Unsupervised Learning of Models for Recognition
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Abstract. We present a method to learn object class models from ueldlzeid
unsegmented cluttered scenes for the purpose of visuattalgeognition. We
focus on a particular type of model where objects are reptedes flexible con-
stellations of rigid parts (features). The variability Wit a class is represented
by a joint probability density function (pdf) on the shapetwé constellation and
the output of part detectors. In a first stage, the methodnaatioally identifies
distinctive parts in the training set by applying a clustgralgorithm to patterns
selected by an interest operator. It then learns the stafisthape model using
expectation maximization. The method achieves very goasisdfication results
on human faces and rear views of cars.

1 Introduction and Related Work

We are interested in the problem of recognizing members @ioblolasses, where we
define anobject classas a collection of objects which share characteristic feator
partsthat are visually similar and occur in similar spatial configtions. When building
models for object classes of this type, one is faced withethm®blems (see Fig. 1).
Segmentation or registration of training imagé&hich objects are to be recognized
and where do they appear in the training imageaft selection Which object parts
are distinctive and stable=stimation of model parameterg/hat are the parameters
of the global geometry ashapeand of the appearance of the individual parts that best
describe the training data?

Although solutions to the model learning problem have be®pgsed, they typi-
cally require that one of the first two questions, if not bdtd,answered by a human
supervisor. For example, features in training images gkt to be hand-labeled. Of-
tentimes training images showing objects in front of a umifdackground are required.
Objects might need to be positioned in the same way throughetraining images so
that a common reference frame can be established.

Amit and Geman have developed a method for visual selectlinhnearns a hi-
erarchical model with a simple type of feature detector éeglgments) as its front end
[1]. The method assumes that training images are registatedespect to a reference
grid. After an exhaustive search through all possbile Ideature detectors, a global
model is built, under which shape variability is encodechia form of small regions in
which local features can move freely.



Fig. 1. Which objects appear consistently in the left images, butamothe right side? Can a
machine learn to recognize instances of the two objectetafEcesandcars) without any further

information provided?

Burl et al. have proposed a statistical model in which shas@bility is modeled
in a probabilistic setting using Dryden-Mardia shape spheresities [2, 11, 3, 4]. Their
method requires labeled part positions in the training iesag

Similar approaches to object recognition include the actippearance models of
Taylor et al. [5, 8] who model global deformations using Figgace methods as well
as the Dynamic Link Architecture of v. der Malsburg and cadjees, who consider de-
formation energy of a grid that links landmark points on theface of objects [10].
Also VYuille has proposed a recognition method based on gradiescent on a defor-
mation energy function in [15]. It is not obvious how thesetinoels could be trained
without supervision.

The problem of automatigart selectioris important, since it is generally not estab-
lished that parts that appear distinctive to the human ebsexill also lend themselves
to successful detection by a machine. Walker et al. addnésgtoblem in [14], albeit
outside the realm of statistical shape models. They emphé&distinctiveness” of a part
as criteion of selection. As we will argue below, we belidvattpart selection has to be
done in the context of model formation.

A completely unsupervised solution of the three problenr®duced at the begin-
ning, in particular the first one, may seem out of reach. tigmisuggests that a good
deal of knowledge about the objects in question is requinedrder to know where
and what to look for in the cluttered training images. Howeaesolution is provided
by the expectation maximization framework which allows @it@mneous estimation of



unknown data and probability densities over the same unkrtata. Under this frame-
work, all three problems are solved simultaneously.

Another compelling reason to treat these problems joirglythe existing trade-
off between localizability and distinctiveness of partsvey distinctive part can be a
strong cue, even if it appears in an arbitrary location orstivéace of an object—think
e.g. of a manufacturer’s logo on a car. On the other handsalistinctive part can only
contribute information if it occurs in a stable spatial telashiprelativeto other parts.

2 Approach

We model object classes following the work of Burl et al. [R,An object is com-
posed ofpartsandshape where ‘parts’ are image patches which may be detected and
characterized by appropriate detectors, and ‘shape’ ibescthe geometry of the mu-
tual position of the parts in a way that is invariant with resfto rigid and, possibly,
affine transformations [12]. A joint probability density @art appearance and shape
models the object class. Object detection is performed byrfinning part detectors on
the image, thus obtaining a set of candidate part locatibne.second stage consists
of forming likely object hypotheses, i.e. constellatiofisappropriate parts (e.g. eyes,
nose, mouth, ears); both complete and partial constetiatoe considered, in order to
allow for partial occlusion. The third stage consists ohgghe object’s joint probabil-
ity density for either calculating the likelihood that anypothesis arises from an object
(object detection), or the likelihood that one specific hynesis arises from an object
(object localization). In order to train a model we need toide on the key parts of the
object, select corresponding parts (e.g. eyes, nose eiwhomber of training images,
and lastly we need to estimate the joint probability derfsitiction on part appearance
and shape. Burl et al. [3] perform the first and second act Ingl hanly estimating the
joint probability density function automatically. In thelfowing, we propose methods
for automating the first and second steps as well.

Our technique for selecting potentially informative pastsomposed of two steps
(see Fig. 2). First, small highly textured regions are detdin the training images by
means of a standard ‘interest operator’ or keypoint deteSince our training images
are not segmented, this step will select regions of intdrett in the image areas cor-
responding to the training objects and on the clutter of thekground. If the objects
in the training set have similar appearance then the texttagions corresponding to
the objects will frequently be similar to each other as oppa® the textured regions
corresponding to the background which will be mostly unelated. An unsupervised
clustering step favoring large clusters will thereforedtém select parts that correspond
to the objects of interest rather than the background. Ameite part detectors may be
trained using these clusters.

The second step of our proposed model learning algorithnesd®) out of these
most promising parts, the most informative ones and simatiasly estimates the re-
maining model parameters. This is done by iteratively fydifferent combinations of
a small number of parts. At each iteration, the parametetfseofinderlying probabilis-
tic model are estimated. Depending on the performance ofrthéel on a validation



data set, the choice of parts is modified. This process iatédruntil the final model is
obtained when no further improvements are possible.
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Fig. 2. Block diagram of our method. “Foreground images” are imagegaining the target ob-
jects in cluttered background. “Background images” cankaickground only.

Outline of the Paper In Section 3, we present our statistical object model. Sacti
discusses automatic part selection. Section 5 is deditatde second step of model
formation and training. Section 6 demonstrates the methmdigh experiments on two
datasets: cars and faces.

3 Modeling Objects in Images

Our model is based on the work by Burl et al. [3]. Importanfediénces are that we
model the positions of the background parts through a umifidensity, while they used
a Gaussian with large covariance. The probability distiduof the numberof back-

ground parts, which Burl et al. ignored, is modeled in ouecsa Poisson distribution.

3.1 Generative Object Model

We model objects as collections of rigid parts, each of wligctietected by a corre-
sponding detector during recognition. The part detectiagestherefore transforms an
entire image into a collection of parts. Some of those partghhtorrespond to an in-
stance of the target object class (fbeeground, while others stem from background
clutter or are simply false detections (thackground. Throughout this paper, the only
information associated with an object part is its positiothie image and its identity or
parttype We assume that there dfedifferent types of parts. The positions of all parts
extracted from one image can be summarized in a matrix-tika f

T11T12,---,T1N,

T21T22, .., T2N,
X9 =

TT1TT25 s TT Ny

where the superscripd” indicates that these positions asbservablan an image, as
opposed to being unobservablenissing which will be denoted by:h.” Thus, thett™®



row contains the locations of detections of part typ&here every entry;;;, is a two-
dimensional vector. If we now assume that an object is coegbo$F different parts,
we need to be able to indicate which partsXri correspond to the foreground (the
object of interest). For this we use the vedra set of indices, witth; = j, 7 > 0,
indicating that pointz;; is a foreground point. If an object part is not contained in
X, because it is occluded or otherwise undetected, the @ameling entry inh will
be zero. When presented with an unsegmented and unlabedgg jmve do not know
which parts correspond to the foregound. Therefarés not observable and we will
treat it ashiddenor missingdata. We calh ahypothesissince we will use it to hypoth-
esize that certain parts &f° belong to the foreground object. It is also convenient to
represent the positions of any unobserved object partséparate vectax™ which is,
of course, hidden as well. The dimensionxétf will vary, depending on the number of
missed parts.

We can now define a generative probabilistic model throughiamt probability
density

p(X?,x™, h). 1)

Note that not only the entries &f° andx™ are random variables, but also their dimen-
sions.

3.2 Model Details

In order to provide a detailed parametrization of (1), weddtice two auxiliary vari-
ables,b andn. The binary vectob encodes information about which parts have been
detected and which have been missed or occluded. Hepee 1 if hy > 0andby =0
otherwise. The variabla is also a vector, where; shall denote the number bback-
groundcandidates included in th&® row of X °. Since both variables are completely
determined byh and the size ofX°, we havep(X°,x™ h) = p(X° x™ h,n,b).
Since we assume independence between foreground and backgiand, thus, be-
tweenp(n) andp(b), we decompose in the following way

p(X°,x™ h,n,b) = p(X° x"|h,n)p(hn,b) p(n) p(b). 2)

The probability density over the number of background d&ies can be modeled
by a Poisson distribution,

plm) =TT (e ™,

t=1 "t

where M, is the average number of background detections of typer image. This
conveys the assumption of independence between part typles background and the
idea that background detections can arise at any locatitireirmage with equal prob-
ability, independently of other locations. For a discretiel @f pixels, p(n) should be

! To simplify notation, we only consider the case whéte= T. The extension to the general
case £ > T) is straightforward.



modeled as a binomial distribution. However, since we witidal the foreground de-
tections over a continuous range of positions, we chosedfsséh distribution, which
is the continuous limit of the binomial distribution. Adriitg a different) ; for every
part type allows us to model the different detector stassti

Depending on the number of parfs, we can model the probabilifyb) either as
an explicit table (of lengtR™) of joint probabilities, or, ifF is large, as independent
probabilities, governing the presence or absence of awithdil model part. The joint
treatment could lead to a more powerful model, e.g., if ¢efarts are often occluded
simultaneously.

The densityp(h|n, b) is modeled by,

% he H(ba Il)
p(hjn,b) = IT,, ~/
0 otherh

where?{(b, n) denotes the set of all hypotheses consistent tvitndn, andN; de-
notes the total number of detections of the type of gaihis expresses the fact that
all consistent hypotheses, the number of Whicﬁ[i’ﬁ:] N;f, are equally likely in the
absence of information on the part locations.
Finally, we use
p(X?,x"[h,n) = peg(2) pog(Xng).

where we defined” = (x°T x™7) as the coordinates of all foreground detections
(observed and missing) anxd, as the coordinates of all background detections. Here
we have made the important assumption that the foregrouedtitens are independent
of the background. In our experimengg, (z) is modeled as a joint Gaussian with mean
1 and covariance..

Note that, so far, we have modeled oalysolutepart positions in the image. This
is of little use, unless the foreground object is in the saowtipn in every image. We
can, however, obtain a translation invariant formulatibaur algorithm (as used in the
experiments in this paper) by describing all part positi@tative to the position of one
reference part. Under this modificatigig will remain a Gaussian density, and there-
fore not introduce any fundamental difficulties. Howevke formulation is somewhat
intricate, especially when considering missing parts. déeifor further discussion of
invariance the reader is referred to [3].

The positions of the background detections are modeled loyfarm density,

whereA is the total image area.

3.3 Classification

Throughout the experiments presented in this paper, oectbg is to classify images
into the classes “object present” (clasg and “object absent” (clagg). Given the
observed dataX °, the optimal decision—minimizing the expected total dfésstion



error—is made by choosing the class with maximum a posiguimbability (MAP
approach, see e.g. [7]). It is therefore convenient to carghe following ratio,

p(C1]X°) > Lp(X°, h|Cy)
p(ColX?) ™ (X7 holCo) 3)

wherehy denotes theull hypothesisvhich explains all parts as background noise.
Notice that the ratié;% is omitted, since it can be absorbed into a decision threshol
The sum in the numerator includes all hypotheses, also théwypothesis, since the
object could be present but remain undetected by any patidetin the denominator,
the only consistent hypothesis to explain “object absenthé null hypothesis.

Although we are here concerned with classification only, foamework is by no
means restricted to this problem. For instance, objecliliat#on is possible by identi-
fying those foreground parts in an image, which have thedsgprobability of corre-
sponding to an occurrence of the target object.

4 Automatic Part Selection

The problem of selecting distinctive and well localizeatitgect parts is intimately re-
lated to the method used to detect these parts when the lioagystem is finally
put to work. Since we need to evaluate a large number of gatgrarts and thus, de-
tectors, we settled on normalized correlation as an effigiart detection method. Fur-
thermore, extensive experiments lead us to believe thantkthod offers comparable
performance over many more elaborate detection methods.

With correlation based detection, every pattern in a snedjimorhood in the train-
ing images could be used as a template for a prospective gdttdr. The purpose of
the procedure described here is to reduce this potentiatig Iset of parts to a reason-
able number, such that the model learning algorithm desdrib the next section can
then select a few most useful parts. We use a two-step proeéslaccomplish this.

In the first step, we identifpoints of interesin the training images (see Fig. 3).
This is done using the interest operator proposed by Fér$®), which is capable of
detecting corner points, intersections of two or more limsswell as center points of
circular patterns. This step produces abiif part candidates per training image.

A significant reduction of the number of parts can be achidyetthe second step of
the selection process, which consists in performing vegpti@ntization on the patterns
(a similar procedure was used by Leung and Malik in [13]). Ais nd, we use a
standardk-means clustering algorithm [7], which we tuned to produseiaof about
100 patterns. Each of these patterns represents the centedudtarcand is obtained
as the average of all patterns in the cluster. We only retaisters with at least0
patterns. We impose this limit, since clusters composeceof few examples tend to
represent patterns which do not appear in a significant nuafleining images. Thus,
we obtain parts which are averaged across the entire setioifity images.

In order to further eliminate redundancies, we remove patehich are simlilar to
others after a small shifi (2 pixels) in any an arbitrary direction.

Due to the restriction to points of interest the set of renmgjrpatterns exhibits
interesting structure, as can be seen in Figure 3. Some padis as human eyes, can
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Fig. 3. Points of interest (left) identified on a training image ofuatan face in cluttered back-
ground using Forstner’s method. Crosses denote corperggtterns while circles mark circle-
type patterns. A sample of the patterns obtained using kamelastering of small image patches
is shown for faces (center) and cars (right). The car images Wigh-pass filtered before the part
selection process. The total number of patterns selecteel8vdor faces and0 for cars.

be readily identified. Other parts, such as simple cornessjltr as averages of larger
clusters, often containing thousands of patterns.

This procedure dramatically reduces the number of cangligatts. However, at
this point, parts corresponding to the background portafrithe training images are
still present.

5 Model Learning

In order to train an object model on a set of images, we needlt@ $wo problems.
Firstly, we need to decide on a small subset of the selectedg@adidates to be used in
the model, i.e. define thmodel configurationSecondly, we need to learn the parame-
ters underlying the probability densities. We solve the fireblem using an iterative,
“greedy” strategy, under which we try different configuoais. At each iteration, the
pdfs are estimated usirgxpectation maximizatiofiEM).

5.1 Greedy Model Configuration Search

An important question to answer is witltow many partéo endow our model. As the
number of parts increases, models gain complexity andidistatory power. It is there-
fore a good strategy to start with models comprised of fevispand add parts while
monitoring the generalization error and, possibly, a dotepenalizing complexity.

If we start the learning process with few parts, gay= 3, we are still facing the
problem of selecting the best out & possible sets of parts, whelé is the number
of part candidates produced as described in Sec. 4. We divetatively, starting with
a random selection. At every iteration, we test whetheragpt one model part with
a randomly selected one, improves the model. We therefatesBtimate all remaining
model parameters from the training images, as explaindaeiméxt section, and then
assess the classification performance on a validation geisitive and negatives exam-
ples. If the performance improves, the replacement pagjs. K his process is stopped
when no more improvements are possible. We might then startadter increasing the
total number of parts in the model.



Itis possible to render this process more efficient, in paldir for models with many
parts, by prioritizing parts which have previously showroad validation performance
when used in smaller models.

5.2 Estimating Model Parameters through Expectation Maximzation

We now address the problem of estimating the model pdfs wilven set of model
parts, from a set of training images.

Since our detection method relies on theximum a posteriori probabilittMAP)
principle, itis our goal to model the class conditional dées as accurately as possible.
We therefore employ the expectation maximization (EM) gt to produce maxi-
mum likelihood estimates of the model parametérs, {u, X', p(b), M}. EMis well
suited for our problem, since the variablesindx™ are missing and must be inferred
from the observed daté,X?}. In standard EM fashion, we proceed by maximizing the
likelihood of the observed data,

I
LX) = log Y / P(X?, %" by 9) dxl,
i=1 h;

with respect to the model parameters. Since this is difftocuétchieve in practice, EM
iteratively maximizes a sequence of functions,

1
Q(616) = 5 Bllog p(X7,x7", h,16)]

i=1

where E|.] refers to the expectation with respect to the postepidt;, x"| X7, ).
Throughout this section, a tilde denotes parameters we g@rmiaing for, while no
tilde implies that the values from the previous iteratioa smbstituted. EM theory [6]
guarantees that subsequent maximization oﬁjhﬁa) converges to a local maximum
of L.

We now derive update rules that will be used in the M-step efEM algorithm.
The parameters we need to consider are those of the Gaussiaming the distribution
of the foreground parts, i.e.and Y, the table representingb) and the parameteM,
governing the background densities. It will be helpful ted@pose) into four parts,
following the factorization in Equation (2).

Q(018) = Q1(816) + Q:2(016) + Q3(616) + Qu

= Ellogp(n;|6)] + Y Eflog p(bi[6)] + > _ Eflog p(X?, x}" |h;, m;, )]

i=1 i=1 i=1
I

+ > Eflog p(h;|n;, b;)]

i=1

Only the first three terms depend on parameters that will loetgol during EM.



Update rule for i Since onlyQs; depends om, taking the derivative of the expected
likelihood yields

5 Qa(016) = ZE[ i),

wherez” = (x°T x™T) according to our definition above. Setting the derivative to
zero yields the following update rule

L

N|’—‘

Update rule for X Similarly, we obtain for the derivative with respect to teérse
covariance matrix

0
)

Equating with zero leads to

I
QB0 =3B |35 S i ).

i=1

1

—Z =)' =1 Blaiz] - i

»\1

Update rule for p(b) To find the update rule for th"" probability masses qgf(b),

we need to conS|d€@2(9|¢9) the only term depending on these parameters. Taking the
derivative with respect tg(b), the probability of observing ongpecificvector,b, we
obtain

0 AN ! E[dy p]
—aﬁ(B)QQ(GW)f; FOR

wheres shall denote the Kronecker delta. Imposing the constiagti(b) = 1, for
instance by adding a Lagrange multiplier term, we find théo¥ahg update rule for

p(b),

Update rule for M Finally, we notice that), (4|6) is the only term containing infor-
mation about the mean number of background points per gaetity;. Differentiating
Q1 (66) with respect taVI we find,

0 Q1(8]6) :ZEE‘

Equating with zero leads to the intuitively appealing résul
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Computing the Sufficient Statistics All update rules derived above are expressed in
terms ofsufficient statisticsE[z], E[zz”], E[4,, 5] and E[n] which are calculated in

the E-step of the EM algorithm. We therefore considerbsteriordensity,

p(hz,xm,Xo‘e)
h, x| X2, 0) = o
p( ir X ‘ i ) Zh,-e?-lbfp(hhxz’?l’Xﬂa) dx;n

The denominator in the expression above, which is equalXy), is calculated by ex-
plicitly generating and summing over all hypotheses, winitegrating out the missing
data of each hypothesis. The expectations are calculatadimilar fashion:E[dy, p]

is calculated by summing only over those hypotheses cemsistith b and dividing
by p(X?). Similarly, E[n;] is calculated by averaging(h) over all hypotheses. The
case ofE[z] is slightly more complicated. For every hypothesis we ragre’ =
(x°T x™T) and note thaF[x°] = x°. For E[x™] one needs to calculate,

/Xm Glzlp, X) dx™ = p™ + ™02 (x — ),

_ NO _ EOO E()m

Summing over all hypothesis and dividing pyX °) establishes the result. Finally we

need to calculate
o0T 0 m1T
T x°x x°E[x™]
E[ZZ ] - (E[Xm]xoT E[XmeT]) .

where we defined,

Here, only the parE[x™x™"] has not yet been considered. Integrating out the missing
dimensionsx™, now involves,

/XmeT G(z|,u2) de — ymm _ EmoEooflzmoT + E[Xm]E[Xm]T

Looping through all possible hypotheses and dividingplfyX?) again provides the
desired result. This concludes the E-step of the EM algarith

6 Experiments

In order to validate our method, we tested the performanedeuthe classification
task described in Sect. 3.3, on two data sets: images of ieas\of cars and images
of human faces. As mentioned in Sec. 3, the experimentsideddbelow have been
performed with a translation invariant extension of ourté@g method. All parameters
of the learning algorithm were set to the same values in bgteréments.

2 |ntegrating out dimensions of a Gaussian is simply done Iatitg the means and covariances
of those dimensions and multiplying by the suitable norpadion constant.
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Fig. 4. Results of the learning experiments. On the left we show #st performing car model
with four parts. The selected parts are shown on top. Beltipses indicating a one-std deviation
distance from the mean part positions, according to thegyfotend pdf have been superimposed
on atypical testimage. They have been aligned by hand @mtititive purposes, since the models
are translation invariant. In the center we show the bestpant face model. The plot on the right
shows average training and testing errors measuréd-asroc, whereAgoc is the area under
the corresponding ROC curve. For both models, one obsereelenate overfitting. For faces,
the smallest test error occursdaparts. Hence, for the given amount of training data, thifiés t
optimal number of parts. For caspr more parts should be used.

Training and Test Images For each of the two object classes we tawk images
showing a target object at an arbitrary location in clutdebackground (Fig. 1, left).
We also took200 images of background scenes from the same environmentjdexcl
ing the target object (Fig. 1, right). No images were disedrdy hand prior to the
experiments. The face images were taken indoors as well tdeang and contained
30 different people (male and female). The car images weregain public streets
and parking lots where we photographed vehicles of diffesees, colors and types,
such as sedans, sport utility vehicles, and pick-up tru€ks. car images were high-
pass filtered in order to promote invariance with respeché¢odifferent car colors and
lighting conditions. All images were taken with a digitaheera; they were converted
to a grayscale representation and downsampled to a resohft240 x 160 pixels.

Each image set was randomly split into two disjoint setsaifitng and test images.
In the face experiment, no single person was present in letgh s

Fig. 5. Multiple use of parts: The three-part model on the left octiyeclassified the four images
on the right. Part labels ar€) = ‘A, O =‘B’, ¢ ='C’. Note that the middle part (C) exhibits
a high variance along the vertical direction. It matcheegs#Mocations in the images, such as
the bumper, license plate and roof. In our probabilistiofeavork, no decision is made as to the
correct matchRather, evidence is accumulated across all possible emtch



Automatically Selected Parts Parts were automatically selected according to the pro-
cedure described in Sec. 4. The Forstner interest opexa®applied to thé00 unla-
beled and unsegmented training images containing instasfabe target object class.
We performed vector quantization on grayscale patchegel $ix 11 pixels, extracted
around the points of interest. A different set of patterns weduced for each object
class, as shown in Figure 3.

Model Learning We learned models with, 3, 4, and5 parts for both data sets. Since
the greedy configuration search as well as the EM algorithmpeaentially converge
to local extrema, we learned each model up@od times, recording the average classi-
fication error.

All models were learned from the entire set of selected pegsace, no knowledge
from the training of small models about the usefulness ofispaas applied during the
training of the larger models. This was done in order to itigate to what extent the
same parts were chosen across model sizes.

We found the EM algorithm to converge in abddb iterations, which corresponds
to less tharl0s for a model with two parts and abomin for a five-part model. We
used a Matlab implementation with subroutines written ihd@d a PC withd50MHz
Pentium Il processor. The number of different part confitjares evaluated varied from
about’80-150 (2 parts) ta300—400 (5 parts).

Results Instead of classifying every image by applying a fixed decighreshold ac-
cording to (3), we computed receiver operating charadiesigROCs) based on the
ratio of posterior probabilities. In order to reduce sawigjtto noise due to the limited
number of training images and to average across all posgiiles for the decision
threshold, we used the area under the ROC curve as a meashesctdssification per-
formance driving the optimization of the model configuratitn Figure 4, we show
two learned models as well as this error measure as a furatithe number of parts.

Examples of successfully and wrongly classified images ftentest sets are shown
in Fig. 6.

When inspecting the models produced, we were able to maleradaénteresting
observations. For example, in the case of faces, we founiiration that eye corners
are very good parts. But our intuition was not always corileeatures along the hairline
turned out to be very stable, while parts containing noses ainost never used in the
models.

Before we introduced a high-pass filter as a preprocessépg tte car models con-
centrated on the dark shadow underneath the cars as mdst fetature. Researchers
familiar with the problem of tracking cars on freeways canfid that the shadow is
often the easiest way to detect a car.

Oftentimes the learning algorithm took advantage of thétleet some part detec-
tors respond well at multiple locations on the target olsj€Eig. 5). This effect was
most pronounced for models with few parts. It would be ditfito predict and exploit
this behavior when building a model “by hand.”

Since we ran the learning process many times, we were abssésathe likelihood
of converging to local extrema. For each size, models witfeidint part choices were
produced. However, each choice was produced at least arfeag tRegarding the EM
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Fig. 6. Examples of correctly and incorrectly classified imagesnifthe test sets, based on the
models in Fig. 4. Part labels ar€) = ‘A, O ='B’, ¢ ='C’, v =‘D’. 100 foreground and 00
background images were classified in each case. The detisieshold was set to yield equal
error rate on foreground and background images. In the ddaees,93.5% of all images were
classified correctly, compared 86.5% in the more difficult car experiment.

algorithm itself, we only observed one instance, where argshoice of parts resulted
in several different classification performances. Thisl¢eas to conclude that the EM
algorithm is extremely unlikely to get stuck in a local maxim.

Upon inspection of the different part types selected aamsdel sizes, we noticed
that about half of all parts chosen at a particular modelwize also present in smaller
models. This suggests that initializing the choice of paith parts found in well per-
forming smaller models is a good strategy. However, onelskstill allow the algorithm
to also choose from parts not used in smaller models.

7 Discussion and Future Work

We have presented ideas for learning object models in anpengised setting. A set
of unsegmented and unlabeled images containing examptagexfts amongst clutter
is supplied; our algorithm automatically selects disfweparts of the object class, and
learns the joint probability density function encoding tigect's appearance. This al-
lows the automatic construction of an efficient object d@tewhich is robust to clutter
and occlusion.

We have demonstrated that our model learning algorithm sveuk cessfully on two
different data sets: frontal views of faces and rear viewshofor-cars. In the case of
faces, discrimination of images containing the desire@ahys. background images
exceed9)0% correct with simple models composed of 4 parts. Performamccars
is 87% correct. While training is computationally expensive,adtion is efficient, re-
quiring less than a second in our C-Matlab implementatidmis Suggests that training
should be seen as an off-line process, while detection mayemented in real-time.

The main goal of this paper is to demonstrate that it is féadip learn object
models directly from unsegmented cluttered images, anddeige ideas on how one
may do so. Many aspects of our implementation are suboptntdhkusceptible of im-
provement. To list a few: we implemented the part detectsirsgunormalized correla-
tion. More sophisticated detection algorithms, involvingltiscale image processing,
multiorientation-multiresolution filters, neural netwsretc. should be considered and
tested. Moreover, in our current implementation only pathe information supplied



by the detectors, i.e. the candidate part’s location, igludee scale and orientation
of the image patch, parameters describing the appearartbe platch, as well as its
likelihood, should be incorporated. Our interest operatorvell as the unsupervised
clustering of the parts have not been optimized in any rdsgee choice of the algo-
rithms deserves further scrutiny as well. An important aspdere our implementation
falls short of generality is invariance: the models we learand tested are translation
invariant, but not rotation, scale or affine invariant. Véhihere is no conceptual limit
to this generalization, the straightforward implemeitatbf the EM algorithm in the
rotation and scale invariant case is slow, and thereforedotgal for extensive experi-
mentation.
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