects in logical groups, or all objects at

once. Though almost all existing annotation systems are designed for labeling all object of interest simultaneously,

we find that it is much more efficient to label objects one at a time. We asked a small group of our best MTurk

workers to label the joints of people in Fig.2a and the players in Fig.2b under all annotation modes. The second

number in each column is the ratio compared to annotating one object at a time. All times are in seconds. Averages

are arithmetic mean for times and geometric mean for ratios. A dash means the user declared it to be impossible

or gave up; hence many users even refused to label all objects at once.

(a) Which person is the red box tracking? (b) A tooltip reminds the worker. (c) The worker can update the box.

Fig. 5: Maintaining track identity between frames can be difficult. By providing a drop down tooltip for each

object that summarizes its identity, workers can reliably keep the box on the same object. The tooltip plays a

slideshow of the key frames already annotated for that object, allowing the user to “see into time” while keeping

the playhead on the frame of interest.

the identity of a basketball player when the motion be-

comes confusing. We wish to design our interface to

minimize this risk.

Video Playback: We found human annotators heav-

ily rely on the motion of objects in order to correctly

decode the scene. In early versions of our tool, work-

ers were only shown key frames and could not play

the video. While this approach would be fast since the

worker only needs to annotate static images, maintain-

ing track identity was impossible for the basketball game

and barely feasible for simpler videos. The local appear-

ance of an object is necessary but not sufficient to main-

tain object identity across frames. The user must watch

the video play in order to correctly track. We believe

this is the case because a large portion of the human

ability to track objects is by following the changes be-

tween frames. Upon this discovery, we made the ability

to play the video an integral component of our user

interface.

Spacetime Tooltip: Despite the playback ability, users

would still frequently become confused about the iden-

tity of an object from the previous key frame. In our

user studies, we observed that users often forget which

object they were originally tracking when the motion

is complex or unpredictable. Users would then have to

watch the video multiple times as they attempted to de-

code the motion. To prevent this frequent and unneces-

sary overhead, we now display a small tooltip, shown in

Fig.5, next to each object that reminds the user of the

tracked object’s appearance and motion. Upon clicking

on a bounding box, a movie summarizing the object

and its previous annotations will play. This tooltip al-

lows the user to quickly play through the video with-

out moving the playhead. Since the tooltip movie skips

most frames and plays at an accelerated frame rate, the

user is able to effortlessly visualize the trajectory and

appearance of the object, thereby giving the user access

to history of the object without modifying the state of

the current interface. We found users were enthusiastic

with the addition of this feature and adopted its use

upon discovery.
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3.5 Attributes and Visibility

In addition to labeling the trajectory of objects, we also

wish to annotate binary temporal attributes about the

object. For example, at any given frame, we may wish

to know whether a person is walking or running, their

activity, whether they are occluded, or if they are vis-

ible in the frame. In order to obtain these labels, we

display check boxes next to the object that the user

can mark at key frames. Similar to spatial annotation,

frame-by-frame labeling is inefficient, so we must de-

velop an appropriate interpolation scheme for binary

attributes.

For both spatial and attribute annotations, we must

distinguish between three types of frames: positive an-

notations (the user explicitly indicates that this object

is in state X), negative annotations (the user indicates

that it is not in state X), and lack of annotations (the

state is interpolated/extrapolated). If the user does not

explicitly label a frame, he may agree with the inter-

polation or he may be waiting for a more opportune

moment to change its label. Our user interface must be

able to distinguish between these inherently ambiguous

cases.

Timeline Independence: Attribute key frames must

be independent of spatial annotations. If the user ad-

justs the bounding box, the user does not necessarily

agree with the attribute labeling. From the feedback

during our user studies, we found that users preferred

to annotate objects first spatially and attributes sec-

ond. The cognitive effort required to simultaneously

annotate both a bounding box and its attributes was

too taxing. Consequently, each attribute should have

its own timeline, allowing the worker to make one pass

for each attribute and one pass for bounding boxes.

Interpolation: When the user seeks to a frame, we

predict a binary label for each attribute. We found a

simple yet effective approach is to assume the attribute

label has the same label as the immediate keyframe

previous in time. This strategy works well for attributes

that describe the objects appearance as well as whether

the object is inside the view frame.

3.6 Constrained Interface

We believe our interface is successful because we limit

the number of available choices and constrain the worker

to a closed world. Work in psychology and human-

computer interaction reveals that minimizing interup-

tions and choices can significantly reduce user anxi-

ety and increase efficiency (Schwartz, 2005; Bailey and

Konstan, 2006; Mark et al, 2005). In our interface, we
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Fig. 6: Where are the workers? Most jobs for VIRAT

were completed from workers in India, Macedonia and

the United States.

follow similar principles. For example, users must anno-

tate on fixed key frames, the types of objects are prede-

fined, and we only support rectangular bounding boxes.

We have observed that that annotators are tempted

to try to do too much at once. Users instinctively feel

that annotation is more efficient if they do everything

simultaneously, yet our user studies demonstrate that

this cognitively overloads the user and, contrary to our

instinct, slows us down. Instead, a restricted interface

allows users to efficiently annotate: by only making one

decision at a time, we are able to more efficiently anno-

tate video.

Precision-Cost Trade-off: A more flexible interface,

such as LabelMe video (Yuen et al, 2009), might al-

low more powerful annotations, but at the expense of

increased annotation effort. In contrast to our frame-

work, LabelMe video supports user defined key frames,

free text entry for the type of objects, arbitrary poly-

gons, and the ability to link objects together by seman-

tic events. These features all allow more rich annota-

tions. If we desire a rich and detailed annotation corpus,

then the flexibility is necessary. But, if we can accept

lower precision annotations, then restricting the inter-

face will result in a significant savings of time and effort,

as our user studies have demonstrated. As we wish to

deploy our system on Amazon’s Mechanical Turk with

massive data sets, saving the annotators time is highly

desirable since it reduces our costs.

4 Mechanical Turk

We ran our annotation system within Amazon Mechan-

ical Turk (MTurk), an online labor marketplace that al-
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lows employers to easily hire workers to complete tasks.

MTurk is ideal for jobs that are difficult for computers

but trivial for humans. As employers, we create Human

Intelligence Tasks (HITs) and set prices for each task

before posting to the MTurk servers. Workers around

the world, as in Fig.6, then browse offered jobs and ac-

cept those that interest them. Task completion is not

guaranteed and is the result of typical market dynamics

(Ross et al, 2010). Upon validation of completed work,

Amazon releases escrowed payments to the workers.

In the remaining sections, we describe aspects of our

system that relate to crowdsourcing on MTurk. There

are two main challenges: a) How do we split up a video

annotation job into small, distributed tasks for indi-

vidual workers? and b) How do we ensure high-quality

results? We begin with the former, but spend most of

our efforts addressing the crucial latter question.

4.1 Shot-Based Annotation

We first break every video up into many small, overlap-

ping segments, typically of about ten seconds each. If

the video consists of multiple shots, we use a standard

scene recognition algorithm (Oliva and Torralba, 2001)

to create segments along scene boundaries. We then

publish each segment onto MTurk and pay a worker to

annotate every object in a segment using our interface

previously described.

After all segments have been labeled, we must stitch

the annotations between segments to create continuous

paths that span the original video. Since each segment

overlaps another (typically by a second), we can use

these redundant annotations to correspond tracks with

each other. We establish correspondence between the

set of tracks from segment S and the adjacent segment

T . We map every path i ∈ S to another path j ∈ T us-

ing the mapping function f . By searching for the f that

minimizes the assignment costs C(i, j), we can compute

an optimal assignment between segments:

min
f

∑
i∈S

C(i, f(i)) where f : S → T (1)

Eqn.1 is equivalent to a minimum-weight bipartite

matching problem, which we solve using the Hungarian

algorithm (Munkres, 1957). Without loss of generality,

let the overlap region between paths to be on the in-

terval 0 ≤ t ≤ T . Let it and jt be the bounding box at

time t for each path respectively. We define the cost of

assigning path i to j to be low when they sufficiently
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Fig. 7: How long did each worker spend annotating?

Both plots are for the VIRAT video data set. The left

shows labeling times for an actual annotation session

after workers had passed our quality control measure.

The right shows worker times when they were learn-

ing how to annotate video and attempting to pass our

quality control measures. For a ten second clip, most

workers took up to an hour to annotate every object in

VIRAT. The total annotation time for VIRAT was 8

man months for 27 hours of video.

overlap for a majority of frames:

C(i, j) =

T∑
t=0


0 if both are visible and overlap

0 if both are not visible

1 otherwise

(2)

Leftover tracks are matched to dummy nodes with a

fixed cost. We then use the pointers f to link tracks be-

tween shots. This approach works well, although it may

require some manual cleanup when objects are small or

there are mistakes in the annotations.

4.2 Macro vs Micro Tasks

A common principle in crowdsourcing is to design tasks

that are micro, i.e. the worker can solve them quickly,

easily, and effortlessly. This conventional wisdom stems

from observations that workers often solve HITs when

they are bored, do not want to exert significant cog-

nitive effort, and lack time for involved tasks. In early

versions of our tool, we followed this principle and di-

vided work in order to minimize the effort required by

each individual worker. In these experiments, we in-

structed a worker to annotate only one object for an

entire segment. After completing the annotation, a dif-

ferent worker would annotate another object. To pre-
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vent duplicate annotations on the same object, work-

ers saw previous annotations from other users. While

this protocol encourages rapid participation from many

workers, we discovered that micro-tasks are not suitable

for high quality video annotation.

The problem with micro tasks: The crucial flaw with

the given approach is that workers need to rely on ac-

curate and unambiguous annotations by previous work-

ers. We found that small errors propagated and com-

pounded themselves. For example, it may be unclear

when a particular track begins or ends due to partial oc-

clusion. A new worker may begin annotating an unan-

notated object, only to discover in a few frames that

a previous worker annotated the same object with a

slightly late starting frame. At this point, they should

restart according to our directions, but most workers

feel compelled to continue the annotation to minimize

wasted effort. Because workers often look to previous

annotations as a guide, such mistakes are mimicked and

compounded across subsequent work.

Macro tasks: Rather, video annotation requires macro

tasks in order to obtain high quality labels. Instead of

annotating one object per task, the worker should take

“ownership” of a video segment and annotate every ob-

ject. The cognitive effort expended into visually decod-

ing a scene is wasted if each object is annotated by

a different worker. Although our user studies demon-

strate that workers should annotate one object a time,

we found that the same worker must annotate every

object in the video. By granting ownership of an entire

segment to only one worker, we are able to distribute

small errors independently across multiple segments in

a video, rather than compound small errors within a

segment, resulting in higher quality annotations. Fig.7

demonstrates that there are workers who are willing to

work on tasks that require hours of attention.

4.3 Discovering Good Workers

Video annotation is hard: In this section, we outline

our protocol for generating high-quality video annota-

tions. Compared to image annotation, video annotation

is a surprisingly difficult task for a variety of reasons.

Firstly, object tracks can be ambiguous in both the spa-

tial and temporal domains. For example, it is hard to re-

solve starting and ending frames for objects undergoing

partial occlusions. Secondly, annotation can be tedious.

When annotating a crowd of people walking in low res-

olution, it can be difficult to avoid swapping track iden-

tities. And finally, some workers have difficulty under-

standing the concept of object continuity with respect

to an annotation interface. Users sometimes instantiate
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Fig. 8: How many jobs did each worker complete? On

the left, we show how many jobs each worker completed

on the 200,000 frame basketball game without any qual-

ity control. On the right, we show the number of jobs

completed per worker across the 3,000,000 frame VI-

RAT data set with after a quality control evaluation

test. Notice that the basketball video is an order of

magnitude shorter in length, yet its protocol required

an order of magnitude more workers. Our quality assur-

ance protocol eliminates the long tail of workers only

attempting a few jobs. By identifying the workers that

are “good” at video annotation, we are able to obtain

very high quality labels.

a new track when an object reappears from an occlu-

sion, or in the extreme case, some users marked a new

track for every single frame. Because video annotation

is hard, we found that most workers, despite accepting

the task, do not have the necessary patience or skill to

be accurate annotators.

The good, the bad, and the ugly: The typical ap-

proach for quality control in crowdsourced scenarios is

to self-validate by asking for multiple annotations for

the same data point. The underlying assumption is that

most workers are honest, and that a small number of

dishonest workers that can be identified out through

validation. As we argued above, many if not most hon-

est workers will also be poor annotators, mandating

the need for a refined strategy for quality control. To

that end, we classify workers into three types, and de-

scribe methods for identifying each: good workers who

are honest and skilled; bad workers who are honest

but unskilled; and ugly workers who are dishonest and

cheaters. We find that it is crucial to eliminate both bad

and ugly workers for high-quality crowdsourced video

annotation.

Eliminating the bad: When a new worker visits our

task, we silently redirect them to a “gold standard”

annotation challenge shown in Fig.9. Since we secretly
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Fig. 9: The gold standard video a worker must label

to demonstrate their annotation ability before they are

allowed to submit work for VIRAT. The video is slightly

more challenging than the majority of VIRAT in order

to select the best MTurk workers.

know the ground truth annotation, we can automat-

ically evaluate their performance to check if they are

skilled annotators. We select a different gold standard

video for each data set that is representative of the

type of problems the human annotator must overcome

(e.g., frequent occlusions, camera motion, or fast mo-

tion). Given a set of ground truth tracks G and can-

didate paths S, we establish correspondence using the

assignment problem in Eqn.1. If G and S do not suffi-

ciently agree under the best matching, then the worker

fails the challenge, but is allowed to try again an unlim-

ited number of times. Because interested but misguided

“bad” workers may put forth considerable effort and

still fail, we prevent them from submitting work, which

never sets them up for a rejection. Once the worker

passes the gold standard challenge, they are given ac-

cess to the true, unlabeled data set. Crucially, workers

are never informed that they have been evaluated by a

gold standard. Fig.8 shows that most of the long-tailed

distribution of workers falls under the “bad” category,

and are eliminated.

Eliminating the ugly: The above quality control pro-

tocol will successfully separate the good from the bad,

but it does not ward off the “ugly” worker. An adver-

sarial worker might provide a perfect gold standard an-

notation then revert to low quality, automated submis-

sions completed by a robot. While contemporary crowd-

sourcing employs thousands of workers, our gold stan-

dard challenge only accepts hundreds of workers. This

means that rather than verifying work, we can verify

the worker. We manually verify each worker by ran-

domly sampling and viewing a couple of jobs, a process

that took less than half an hour in total. In practice, we

discovered one “ugly” worker who consistently submit-

ted gamed annotations. We blocked him from working
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Fig. 10: How much do we spend on each clip? At $0.05

per object, most VIRAT video clips cost between $1 and

$2, resulting in a cumulative cost of tens of thousands

of dollars. Since video annotation is a skilled task, we

must hire expert workers.

on our task and recreated his jobs. In essence, our vali-

dation protocol allows us to use Turk not directly as a

crowdsourced platform, but as a marketplace to identify

reliable and skilled annotators, which we found crucial

to providing high-quality annotations.

Possible limitations: One limitation of eliminating

workers is that throughput may decrease. Most of the

time, a few workers perform a majority of the tasks, and

many workers perform a few or a single task. Because

“bad” workers tend to lie on the tail of the distribution

in Fig.8, we are still able to take advantage of a core

group of validated workers who performed hundreds or

thousands of jobs. We experimentally have noticed that

our jobs have a long warm up time as our system identi-

fies good workers, but once workers have been matched

to our jobs, completion is rapid. An unexpected benefit

was consumer loyalty; validated workers were eager for

any additional work, and also strongly supported us on

bulletin boards.

4.4 Worker Compensation

Payout: In a macro-task protocol, videos containing

more objects are more difficult to label. To compensate

workers proportionally with video difficulty, we paid

workers a fixed rate per object. For example, on videos

of intermediate difficulty (such as VIRAT), we paid 5

cents per object in a 10 second shot, shown in Fig.10.

For more difficult videos like the basketball game, we

paid 15 cents per object, while for extremely difficult

videos such as the basketball, we paid 50 cents. We also
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Fig. 11: For a subset of jobs, we allowed workers to

donate their pay to the Untied Nation’s World Food

Programme. Workers could choose to donate none, half,

or all of their pay. A total of 65 workers donated 2,000

cups of food (worth $500), demonstrating its viability.

paid the worker a small completion bonus, typically a

few cents, if they successfully annotated every object.

Since we do not know the true number of objects in each

video, we always paid the completion bonus regard-

less of the number of objects annotated. This payout

scheme assumes that we trust the worker to not over-

label hallucinated objects; we found that was reason-

able for “good” workers that passed our gold-standard

validation. In general, we found this payment schedule

to produce high quality, dense annotations. If we paid

independently of the number of objects, workers will

only annotate a few objects since there is no incentive to

provide a dense labeling. Similarly, if we do not include

the completion bonus, workers will only annotate the

easy objects. By including both the completion bonus

and the per object pay, workers will maximize their pay

and provide dense annotations.

Rejection: As video annotation requires specialized

skill, we must attract the best workers. With the rise of

online communities that advocate for the workers such

as TurkOpticon.org and TurkerNation.com, maintain-

ing a strong reputation amongst the workers is crucial.

When a worker completes a task for a requester, they

can report their experiences to these communities in an

effort to warn others against unfair practices. In early

versions of our tool, we automatically rejected unsatis-

factory work. Since most workers cannot annotate video

sufficiently, most work was rejected, ultimately result-

ing in negative ratings that tarnished our reputation.

Once we received enough negative press, workers were

so scared of a rejection that we inadvertently turned

away the best workers. Indeed, MTurk workers take a

single rejection harshly. One worker even threatened to

involve the IRB over his rejection:

“I feel strongly about my 20 cents...I expect to

[sic] paid in the next 24 hours or I WILL let the

IRB know ASAP.”— an Ivy league student

While this worker was very upset about twenty cents,

some workers reported that they care more about their

personal statistics rather than the pay. MTurk records

how many jobs each worker has completed and their

acceptance ratio. These statistics are paramount:

“I am fine if you do not want to pay me for these,

but rejecting spoils my qualifications.”

— MTurk worker

We now accept every task regardless of its quality. A

strong reputation among workers is worth the overhead

cost. Notice that our gold standard challenge prevents

bad workers from entering our system and setting them-

selves up for rejection; since we do not allow poor qual-

ity workers to even enter our system, we cannot hurt

their statistics. Moreover, we use this paranoia to our

advantage by threatening to reject assignments. We in-

form workers that we reserve the right to reject poor

work and this is effective at motivating workers to pro-

duce high quality labels.

Motivational Feedback: We found giving our workers

automatically generated motivational feedback was ef-

fective at encouraging workers to continue annotating.

As we argued above, workers are cautious to work on

new jobs due to fear of rejection. When we accept an

assignment, we also generate a small string (e.g., “Keep

up the fantastic work!”) to provide feedback. Workers
reported that they were thankful for this positive con-

firmation:

“I really appreciate the positive Feedback... its

nice to know I’m doing what you need.”

— MTurk worker

This feedback encouraged workers to continue annotat-

ing for us because they felt confident that their future

work would be accepted.

Charity Incentive: As a further experiment analyz-

ing the motivation of a worker, we allowed workers to

forgo compensation and instead donate their pay to-

wards charity. Upon completing a task, workers were

given an option to either donate none, half, or all of

their pay to the United Nation’s World Food Programme.

These results are summarized in Fig.11. Intriguingly,

our results suggest that workers are willing to not re-

ceive a direct payment for their services, so long as they

see their time is valued as evidenced by the donation

amount. We hypothesized that we may also observe a
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(a) Basketball (b) VIRAT

Fig. 12: Nonlinear motion requires more sophisticated

interpolation strategies for estimating entity position

given the end locations. We employ a tracker in order

to find the actual path through visual analysis.

higher quality output for work with donated funds, as

this seemingly would disincentivize an “ugly” worker

looking to game the system. However, we did not see

an increase in accuracy, probably due to the fact that

our aggressive validation protocol already eliminated

the “ugly” workers. We believe that further exploration

of charity or other economic incentives may produce

higher quality work.

5 Interpolation

Vital to our analysis is the ability to properly interpo-

late between a sparse set of annotations. Our labeling

tool requests that a worker labels the enclosing bound-

ing box of an entity every T frames. Offline, we inter-

polate the object path between these key frames using

a variety of algorithms. Because this is done offline, we

can afford to use computationally expensive schemes.
We define b to be the coordinates of a bounding box:

b =
[
x1 x2 y1 y2

]T
(3)

We write bt for the bounding box coordinate of an entity

at time t. Without loss of generality, let us define the

keyframe times to be time 0 and time T . We define the

interpolation problem to be: Given b0 and bT , estimate

bt for 0 < t < T .

5.1 Linear Interpolation

The simplest approach is linear interpolation:

blint =

(
t

T

)
b0 +

(
T − t
T

)
bT for 0 ≤ t ≤ T (4)

Yuen et al (2009) makes the astute point that con-

stant velocity in 3D does not project to constant ve-

locity in 2D due to perspective effects. Assuming the

tracked entity is planar, they describe a homography-

preserving shape interpolation scheme that correctly

models perspective projection. However, we found sim-

pler linear interpolation to work well for many common

scenes where there does not exhibit much depth varia-

tion.

Both of these interpolation algorithms are very ef-

ficient since they avoid the need to process any pixel

data. However, both assume constant velocity which

clearly does not hold for many entities (Fig.12). In the

remainder of this section, we describe a dynamic pro-

gramming based interpolation algorithm that attempts

to track the location of the entity given the constraints

that the track must start at b0 and end at bT .

5.2 Discriminative Object Templates

To score a putative interpolation path, we need a visual

model of the tracked object. We use all the annotated

keyframes within a single video shot to build such a

model. Assume N such keyframes exist, which in turn

yield N bounding boxes which contain the entity of in-

terest. Our first approach was to construct an average

pixel-based template, and score it with sum-of-squared

differences (SSD) or normalized correlation. We also ex-

perimented with more sophisticated templates built on

histogram of oriented (HOG) (Dalal and Triggs, 2005)

features. We found poor results with both.

We believe the suboptimal results arose from the

fact that such templates are not designed to find objects

in the cluttered backgrounds that we encountered. To

compensate for this fact, we extract an extremely large

set of “negative” bounding boxes collected from the N

keyframes, making sure that they do not overlap the

entity of interest in those frames. We then attempted

to score a putative bounding box by competing an ob-

ject template with an average background template.

We again found poor results, this time due to the fact

that our video backgrounds are complex and are poorly

modeled with an average template.

Finally, we converged on the approach of learning a

discriminative classifier trained to produce high scores

on positive bounding boxes and low scores on the neg-

atives. For each bounding box bn we compute a feature

descriptor composed of HOG and color features:

φn(bn) =

[
HOG

RGB

]
(5)

where RGB ∈ R3+6 consists of the 3 means and 6 co-

variances of the three color channels computed from all

pixels in window bn. When trained with a linear dis-

criminative classifier, these color features are able to
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learn a quadratic decision boundary in RGB-space. Be-

fore extracting features, we resize the image patch at

bn to the “canonical” object size estimated from the

average of the N labeled bounding boxes. Given a col-

lection of features along with labels yn ∈ {−1, 1} iden-

tifying them as positives or negatives, we learn a linear

SVM weight vector w that minimizes the following loss

function:

w∗ = argmin
w

1

2
||w||2 + C

N∑
n=1

max(0, 1− ynw · φn(bn))

(6)

We use liblinear (Fan et al, 2008), which appears to

be fastest linear SVM solver available. For typical size

problems, training took a few seconds.

5.3 Constrained Tracking

We write the constrained endpoints given by the key

frames as b∗0 and b∗T . We wish to use the template w to

construct a low-cost path b0:T = {b0 . . . bT } subject to

the constraints that b0 = b∗0 and bT = b∗T . We score a

path by its smoothness and the local classifier scores:

argmin
b1:T

T∑
t=1

Ut(bt) + P (bt, bt−1) (7)

s.t. b0 = b∗0 and bT = b∗T (8)

We define the unary cost Ut to the SVM score trun-

cated by α1 so as to reduce the penalty during an oc-

clusion:

Ut(bt) = min (−w · φt(bt), α1) + α2||bt − blint ||2 (9)

We introduce a prior on linear interpolation to allow

our tracker to gracefully degrade to linear interpolation

when the path becomes extremely difficult. In practice,

α2 is very small and often zero. We note that we are able

to efficiently compute the dot product w · φt(bt) using

convolution kernels capturing both the HOG template

and the weights for the color features.

We then define the pairwise cost to be proportional

to the change in position:

P (bt, bt−1) = α3||bt − bt−1||2 (10)

Note that the constraints in (8) can be removed sim-

ply re-defining the local costs to be:

U0(b0) = inf for b0 6= b∗0 (11)

UT (bT ) = inf for bT 6= b∗T (12)

5.4 Efficient Optimization

Given K candidate bounding boxes in a frame, a naive

approach for computing the minimum cost path would

take time O(KT ). It is well known that one can use

dynamic programming to solve the above problem in

O(TK2) by the following recursion (Bellman, 1954):

costt(bt) = Ut(bt) + min
bt−1

[costt−1(bt−1) + P (bt, bt−1)]

(13)

where costt(bt) represents the cost of the best path from

t = 0 to bt. We initialize cost0(b0) = U0(b0). By keeping

track of the argmin, one can reconstruct the minimum

cost path ending at any node.

Note that the above recursion can be written as a

min-convolution (Felzenszwalb and Huttenlocher, 2004),

allowing us to compute the optimum in O(TK) using

distance-transform speed-ups:

costt(bt) = U(bt) + min
bt−1

[
costt−1(bt−1) + α2||bt − bt−1||2

]
(14)

6 Results

The computer vision community has validated the power

of our public online labeling framework by collectively

placing thousands of videos on MTurk. Fig.14 shows

a small sample of the types of videos that our sys-

tem has annotated. Our system is robust to many an-

notation problems—such as frequent occlusions, mo-

tion blur, drastic camera motion, variations in pose,

and cluttered backgrounds—and can annotate videos
of any difficulty. These experiments demonstrate that

our framework will successfully scale to building mas-

sive video data sets.

In order to conduct our study on the economics of

video annotation, we selected four different data sets

of varying difficulty. First, we examine “easy” videos

of people performing athletic drills where they are eas-

ily distinguished from the background. Second, we look

at “medium” videos from the VIRAT challenge video

surveillance data set. VIRAT is unique for its enormous

size of over three million frames and up to hundreds

of annotated objects in each frame. Third, we look at

a “difficult” task of annotating basketball players who

tend to undergo a fair number of occlusions in cluttered

backgrounds (as in Fig.1 and Fig.14) throughout a two

hundred thousand frame video. Finally, we consider the

task of annotating “very difficult” entities such as a

basketball (as in Fig.12), which is hard to track due to

frequent occlusions by players and the existence of large

amounts of motion blur relative to its small image size.
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(a) Athletic Drills: Trivial due to easily distinguished foreground.

(b) VIRAT Cars: Intermediate due to stationary cameras and little motion

(c) VIRAT People: Difficult due to small size and frequent motion

(d) Basketball Players: Difficult due to frequent occlusions and similar looking objects

(e) Basketball Ball: Extremely difficult due to cluttered backgrounds

Fig. 13: Some of the data sets that we have annotated using VATIC. Despite the varying difficulty in videos,

annotation quality is very good. All annotations shown are from MTurk workers.

We use these data sets to examine cost trade-offs be-

tween automation and manual labeling as a function of

the difficulty of the data. Our labeled basketball video

data is unique for its size and complexity, and we have

made it available to the community for further research

on activity analysis.

We deploy our previously described user interface to

have workers annotate our video data sets on MTurk.

We then use these dense sets of annotations as ground

truth. We hold out different intervals of ground truth in

order to determine how well the tracking and interpola-

tion methods predict the missing annotations. We score

our predictions with the same criteria as the PASCAL

challenge: a prediction must overlap with the actual an-

notation by at least 50% to be considered a detection

(Everingham et al, 2010).

6.1 Diminishing Returns

We first confirm our hypothesis that the “Turk phi-

losophy” (human computation is cheap and subsumes

automated methods) does not hold for video because

it is wasteful for users to annotate every frame. Fig. 15

shows a diminishing returns property in which increased

human labeling (x-axis) results in smaller and smaller

reductions in error rates (y-axis). Moreover, the rate

of the diminishing is affected both by the difficulty of

the video (easy, medium and difficult) and the choice

of interpolation algorithm. For medium videos, we can

achieve 10% error with a user annotation rate of 0.001

clicks per frame or 1,000 frames between clicks. For

medium-difficultly videos, we require at least 0.05 clicks

per frame regardless of the mode of interpolation. Fi-

nally, for difficult videos, we need 0.2 clicks per frame

for the best accuracy. Our results suggest that interpo-

lation of any kind can exploit the redundancy in video
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(a) MINDS Eye: Easy due to scripted actions and deliberate motions (Anonymous, 2012)

(b) People Exercies: Intermediate due to stationary cameras and scripted actions (Demiröz et al, 2012)

(c) Animals: Intermediate due to frequent occlusions and cluttered foreground (Liu and Lazebnik, 2011)

(d) Kinect Camera: Intermediate due to camera motion (Aydemir et al, 2012)

(e) Pedestrians: Intermediate due to frequent occlusions (Chen et al, 2011)

(f) Aerial: Difficult due to extreme camera motion and video artifacts (Oh, 2011)

(g) First Person Camera: Difficult due to extreme camera motion and many small objects (Pirsiavash and Ramanan, 2012)

Fig. 14: Examples of the videos that the community has annotated using VATIC. Our system is robust to common

annotation problems and can scale to most types of video.
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(d) Ball (very difficult)

Fig. 15: Performance of dynamic programming and 2D linear interpolation on easy, medium, difficult, and very-

difficult data sets. Dynamic programming excels when features are easily extracted, such as in athletic drills

or VIRAT. But, dynamic programming performs equally well as linear interpolation when the object is highly

occluded (such as a basketball).

to reduce annotation effort by an order of magnitude

compared to a naive, “brute-force” MTurk approach.

6.2 CPU vs Human Cost

As part of our best-practice analysis, we would like

to answer the question: Given $X, how should one di-

vide/manage human effort versus CPU effort (required

to interpolate annotations) so as to maximize track ac-

curacy? To do so, we make three simplifying assump-

tions. First, we assume that linear interpolation is vir-

tually free in terms of CPU usage since it requires a

minimal amount of floating point operations compared

to our tracking-based interpolation. We next assume

that tracking-based interpolation will require a fixed

amount computation regardless of the annotation fre-

quency. This is reasonable because the length of an in-

terpolated interval and the number of intervals to in-

terpolate scale inversely with each other. This means

that for a fixed length-video, tracking-based interpola-

tion will cost some A amount of dollars regardless of

the annotation frequency. Finally, we assume that we

can generate interpolation algorithms that incur α · A
dollars for CPU usage by randomly flipping a α-biased
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(a) Athletic Drills (b) VIRAT Cars

(c) Basketball players (d) Ball

Fig. 16: Cost trade-off between human effort and CPU cycles. As the total cost increases, performance will improve.

Cost axes are in dollars. Blue and red indicate low and high error respectively.

coin to determine if a particular interval should be in-

terpolated linearly or with a tracking algorithm.

We use rates from Amazon’s Elastic Compute Cloud

(EC2) platform to compute a monetized CPU cost. On

average, our tracking algorithm takes 0.12 seconds per

frame per object on a single core Intel Xeon 2.67 GHz

processor. Amazon charges US$0.085 per hour (effec-

tive) for a comparable computer. The two hour basket-

ball game will take 40 hours to process all the players

and referees with total cost of US$3.40. We then use

our worker compensation rates from MTurk to com-

pute the cost of paying a human to label every frame.

We paid workers US$0.15 per basketball player to an-

notate 300 frames. On average, a worker annotated ev-

ery 12 frames. A frame-by-frame labeling would cost

us US$5,947. We do a similar analysis for the athletic

drills, VIRAT, and the basketball. We finally plot the

error-by-cost graphs in Fig.16.

6.3 Performance Cost Trade-off

We now consider our motivating question: how should

one divide human effort versus CPU effort so as to max-

imize track accuracy given a X$? A fixed dollar amount

can be spent only on human annotations, purely on

CPU, or some combination. We express this combina-

tion as a diagonal line in the ground plane of the 3D

plot in Fig.16. We plot the tracking accuracy as a func-

tion of this combination for different X$ amounts. We

describe the trade-off further in Fig.17.

We note that researchers often desire zero error in

their dataset: what is the cost for a perfect annotation?

Fig.17 reveals that we can obtain nearly zero error on

athletic drills for $50 and on VIRAT for $10,000 by run-

ning a tracking algorithm. However, for difficult videos,

the tracking algorithm struggles and linear interpola-

tion is sufficient for a high quality annotation allowing
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Fig. 17: We show the cost trade-off between human effort and CPU cycles for different dollar amounts on different

videos. In the “easy” field-drill video (a) and “medium” VIRAT data set (b), the optimal trade-off is to maximize

CPU usage for a fixed dollar amount. Even though VIRAT has a significant amount of linear motion and stationary

cars, our tracker is fast enough that it is still economical to execute. In the “very-difficult” ball footage (d), the

optimal trade-off is to minimize CPU usage for a fixed dollar amount, essentially reducing to linear interpolation.

Our most interesting tradeoff occurs for the “difficult” video of basketball players and referees (c). At current

market prices, if nearly zero error is required, then linear interpolation is cost effective. But, if we can accept

some error in our annotations, then running the dynamic programming based tracker is the most economical

interpolation scheme.

the basketball players to be annotated for $350 and the

basketball for $200. Clearly, as tracking algorithms im-

prove, the cost of a perfection annotation will decrease.

6.4 Interactive Evaluation Metric

Our motivation so far has been the use of crowdsource

marketplaces as a cost-effective labeling tool. We argue

that crowdsourcing also provides an interesting plat-

form research on interactive vision. It is clear that the

state-of-the-art techniques are unable to automatically

interpret complex visual phenomena (yet). We hypoth-

esize that allowing a modest amount of human inter-

vention will allow us to successfully deploy vision algo-

rithms now, allowing us to incrementally address and

quantify progress for difficult scenarios. Traditional track-

ing metrics, such as time-to-failure, do not reveal the

whole story: an approach may only need one more an-

notation in order to produce a perfect track. Indeed,

the mere complexity of the data we analyze might be

dwarfing our perception of progress in computer vision.
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Fig. 18: A comparison of different trackers on a thou-

sand frames of the basketball players video. HOG8

refers to the original HOG descriptor which computes

bins gradient orientations over 8 × 8 pixel neighbor-

hoods. HOG4 uses smaller 4 × 4 neighborhoods, and

so is less spatially-invariant. Our method introduces a

novel evaluation metric that more fairly evaluates track-

ers, as compared to traditional metrics such as time-

to-failure. Our cost-based analysis reveals that it pays

(literally!) to use smaller spatial neighborhoods, but it

does not pay to use color.

To overcome this issue, we propose to fairly evaluate

algorithms by how much they reduce annotation effort.

We can quantify the performance of an algorithm by its

economics: how much does this algorithm reduce the er-

ror for a fixed price point?

To demonstrate this, we analyze how our dynamic

programming based tracker performs against other track-

ers. While there are many trackers available (for a sur-

vey, see Yilmaz et al, 2006), we will consider variations

from our method by changing which features the visual

object model employs. Fig.18 compares various aspects

aspects of our tracker: linear interpolation versus dy-

namic programming, color versus HOG descriptors, and

the amount of spatial invariance in HOG. In all cases,

the time-to-failure is fractions of a second, but our eval-

uation metric demonstrates that trackers that process

pixel data with more robust features are, rightly so, su-

perior. Interestingly, we show that HOG, as introduced

in (Dalal and Triggs, 2005), is not optimized for track-

ing. This is because parameters are tuned for category-

level invariance, but a tracking framework requires only

instance-level invariance. Our metric reveals that the

less spatially invariant HOG is superior for tracking.

Our cost-based analysis demonstrates that it pays

to reduce the spatial invariance of HOG by computing

histograms over smaller neighborhoods of 4 × 4 pixels

rather than 8×8. To demonstrate this, we consider the

cost of annotating the basketball game with 30% error.

The cost of executing the less invariant tracker is three

times more expensive at $10.20 (due to larger convolu-

tion kernel) for the entire basketball game. Therefore,

to obtain 30% error with HOG4, we must average 0.01

clicks per frame, costing $59.47 in human labor for a

combined cost of $69.67. If instead we choose to trade

computation for humans and run the more spatially in-

variant HOG8 at the same error point, we only spend

$3.40 on computers but $83.25 on humans with a cumu-

lative cost of $86.64. In other words, HOG4 saves $17

over HOG8 on the basketball game when 30% error is

acceptable.

7 Future Work

Clients on the world wide web are distributed by na-

ture and our framework would allow us to harness the

unused processing power on the worker’s computers. In-

stead of leaving the central server to do all the tracking,

the workers’ personal computers can execute the track-

ers for us. This approach allows us to not only buy the

worker’s time, but also some of the worker’s CPU cy-

cles. At the time of publication, however, running an

intensive tracking algorithm is infeasible due to lacking

efficiency in web browsers and JavaScript. As adoption

of new web technology grows, we hope to explore this

avenue further.

Even though our user studies demonstrate that fixed

rate key frames are superior to user defined key frames,

they are still sub-optimal since the annotation frequency

is fixed per video. Instead, we should adopt an adap-

tive key frame schedule that adjusts the annotation fre-

quency depending on the complexity of the video. If the

object is stationary or easily recovered by a tracker, the

annotation frequency should automatically decrease, but

when the object undergoes unpredictable motion, the

frequency must increase. We have laid the theoretical

groundwork for active learning based video annotation

in (Vondrick and Ramanan, 2011), but we have not

addressed the user interface issues (a crucial area of vi-

sion often overlooked) surrounding active learning. As

we believe active learning can provide a significant im-

provement over the results presented in this paper, we

plan to integrate active learning into the system de-

scribed here.

Finally, we believe that more research into compen-

sation incentives can improve the quality of our video

annotation system. In this paper, we began to explore

non-standard payment schedules through our charity

incentive, per-object bonus, and completion bonuses.
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We believe there are other compensation strategies—

such as delayed payments with interest or lotteries—

that will separate the “good” workers from the “bad”

and “ugly.” We hope to investigate these alternatives

incentives in the future.

8 Conclusion

We have introduced a large scale video annotation plat-

form capable of economically obtaining high quality la-

bels for complex videos. We first built an efficient user

interface for video annotation by informing our design

choices through extensive user studies. Our experiments

demonstrate, despite intuition, that contemporary in-

terfaces are sub-optimal and that simplified, restricted

interfaces can save significant effort. We next deployed

our system on Amazon’s Mechanical Turk where, in-

stead of relying on the wisdom of the crowd, we are

able to collect high quality labels by pinpointing a small

group of expert workers who are capable of video an-

notation. By never rejecting work, we have built a rela-

tionship of trust with the workers. We then demonstrate

that tracking algorithms benefit video annotation when

under a constrained budget since they can exploit visual

analysis to recover nonlinear paths. Our results reveal

that the “Turk philosophy” does not hold for video an-

notation and computers should assist humans.

In order to reach the next generation of massive

data sets, we cannot solely rely on low-wage crowd-

sourced marketplaces. Instead, we must also design in-

telligent annotation protocols that yield high quality

and economical labels. In furthering this goal, we have

presented a set of best practices, backed by three years

of analysis, that shape our video annotation platform.

We hope these contributions will spur the continued

creation of massive video data sets and lead to inno-

vation in data driven computer vision throughout the

next decade. Indeed, data will always play a central role

in computer vision research.
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