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Abstract

We describe a model for multi-target tracking based
on associating collections of candidate detections across
frames of a video. In order to model pairwise interactions
between different tracks, such as suppression of overlapping
tracks and contextual cues about co-occurence of different
objects, we augment a standard min-cost flow objective with
quadratic terms between detection variables. We learn the
parameters of this model using structured prediction and a
loss function which approximates the multi-target tracking
accuracy. We evaluate two different approaches to finding
an optimal set of tracks under model objective based on an
LP relaxation and a novel greedy extension to dynamic pro-
gramming that handles pairwise interactions. We find the
greedy algorithm achieves equivalent performance to the
LP relaxation while being 2-7x faster than a commercial
solver. The resulting model with learned parameters out-
performs existing methods across several categories on the
KITTI tracking benchmark.

1. Introduction
Multi-target tracking is a classic topic of research in

computer vision. Thanks to advances of object detector
performance in single, still images, ”tracking-by-detection”
approaches that build tracks on top of a collection of candi-
date object detections have shown great promise. Tracking-
by-detection avoids some problems such as drift and is of-
ten able to recover from extended periods of occlusion since
it is “self-initializing”. Finding an optimal set of detections
corresponding to each track is often formulated as a discrete
optimization problem of finding low-cost paths through a
graph of candidate detections for which there are often effi-
cient combinatorial algorithms (such as min-cost matching
or min-cost network-flow) that yield globally optimal solu-
tions (e.g., [27, 20]).

Tracking by detection is somewhat different than tra-
ditional generative formulations of multi-target tracking,
which draw a distinction between the problem of estimat-

Figure 1. We describe a framework for learning parameters of a
multi-object tracking objective that includes pairwise interactions
between objects. The left column shows tracking without pair-
wise interactions. Our system learns to enforce both inter-class
and intra-class mutual exclusion as well as co-occurrence relation-
ship between trajectories. By incorporating pairwise interactions
between objects within a frame we are able to improve detection
performance.

ing a latent continuous trajectory for each object from the
discrete per-frame data-association problem of assigning
observations (e.g., detections) to underlying tracks. Such
methods (e.g., [2, 19, 24]) allow for explicitly specifying an
intuitive model of trajectory smoothness but face a difficult
joint inference problem over both continuous and discrete
variables with little guarantee of optimality.

In tracking by detection, trajectories are implicitly de-
fined by the selected group of detections. For example,
the path may skip over some frames entirely due to occlu-
sions or missing detections. The transition cost of utilizing
a given edge between detections in successive frames thus
could be interpreted as some approximation of the marginal
likelihood associated with integrating over a set of underly-
ing continuous trajectories associated with the correspond-
ing pair of detections. This immediately raises difficulties,
both in (1) encoding strong trajectory models with only
pairwise potentials and (2) identifying the parameters of
these potentials from training data.

One line of attack is to first group detections in to can-
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didate tracklets and then perform scoring and association
of these tracklets [25, 4, 23]. Tracklets allow for scor-
ing much richer trajectory and appearance models while
maintaining some benefits of purely combinatorial group-
ing. Another approach is to attempt to include higher-order
constraints directly in a combinatorial framework [5, 6]. In
either case, there are a large number of parameters associ-
ated with these richer models which necessitates application
of machine learning techniques. This is particularly true for
(undirected) combinatorial models based on, e.g. network-
flow, where parameters are often set empirically by hand.

In this work, we introduce an extension to the standard
min-cost flow tracking objective that allows us to model
pairwise interactions between tracks. This allows us to in-
corporate useful knowledge such as typical spatial relation-
ships between detections of different objects and suppres-
sion of multiple overlapping tracks of the same object. This
quadratic interaction necessitates the development of ap-
proximate inference methods which we describe in Section
3. In Section 5 we describe an approach to joint learning
of model parameters in order to maximize tracking perfor-
mance on a training data set using techniques for structured
prediction [22]. Structured prediction has been applied in
tracking to learning inter-frame affinity metrics [14] and as-
sociation [18] as well as a variety of other learning tasks
such as fitting CRF parameters for segmentation [21] and
word alignment for machine translation [15]. To our best
knowledge, the work presented here is unique in utilizing
discriminative structured prediction to jointly learn the com-
plete set of parameters of a tracking model from labeled
data, including track birth/death bias, transition affinities,
and multi-object contextual relations. We conclude with
experimental results (Section 6) which demonstrate that the
learned quadratic model and inference routines yield state
of the art performance on multi-target, multi-category ob-
ject tracking in urban scenes.

2. Model
We begin by formulating multi-target tracking and data

association as a min-cost flow network problem equivalent
to that of [27], where individual tracks are described by
a first-order Markov Model whose state space is spatial-
temporal locations in videos. This framework incorporates
a state transition likelihood that generates transition features
in successive frames, and an observation likelihood that
generates appearance features for objects and background.

2.1. Tracking by Min-cost Flow

For a given video sequence, we consider a discrete set
of candidate object detection sites V where each candidate
site x = (l, σ, t) is described by its location, scale and
frame number. We write Φ = {φa(x)|x ∈ V } for the im-
age evidence (appearance features) extracted at each corre-

sponding spatial-temporal location in a video. A single ob-
ject track consists of an ordered set of these detection sites:
T = {x1, ..., xn}, with strictly increasing frame numbers.

We model the whole video by a collection of tracks
T = {T1, ..., Tk}, each of which independently gener-
ates foreground object appearances at the corresponding
sites according to distribution pfg(φa) while the remaining
site appearances are generated by a background distribution
pbg(φa). Each site can only belong to a single track. Our
task is to infer a collection of tracks that maximize the pos-
terior probability P (T |Φ) under the model. Assuming that
tracks behave independently of each other and follow a first-
order Markov model, we can write an expression for MAP
inference:

T ∗ = argmax
T

∏
T∈T

P (Φ|T )P (T )

= argmax
T

( ∏
T∈T

∏
x∈T

l(φa(x))
)
×

∏
T∈T

(
ps(x1)pe(xN )

N−1∏
i=1

pt(xi+1|xi)
) (1)

where

l(φa(x)) =
pfg(φa(x))

pbg(φa(x))

is the appearance likelihood ratio that a specific location x
corresponds to the object tracked and ps, pe and pt represent
the likelihoods for tracks starting, ending and transitioning
between given sites.

The set of optimal tracks can be found by taking the log
of 1 to yield an integer linear program (ILP) over flow vari-
ables f .

min
f

∑
i

csif
s
i +

∑
ij∈E

cijfij +
∑
i

cifi +
∑
i

ctif
t
i (2)

s.t. fsi +
∑
j

fji = fi = f ti +
∑
j

fij

fsi , f
t
i , fi, fij ∈ {0, 1}

where E is the set of valid transitions between sites in suc-
cessive frames and the costs are given by

ci = − log l(φa(x)), cij = − log p(xj |xi)
csi = − log ps(xi), c

t
i = − log pt(xi)

(3)

This ILP is a well studied problem known as minimum-cost
network flow [1]. The constraints satisfy the total unimodu-
larity property and thus can be solved exactly using any LP
solver or via various efficient specialized solvers, including
network simplex, successive shortest path and push-relabel
with bisectional search [27].
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While these approaches yield globally optimal solutions,
the authors of [20] consider even faster approximations
based on multiple rounds of dynamic programming (DP).
In particular, the successive shortest paths algorithm (SSP)
finds optimal flows by applying Dijkstra’s algorithm on
a residual graph constructed from the original network in
which some edges corresponding to instanced tracks have
been reversed. This can be implemented by performing
multiple forward and backward passes of dynamic program-
ming (see Appendix for details). [20] found that two or even
one pass of DP often performs nearly as well as SSP in
practical tracking scenarios. In our experiments we eval-
uate several of these variants.

2.1.1 Track interdependence

The aforementioned model assumes tracks are independent
of each other, which is not always true in practice. A key
contribution of our work is showing that pairwise relations
between tracks can be integrated into the model to improve
tracking performance. In order to allow interactions be-
tween multiple objects, we add a pairwise cost term de-
noted qij and qji for jointly activating a pair of flows fi
and fj corresponding to detections at sites xi = (li, σi, ti)
and xj = (lj , σj , tj). An intuitive example of qij and qji
would be penalty for overlap locations or a boost for co-
occurring objects. We only consider pairwise interactions
between pairs of sites in the same video frame which we
denote by EC = {ij : ti = tj}. Adding this term to 2
yields an Integer Quadratic Program (IQP):

min
f

∑
i

csif
s
i +

∑
ij∈E

cijfij +
∑
i

cifi

+
∑
ij∈EC

qijfifj +
∑
i

ctif
t
i

(4)

s.t. fsi +
∑
j

fji = fi = f ti +
∑
j

fij

fsi , f
t
i , fi, fij ∈ {0, 1}

The addition of quadratic terms makes this objective hard to
solve in general. In the next section we discuss two differ-
ent approximations for finding high quality solutions f . In
Section 5 we describe how the costs c can be learned from
data.

3. Inference
Now we describe different methods to conduct tracking

inference (finding the optimal flows f ). These inference
routines are used both for predicting a set of tracks at test
time as well as optimizing parameters during learning (see
Section 5).

As mentioned in previous section, for traditional min-
cost network flow problem defined in Equation 2 there ex-

ists various efficient solvers that explores its total unimod-
ularity property to find the global optimum. We employ
MOSEK’s built-in network simplex solver in our experi-
ments, as other alternative algorithms yield exactly the same
solution.

In contrast, finding the global minimum of the IQP prob-
lem 4 is NP-hard [26] due to the quadratic terms. We evalu-
ate two different schemes for finding high-quality approxi-
mate solutions. The first is a standard approach of introduc-
ing auxiliary variables and relaxing the integral constraints
to yield a linear program (LP) that lower-bounds the orig-
inal objective. We also consider a greedy approximation
based on successive rounds of dynamic programming that
also yields good solutions while avoiding the expense of
solving a large scale LP.

3.1. LP Relaxation and Rounding

If we relax the integer constraints and deform the costs as
necessary to make the objective convex, then the global op-
timum of 4 can be found in polynomial time. For example,
one could apply Frank-Wolfe algorithm to optimize the re-
laxed, convexified QP while simultaneously keeping track
of good integer solutions [13]. However, for real-world
tracking over long videos, the relaxed QP is still quite ex-
pensive. Instead we follow the approach proposed by Chari
et al. [6], reformulating the IQP as an equivalent ILP prob-
lem by replacing the quadratic terms fifj with a set of aux-
iliary variables uij :

min
f

∑
i

csif
s
i +

∑
ij∈E

cijfij +
∑
i

cifi

+
∑
ij∈EC

qijuij +
∑
i

ctif
t
i

(5)

s.t. fsi , f
t
i , fi, fj , fij , uij ∈ {0, 1}

fsi +
∑
j

fji = fi = f ti +
∑
j

fij

uij ≤ fi, uij ≤ fj
fi + fj ≤ uij + 1

The new constraint sets enforce uij to be 1 only when fi and
fj are both 1. By relaxing the integer constraints, program
5 can be solved efficiently via large scale LP solvers such
as CPLEX or MOSEK.

During test time we would like to predict a discrete set
of tracks. This requires rounding the solution of the re-
laxed LP to some solution that satisfies not only integer con-
straints but also flow constraints. [6] proposed two round-
ing heuristics: a Euclidean rounding scheme that minimizes
‖f−f̂‖2 where f̂ is the non-integral solution given by the LP
relaxation. When f is constrained to be binary, this objec-
tive simplifies to a linear function (1−2f̂)T f +‖f̂‖2, which
can be optimized using a standard linear min-cost flow
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solver. Alternately, one can use a linear under-estimator of
4 similar to the Frank-Wolfe algorithm:∑

i

csif
s
i +

∑
ij∈E

cijfij+∑
i

(ci +
∑
ij∈EC

qij ûij +
∑
ji∈EC

qjiûji)fi +
∑
i

ctif
t
i

(6)

Both of these rounding heuristics are linear functions sub-
ject to the original integer and flow constraints and thus can
be solved as an ordinary min-cost network flow problem.
In our experiments we execute both rounding heuristics and
choose the solution with lower cost.

3.2. Greedy Sequential Search

We now describe a simple greedy algorithm inspired
by the combination of dynamic programming and non-
maximal suppression proposed in [20]. We carry out a se-
ries of rounds of dynamic programming to find the short-
est path between source and sink nodes. In each round,
once we have identified a track, we update the (unary) costs
associated with all detections to include the effect of the
pairwise quadratic interaction term of the newly activated
track (e.g. suppressing overlapping detections, boosting the
scores of commonly co-occurring objects). This is analo-
gous to greedy algorithms for maximum-weight indepen-
dent set where the elements are paths through the network.

Algorithm 1 DP with pairwise Cost Update

1: Input: A Directed-Acyclic-Graph G with edge
weights ci, cij

2: initialize T ← ∅
3: repeat
4: Find shortest start-to-end path p on G
5: track cost = cost(p)
6: if track cost < 0 then
7: for all locations xi in p do
8: cj = cj + qij + qji for all ij, ji ∈ EC
9: ci = +∞

10: end for
11: T ← T ∪ p
12: end if
13: until track cost ≥ 0
14: Output: track collection T

In the absence of quadratic terms, this algorithm corre-
sponds to the 1-pass DP approximation of the successive-
shortest paths (SSP) algorithm. Hence it does not guarantee
an optimal solution, but, as we show in the experiments,
it performs well in practice. A practical implementation
difference (from the linear objective) is that updating the
costs with the quadratic terms when a track is instanced has
the unfortunate effect of invalidating cost-to-go estimates

which could otherwise be cached and re-used between suc-
cessive rounds to accelerate the DP computation.

Interestingly, the greedy approach to updating the pair-
wise terms can also be used with a 2-pass DP approximation
to SSP where backward passes subtract quadratic penalties.
We describe the details of our implementation of the 2-pass
algorithm in the Appendix. We found the 1-pass approach
superior as the complexity and runtime grows substantially
for multi-pass DP with pairwise updates.

4. Tracking Features and Potentials
In order to learn the tracking potentials (c and q) we pa-

rameterize the flow cost objective by a vector of weights
w and a set of features Ψ(X, f) that depend on features
extracted from the video, the spatio-temporal relations be-
tween candidate detections, and which tracks are instanced.
With this linear parameterization we write the cost of a
given flow asC(f) = −wTΨ(X, f) where the negative sign
is a useful convention to convert the minimization problem
into a maximization. The vector components of the weight
and feature vector are given by:

w =


wS
wt
ws
wa
wE

 Ψ(X, f) =


∑
i φS(xsi )f

s
i∑

ij∈E ψt(xi, xj)fij∑
ij∈EC ψs(xi, xj)fifj∑

i φa(xi)fi∑
i φE(xti)f

t
i


(7)

Here wa represents local appearance template for the
tracked objects of interest, wt represents weights for tran-
sition features, ws represents weights for pairwise interac-
tions, wS and wE represents weights associated with track
births and deaths. φa(xi) is the image feature at spatial-
temporal location xi, ψt(xi, xj) represents the feature of
transition from location xi to location xj , ψs(xi, xj) repre-
sents the feature of pairwise interaction between location xi
and xj that are in the same frame, φS(xsi ) represents feature
of birth node to location xi and φE(xti) represents feature
of location xi to sink node.

Local appearance model: We make use of an off-the-
shelf detector to capture local appearance. Our local appear-
ance feature thus consists of the detector score along with a
constant 1 to allow for a variable bias.

Transition model: We use a simple motion model (de-
scribed in Section 6) to predict candidate windows’ loca-
tions in future frames; we connect a candidate xi at time
ti with another candidate xj at a later time ti + n, only if
the overlap ratio between xi’s predicted window at ti + n
and xj’s window at ti + n exceeds 0.3. The overlap ratio
is defined as two windows’ intersection over their union.
We use this overlap ratio as a feature associated with each
transition link. The transition link’s feature will be 1 if this
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ratio is lower than 0.5, and 0 otherwise. In our experiments
we allow up to 7 frames occlusion for all the network-flow
methods. We append a constant 1 to this feature and bin
these features according to the length of transition. This
yields a 16 dimensional feature for each transition link.

Birth/death model: In applications with static cameras
it can be useful to learn a spatially varying bias to model
where tracks are likely to appear or disappear. However,
videos in our experiments are all captured from a moving
vehicle, we thus use a single constant value 1 for the birth
and death features.

Pairwise interactions: ws is a weight vector that
encodes valid geometric configurations of two objects.
ψ(xi, xj) is a discretized spatial-context feature that bins
relative location of detection window at location xi and
window at location xj into one of the D relations includ-
ing on top of, above, below, next-to, near, far and overlap
(similar to the spatial context of [7]). To mimic the tem-
poral NMS described in [20] we add one additional rela-
tion, strictly overlap, which is defined as the intersection
of two boxes over the area of the first box; we set the
corresponding feature to 1 if this ratio is greater than 0.9
and 0 otherwise. Now assume that we have K classes
of objects in the video, then ws is a DK2 vector, i.e.
ws = [wTs11, w

T
s12, ..., w

T
sij , ..., w

T
sKK ]T , in which wsij is

a length of D column vector that encodes valid geometric
configurations of object of class i w.r.t. object of class j.
In such way we can capture intra- and inter-class contextual
relationships between tracks.

5. Learning
We formulate parameter learning of tracking models as

a structured prediction problem. With some abuse of nota-
tion, assume we have N training videos (Xn, fn) ∈ X ×
F , n = 1, ..., N . Given ground-truth tracks in training
videos specified by flow variables fn, we discriminatively
learn tracking model parameters w using a structured SVM
with margin rescaling:

w∗ = argmin
w,ξn≥0

1

2
‖w‖2 + C

∑
n

ξn (8)

s.t. ∀n, f̂ , 〈w,4Ψ(Xn, fn, f̂)〉 ≥ L(fn, f̂)− ξn

where

4Ψ(Xn, fn, f̂) = Ψ(Xn, fn)−Ψ(Xn, f̂)

where Ψ(Xn, fn) are the features extracted from nth train-
ing video. L(fn, f̂) is a loss function that penalize any dif-
ference between the inferred label f̂ and the ground truth
label fn. The constraint on the slack variables ξn ensure
that we pay a cost for any training videos in which the flow
cost of the ground-truth tracks under modelw is higher than
some other incorrect labeling.

5.1. Cutting plane optimization

We optimize the structured SVM objective in 8 using a
standard cutting-plane method [12] in which the exponen-
tial number of constraints (one for each possible flow f̂ ) are
approximated by a much smaller number of terms. Given a
current estimate of w we find a “most violated constraint”
for each training video:

f̂∗n = argmax
f̂

L(fn, f̂)− 〈w,4Ψ(Xn, fn, f̂)〉

We can then add these constraints to the optimization prob-
lem and solve for an updated w. This procedure is iterated
until no additional constraints are added to the problem. In
our implementation, at each iteration we add a single linear
constraint which is a sum of violating constraints derived
from individual videos in the dataset which is also a valid
cutting plane constraint [7].

The key subroutine is finding the most-violated con-
straint for a given video which requires solving the loss-
augmented inference problem (we drop the n subscript no-
tation from here on)

f̂∗ = argmin
f̂

〈w,Ψ(X, f̂)〉 − L(f , f̂) (9)

As long as the loss function L(f , f̂) decomposes as a sum
over flow variables then this problem has the same form as
our test time tracking inference problem, the only difference
being that the cost of variables in f is augmented by their
corresponding negative loss.

We note that our two inference algorithms behave some-
what differently when producing constraints. The greedy
algorithm has no guarantee of finding the optimal flow for a
given tracking problem and hence may not generate all the
necessary constraints for learning w. In contrast, for the LP
relaxation, we have the option of adding constraints corre-
sponding to fractional solutions (rather than rounding them
to discrete tracks). If we use a loss function that penalizes
incorrect non-integral solutions, this may push the struc-
tured SVM to learn parameters that tend to result in tight
relaxations. These scenarios are termed “undergenerating”
and “overgenerating” respectively by [9] since approximate
inference is performed over a subset or superset of the exact
space of flows.

5.2. Loss function

Now we describe loss functions for multi-target tracking
problem. We use a weighted hamming loss to measure loss
between ground truth labels f and inferred labels f̂ :

L(f̂ , f) =
∑
fi∈f

lossi

∣∣∣fi − f̂i∣∣∣ (10)
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where {loss1, ..., lossi, ..., loss|f |} is a vector indicating
the penalty for differences between the estimated flow f̂ and
the ground-truth f . For example, when loss = 1 it becomes
the hamming loss.

Transition Loss: A critical aspect for successful learn-
ing is to define a good loss vector that closely reassem-
bles major tracking performance criteria, such as Multiple
Object Tracking Accuracy (MOTA [3]). Metrics such as
false positive, false negative, true positive, true negative and
true/false birth/death can be easily incorporated by setting
their corresponding values in loss to 1.

By definition, id switches and fragmentations [16] are
determined by looking at labels of two consecutive tran-
sition links simultaneously, under such definition the loss
cannot be optimized by our inference routine which only
considers pairwise relations between detections within a
frame. Instead, we propose a decomposable loss for tran-
sition links that attempts to capture important aspects of
MOTA by taking into account the length and localization of
transition links rather than just using a constant (Hamming)
loss on mislabeled links. We found empirically that care-
ful specification of the loss function is crucial for learning a
good tracking model.

In order to describe our transition loss, let us first denote
four types of transition links: NN is the link from a false
detection to another false detection, PN is the link from a
true detection to a false detection, NP is the link from a
false detection to a true detection, PP+ is the link from a
true detection to another true detection with the same iden-
tity, and PP− is the link from a true detection to another
true detection with a different identity. For all the transition
links, we interpolate detections between its start detection
and end detection (if their frame numbers differ more than
1); the interpolated virtual detections are considered either
true virtual detection or false virtual detection, depending
on whether they overlap with a ground truth label or not.
Loss for different types of transition is defined as:

1. For NN links, the loss will be (number of true virtual
detections + number of false virtual detections)
2. For PN andNP links, the loss will be (number of true
virtual detections + number of false virtual detections +
1)
3. For PP+ links, the loss will be (number of true virtual
detections)
4. For PP− links, the loss will be (number of true virtual
detections + number of false virtual detections + 2)
Ground-truth flows: In practice, available training

datasets specify ground-truth bounding boxes that need to
be mapped onto ground-truth flow variables fn for each
video. To do this mapping, we first consider each frame
separately, taking the highest scoring detection window that
overlaps a ground truth label as true detection, each true
detection will be assigned a track identity label same as

Figure 2. Example benefit of soft transition penalty. Left column is
an ID switch error (IDSW) of the baseline due to removing aggres-
sive transition links based on an empirical hard overlap threshold.
At right column, our model prevents this error by learning a soft
penalty function that allows for some aggressive transitions to oc-
cur.

Figure 3. Example of track co-occurrence. The right column
is the model learned with pairwise terms (LP+Flow+Struct),
while the left column is learned without pairwise terms
(SSP+FLow+Struct). Co-occurrence term forces both track 2 and
3 to initialize even when the detector responses are weak.

the ground truth label it overlaps. Next, for each track
identity, we run a simplified version of the dynamic pro-
gramming algorithm to find the path that claims the largest
number of true detections. After we iterate through all
id labels, any instanced graph edge will be a true detec-
tion/transition/birth/death while the remainder will be false.

6. Experimental results

Dataset: We have focused our experiments on training
sequences of KITTI tracking benchmark [11]. KITTI track-
ing benchmark consists of to 21 training sequences with a
total of 8008 frames and 8 classes of labeled objects; of all
the labeled objects we evaluated three categories which had

6



(a) inter-frame weights (b) intra-frame weights

Figure 4. Visualization of the weight vector learned by our method.
Yellow has small cost, blue has large cost. (a) shows transi-
tion weights for different length of frame jumps. The model en-
courages transitions to nearby neighboring frames, and penalizes
long or weak transition links (i.e. overlap ratio lower than 0.5).
(b) shows learned pairwise contextual weights between objects.
The model encourages intra-class co-occurrence when objects are
close but penalizes overlap and objects on top of others. Note the
strong negative interaction learned between cyclist and pedestrian
(two classes which are easily confused by their respective detec-
tors.). By exploring contextual cues we can make correct predic-
tion on this otherwise confusing configuration.

sufficient number of instances for comparative evaluation:
cars, pedestrians and cyclists. We use publicly available
LSVM [8] reference detections and evaluation script1. The
evaluation script only evaluates objects that are not too far
away and not truncated by more than 15 percent, it also does
not consider vans as false positive for cars or sitting persons
as false positive for pedestrians. The final dataset contains
636 labeled car trajectories, 201 labeled pedestrian trajecto-
ries and 37 labeled cyclists trajectories.

Training with ambiguous labels: One difficulty of
training on the KITTI tracking benchmark is that it has
special evaluation rules for ground truth labels such as
small/truncated objects and vans for cars, sitting persons for
pedestrians. This is resolved by removing all detection can-
didates that correspond to any of these “ambiguous” ground
truth labels during training; in this way we avoid mining
hard negatives from those labels. Also, to speed up training,
we partition full-sized training sequences in to 10-frame-
long subsequences with a 5-frame overlap, and define losses
on each subsequence separately.

Data-dependent transition model: In order to keep the
size of tracking graphs tractable for our inference methods,
we need a heuristic to select a sparse set of links between
detection candidates across frames. We found that simply
predicting candidate’s locations in future frames via optical
flow gives very good performance. Specifically, we first
compute frame-wise optical flow using software of [17],
then for a candidate detection xi at frame ti, we compute
the mean of vertical flows and the mean of horizontal flows
within the candidate box, and use them to predict candi-

1http://www.cvlibs.net/datasets/kitti/eval_
tracking.php
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Figure 5. Speed and quality comparison of proposed undergener-
ating and overgenerating approximation. Over the 21 training se-
quences in KITTI dataset, LP+rounding produces cost that is very
close to relaxed global optimum. DP gives a lower bound that is
within 1% of relaxed global optimum, while being 2 to 7 times
faster than a commercial LP solver (MOSEK)

date’s location in the next frame ti + 1; for xi’s predicted
locations in frame ti + 2 we use its newly predicted loca-
tion at ti + 1 and candidate’s original box size to repeat the
process described above, and same for ti + n.

Trajectory smoothing: During evaluation we observe
that many track fragmentation errors (FRAG) reported by
the benchmark are due to the raw trajectory oscillating away
from the ground-truth due to poorly localized detection can-
didates. Inspired by the trajectory model of [2], we post-
process each output raw trajectory by fitting a cubic B-
spline. This smoothing of the trajectory eliminates many
FRAGs from the raw track, making the fragmentation num-
ber more meaningful when compared across different mod-
els.

Baselines: We use the publicly available code from [10]
as a first baseline. It relies on a three-stages tracklet linking
scheme with occlusion sensitive appearance learning; it is
by far the best tracker for cars on KITTI tracking benchmark
among all published methods. Also we consider dynamic
programming (DP) and successive shortest path (SSP) with
default parameters in [20] as another two baselines, denoted
as DP+Flow and SSP+Flow in our table.

Parameter settings: We tuned the structural parameters
of the various baselines to give good performance. For all
baselines we only use detections that have a positive score.
For DP+Flow and SSP+Flow we also remove all transition
links that have overlap ratios lower than 0.5. For learned
tracking models (+Struct) we use detections that have scores
greater than -0.5, and transition links that have overlap ra-
tios greater than 0.3.
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Benchmark Results: We evaluate performance us-
ing a standard battery of performance measures. The
evaluation result for each object category, as well as for
all categories are shown in Table 1. For our learned
tracking models (+Struct) we use either network sim-
plex solver (for SSP+Flow+Struct) or LP relaxation (for
LP/DP+Flow+Struct) for training and conduct leave-one-
sequence-out cross-validation with C = 2−9, 2−8, ..., 23.
We report cross-validation result under best C, which
is C = 2−8 for SSP+Flow+Struct and C = 2−7 for
LP/DP+Flow+Struct. Our simple motion model helps
DP+Flow outperform state-of-the-art baseline by a signif-
icant margin. One exception is IDSW which we attribute
to the fact that the network-flow methods do not explic-
itly model target appearance. While SSP+Flow seems to
perform poorly with default parameters, it turns out that
with properly learned parameters (SSP+Flow+Struct), it
produces results that are comparable to (and often better
than) DP+Flow, this indicates that there is much more po-
tential of SSP than suggested in previous work. In addi-
tion, SSP’s guarantee of optimality makes it very attractive
if more complicated features and network structure are to
be used in learning. As shown in Table 1, in our eval-
uation over all objects our model learned with pairwise
costs (LP/DP+Flow+Struct) achieves the best MOTA, Re-
call, Mostly Tracked(MT) and Mostly Lost(ML) perfor-
mance while keeping other metrics competitive.

Approximate Inference: To evaluate quality of
the LP+rounding and DP approximation, we run both
LP+rounding and DP inference on models trained via LP
relaxation and DP respectively. We then average the run-
ning time and minimum cost found on each sequence for
LP+rounding and DP, respectively. Fig 5 shows the accu-
mulative running time and cost for each algorithm. Dur-
ing our experiments, LP+rounding often finds the exact re-
laxed global optimal, and when it doesn’t it still gives very
close approximation. While greedy forward search using
DP rarely reach relaxed global optimum, it still produced
good approximate solutions that were often within 1% of
relaxed global optimum while running significantly faster
(2-7x) than LP+rounding.

Overgenerating versus Undergenerating: Previous
works have shown that in general, models trained with
relaxed inference are preferable than models trained with
greedy inference. To investigate this idea in our particu-
lar problem, we also conduct leave-one-sequence-out cross-
validation using either DP or the LP relaxation as the infer-
ence method for training. The evaluation results under dif-
ferent training/testing inference combinations are shown in
Table 2. Notice that model trained with the LP relaxation
does slightly better in most metrics, whereas DP stands
out as a good inference algorithm at test time. Moreover,
though slightly falling behind, model trained with greedy

Car MOTA MOTP Rec Prec MT ML IDSW FRAG
Baseline [10] 57.8 78.8 58.6 98.8 14.9 28.4 22 225

SSP+Flow 49.0 79.1 49.1 99.7 18.4 59.9 0 47
DP+Flow 62.2 79.0 63.4 98.5 25.2 24.2 43 177

SSP+Flow+Struct 63.4 78.3 65.4 97.1 27.4 20.0 2 179
LP+Flow+Struct 64.1 78.1 67.1 95.7 30.5 18.7 3 208
DP+Flow+Struct 64.6 78.0 67.5 96.0 30.1 18.6 17 222

Pedestrian MOTA MOTP Rec Prec MT ML IDSW FRAG
Baseline 40.2 73.2 49.0 86.6 4.2 32.2 132 461

SSP+Flow 37.9 73.4 41.8 92.0 8.4 57.5 25 146
DP+Flow 49.7 73.1 57.2 88.9 18.6 26.3 46 260

SSP+Flow+Struct 51.2 73.2 57.4 90.5 19.2 24.6 16 230
LP+Flow+Struct 52.6 72.9 60.2 89.2 22.2 21.6 31 281
DP+Flow+Struct 52.4 73.0 60.0 89.2 19.8 22.2 36 277

Cyclist MOTA MOTP Rec Prec MT ML IDSW FRAG
Baseline 39.0 81.6 39.6 99.5 5.4 37.8 7 26

SSP+Flow 18.7 85.6 18.7 100 5.4 89.2 0 1
DP+Flow 42.4 81.2 42.5 100 18.9 45.9 2 5

SSP+Flow+Struct 47.4 79.7 59.9 83.0 35.1 32.4 5 10
LP+Flow+Struct 52.3 79.6 61.1 88.2 40.6 27.0 12 21
DP+Flow+Struct 56.3 79.4 64.2 89.7 40.5 27.0 9 15

All Categories MOTA MOTP Rec Prec MT ML IDSW FRAG
Baseline 51.7 77.4 54.8 95.3 12.1 29.7 161 712

SSP+Flow 44.2 77.7 45.5 97.5 15.6 60.8 25 194
DP+Flow 57.6 77.4 60.5 95.7 23.5 25.7 91 442

SSP+Flow+Struct 59.0 77.0 62.8 94.5 25.9 21.5 23 419
LP+Flow+Struct 60.2 76.7 64.8 93.5 29.2 19.7 46 510
DP+Flow+Struct 60.6 76.7 65.1 93.8 28.4 19.7 62 514

Table 1. Tracking result for cars, pedestrian and cyclist categories
in the KITTI tracking benchmark and aggregate performance over
all categories. The proposed method using quadratic interactions
between objects and parameters trained using structured prediction
achieves state-of-the art MOTA and is competitive across multiple
performance measures.

Train
DP LP

Test

DP

MOTA 60.5 60.6
Recall 65.2 65.1

Precision 93.5 93.8
MT 28.6 28.4
ML 20.5 19.7

IDSW 68 62
FRAG 517 514

LP+round

MOTA 60.1 60.2
Recall 64.9 64.8

Precision 93.3 93.5
MT 29.3 29.2
ML 20.3 19.7

IDSW 56 46
FRAG 518 510

Table 2. Performance evaluation over 21 sequences using cross
validation for different combinations of inference algorithm used
during training and test time.

DP is very close to the performance of that trained with LP
and thus suggests the greedy algorithm proposed here is a
very competitive inference method.
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7. Summary

We augmented the well-studied network-flow track-
ing model with pairwise cost, and proposed an end-
to-end framework that jointly optimizes parameters for
such model. We extensively evaluated a traditional LP
relaxation-based method and a novel greedy dynamic pro-
gramming method for inference in the augmented network,
both of which achieves state-of-the-art performance, while
our greedy DP algorithm being 2-7x faster than a commer-
cial LP solver.
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9. Appendix: Multi-Pass Dynamic Program-
ming to Approximate Successive Shortest
Path

Now we describe two dynamic programming (DP) al-
gorithms proposed by [20] which approximate successive
shortest path (SSP) algorithm. Recall the network-flow
problem described in Equation 2:

min
f

∑
i

csif
s
i +

∑
ij∈E

cijfij +
∑
i

cifi +
∑
i

ctif
t
i

s.t. fsi +
∑
j

fji = fi = f ti +
∑
j

fij

fsi , f
t
i , fi, fij ∈ {0, 1}

The corresponding graphical model is shown in Fig 6. SSP
finds the global optimum of Objective 2 by repeating:

1. Find the minimum cost source to sink path on residual
graph Gr(f)
2. If the cost of the path is negative, push a flow through
the path to update f

Until no negative cost path can be found. A residual graph
Gr(f) is the same as the original graphG except all edges in
f are reversed and their cost negated. We focus on describ-
ing the DP algorithms and refer readers to [1] for detailed
description of SSP algorithm.

9.1. One-pass DP

Assume the detection nodes are sorted in time. We de-
note cost(i) as the cost of the shortest path from source
node to node i, link(i) as i’s predecessor in this shortest
path, and birth node(i) as the first detection node in this
shortest path. We initialize cost(i) = ci + csi , link(i) = ∅,
and birth node(i) = i for all i ∈ V .

To find the shortest path on the initial DAG G, we can
sweep from first frame to last frame, computing cost(i) as:

cost(i) = ci + min(π, csi ), π = min
ji∈E

cji + cost(j) (11)

And update birth node(i), link(i) accordingly.
After we sweeping through all frames, we find a node

i such that cost(i) + cti is minimum, and reconstruct the
shortest path by backtracking cached link variables. The
cost of this path would be cost(i) + cti. After the shortest
path is found, we remove all nodes and edges in this shortest
path from G, the resulting graph G′ will still be a DAG,
thus we can repeat this procedure until we cannot find any
path that has a negative cost. Even more speed up can be
achieved by only recomputing cost(i), birth node(i) and
link(i) for those i whose birth node is the same as the birth
node of the track found in previous iteration.

It is also straightforward to integrate NMS into this al-
gorithm: when we pick up a shortest path, we also prune all

S

T

Figure 6. Graphical representation of network flow model
from [27]. A pair of nodes (connected by red edge) represent a
detection, blue edges represent possible transitions between detec-
tions and birth/death flows are modeled by black edges. Costs ci
in Objective 2 are for red edges, cij are for blue edges, cti and csi
are for black edges. To simplify our description, we will refer a
detection edge and the two nodes associated with it as a ”node”
or ”detection node”. The set V consists of all detection nodes in
the graph, whereas the set E consists of all transition edges in the
graph.

nodes that overlap the shortest path. In practice this ”tempo-
ral NMS” can be much more aggressive than pre-processing
NMS, since the confidence of a track being composed of
true positives is much higher than single detections.

9.2. Two-pass DP

2-pass DP works very similarly to successive shortest
path, the only difference is that instead of using Dijkstra’s
algorithm, we use two passes of dynamic programming to
approximate shortest path on the residual graph Gr(f). We
denote Vforward as the set of forward nodes in current resid-
ual graph, and Vbackward as the set of backward nodes in
current residual graph, we describe one iteration of 2-pass
DP as below:

1. Ignore all backward edges (including reversed detec-
tion edges) and perform one pass of forward DP (from
first frame to last frame) on all nodes. For each node
i, there will be a path(i) array that stores mininum-cost
source to i path, with cost(i) being the total cost of this
path.
2. Use cost(i) from step 1 as initial values and perform
one pass of backward DP (from last frame to first frame)
on Vbackward. After this, cost(i) for i ∈ Vbackward
would be the cost(j) − cij , where j is i’s best (back-
ward) predecessor and cij is from the original graph. Set
cost(i) = +∞ for backward node i that has no backward
edge coming to it.
3. Perform one pass of forward DP on i ∈ Vforward.
To avoid running into cyclic path, we need to backtrack
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shortest paths for all j ∈ N(i), where N(i) is all neigh-
boring nodes that are connected to i via a forward edge.
4. Find node i with minimum cost(i) + cti, the (approxi-
mate) shortest path is then path(i).
5. Update solution f by setting all forward variables
along path(i) to 1 and all backward variables along
path(i) to 0.

It is straightforward to show that during the first iteration,
1-pass DP and 2-pass DP behave identically. Also, the path
found by 2-pass DP will never go into a source node or go
out of a sink node, thus in each iteration we generate exactly
one more track, either by splitting a previously found track,
or by choosing a entirely new track. Therefore the algorithm
will terminate after at most |V | iterations.

10. Appendix: Incorporating Quadratic Inter-
actions in Multi-pass DP

Recall the augmented network-flow problem with
quadratic cost (Eqn. 4):

min
f

∑
i

csif
s
i +

∑
ij∈E

cijfij +
∑
i

cifi

+
∑
ij∈EC

qijfifj +
∑
i

ctif
t
i

s.t. fsi +
∑
j

fji = fi = f ti +
∑
j

fij

fsi , f
t
i , fi, fij ∈ {0, 1}

Where EC = {ij : ti = tj}. We propose two new variants
of DP algorithm that can approximately minimize the Ob-
jective 4. They are also divided into 1-pass DP and 2-pass
DP. Since we already described 1-pass DP with pairwise
interactions in the paper, we will focus on 2-pass DP with
pairwise interactions here.

10.1. Two-pass DP with quadratic interactions

A feasible solution f on the network corresponds to a
residual graphGr(f). We could apply the steps described in
section 9.2 to find an approximate shortest path. This path
may consist of both forward nodes and backward nodes,
which correspond to uninstanced detections (but will be in-
stanced after this iteration) and already instanced detections
(but will be uninstanced after this iteration) respectively.
We then update the (unary) cost of other nodes by adding
or subtracting the pairwise cost imposed by turning on or
off selected nodes on the path. Additionally, at step 3 of
2-pass DP, one could also consider the pairwise cost to cur-
rent node imposed by previously selected nodes in the same
path. The entire procedure is described as Algorithm 2.

Notice that, to simplify our notation, we construct tem-
porary residual graph at the beginning of each iteration and

Algorithm 2 Two-pass DP with pairwise Cost Update

1: Input: A Directed-Acyclic-Graph G with node and
edge weights ci, cij

2: initialize f = 0
3: repeat
4: Find start-to-end min-cost unit flow f∗ onGr(f)
5: track cost = cost(f∗)
6: if track cost < 0 then
7: for all fi ∈ f∗ do
8: if fi = 0 then
9: cj = cj + qij + qji,∀ij, ji ∈ EC

10: else
11: cj = cj − qij − qji,∀ij, ji ∈ EC
12: end if
13: end for
14: f∗ = ¬f∗
15: end if
16: until track cost ≥ 0
17: Output: Solution f

do not negate edge weights in the original graph. In prac-
tice, we can instead update edge costs and directions on the
original graph at the end of each iteration, in such a case we
should add pairwise costs to forward nodes or subtract pair-
wise costs from backward nodes if we turn on some node,
similarly we subtract pairwise costs from forward nodes or
add pairwise costs to backward nodes if we turn off some
node.

10.2. Approximation Quality of Two-pass DP

We found that 2-pass DP often finds lower cost than 1-
pass DP but still not as good as LP+rounding. It also runs
significantly slower, even slower than LP+rounding on long
sequences. On a 1059 frame-long video with 3 categories of
objects, 2-pass DP uses about 6 minutes to finish, whereas
1-pass DP finishes within 1 minute and LP+rounding fin-
ishes within 4 minutes. The leave-one-sequence-out cross-
validation result using 2-pass DP gets a MOTA of 60.4%,
which is equivalent to that of 1-pass DP and LP relaxation.

We observe that most of the running time for 2-pass DP
is on the second forward pass, which involves backtracking
for each forward node to avoid cyclic path. It should be
noted that with proper data structure such as a hash linked-
list to cache path arrays, checking cyclic path can be done
in O(1). Also, in the second forward pass, one could set
all backward nodes as active and propagate active labels
to other forward nodes, so eventually we might not need
to look at every forward node. Overall, though showing
some incompetence in running time in our current imple-
mentation, 2-pass DP should still be a promising inference
method with better choice of data-structures and moderate
optimization.

11



S

T

(a)

S

T

(b)
S

T

(c)

S

T

(d)

S

T

(e)

Figure 7. An illustration for 2-pass DP with quadratic interactions.
(a) the initial DAG graph, a pair of nodes indicate a candidate de-
tection; (b) first iteration of the algorithm, red edges indicates the
shortest path found in this iteration; (c) we reverse all the edges on
the shortest path (green edges), and add the pairwise cost imposed
by this path to other candidates within the time window (red pairs);
(d) second iteration of algorithm, red edges and blue edges indi-
cates the new shortest path, notice that it takes three of reversed
edges (blue edges); (e) we again reverse all the edges in the short-
est path, now green edges indicate the two tracks found in this 2
iterations; we also update pairwise cost: blue node pair indices we
subtract the pairwise cost imposed by ”turning off” an candidate,
red pair still indicates adding in pairwise cost of newly instanced
candidates,and the blue-red pair indicates we first add the pairwise
cost by newly instanced candidates, then subtract the pairwise cost
by newly uninstanced candidates. Additions and subtractions are
done to the non-negated edge costs and then negated if necessary.
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