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hnologyPasadena, CA 91125Abstra
tWe present a method to learn obje
t 
lass models forthe purpose of obje
t re
ognition. We fo
us on a par-ti
ular type of model where obje
ts are represented as
onstellations of rigid features (parts). The variabil-ity within a 
lass is represented by a joint probabilitydensity fun
tion (pdf) on the shape of the 
onstella-tion and the output of feature dete
tors. The pdf maybe estimated from training data on
e a model stru
ture(type and number of features) has been spe
i�ed. Themethod automati
ally identi�es distin
tive features inthe training set and learns the statisti
al shape model.It is assumed that a set of generi
 feature dete
torsis available for the learning algorithm to 
hoose from.The entire set of model parameters is learned usingexpe
tation maximization.1 Introdu
tion and Related WorkWe are interested in the problem of re
ognizingmembers of obje
t 
lasses, where we de�ne an obje
t
lass as a 
olle
tion of obje
ts whi
h share 
hara
teris-ti
 parts or features that are visually similar and o

urin similar spatial 
on�gurations.Several solutions to this problem have re
ently beenproposed. In parti
ular, Amit and Geman have devel-oped a method for visual sele
tion whi
h learns a hier-ar
hi
al model with a simple type of feature dete
tor(edge elements) at the lowest level [1℄. The method as-sumes that training images are registered with respe
tto a referen
e grid. After an exhaustive sear
h throughall possbile lo
al feature dete
tors, a global model isbuilt, under whi
h shape variability is en
oded in theform of small regions in whi
h lo
al features 
an movefreely.We have proposed a statisti
al model in whi
hshape variability is modeled in a probabilisti
 settingusing Dryden-Mardia shape spa
e densities [2, 3℄.One should also mention the a
tive appearan
emodels of Taylor et al. [4, 6℄ whi
h model global de-formations using Eigenspa
e methods, as well as theDynami
 Link Ar
hite
ture of v. der Malsburg and


olleagues, who 
onsider deformation energy of a gridthat links landmark points on the surfa
e of obje
ts[7℄. Also Yuille has proposed a re
ognition methodbased on gradient des
ent on a deformation energyfun
tion in [9℄.In this paper, we are 
on
erned with several short-
omings of the above methods, related, in parti
ular,to the training of su
h models. Learning models likethe ones des
ribed above, typi
ally requires a super-vised stage in whi
h the following questions need tobe answered:� Whi
h obje
ts are to be re
ognized?� Whi
h obje
t features are distin
tive and stable?� What are the parameters of the global geometryor shape model that best des
ribe the trainingdata?By the �rst question we mean that target obje
ts mustbe identi�ed in training images, be it by sele
tion ofpoints or regions on the surfa
e of the obje
ts or bysegmenting the obje
ts from the ba
kground. Thequestion of whi
h obje
t features are distin
tive as wellas stable a
ross di�erent obje
ts of the same 
lass isoften left unanswered or approa
hed by heuristi
s orpro
edures of hand-sele
tion by a trained human op-erator. However, it is generally not established, thatfeatures that appear distin
tive to the human observerwill also lend themselves to su

essful dete
tion by ama
hine. A notable ex
eption represents the work byWalker et al. who address this problem in [8℄, albeitoutside the realm of statisti
al shape models. Thethird problem is 
ommonly solved through some opti-mization te
hnique.We propose in this paper a method whi
h addressesall three problems at on
e. A 
ompelling reason totreat these problems jointly, is the existing trade-o�between lo
alizability and distin
tiveness. A very dis-tin
tive feature 
an be a strong 
ue, even if it appearsin an arbitrary lo
ation on the surfa
e of an obje
t|think e.g. of a manufa
turer's logo on a 
ar. On the



other hand, a less distin
t feature 
an only 
ontributeinformation if it o

urs in a stable spatial relationshiptrelative to other features.2 Approa
hWe assume that instan
es of an obje
t 
lass are de-s
ribed through a 
hara
teristi
 set of features (parts),whi
h 
an o

ur at variable spatial lo
ations. Theparts are modeled as rigid, photometri
 patterns andthe positional variability is represented using a prob-ability density fun
tion over the point lo
ations ofthe obje
t features. Although our previously intro-du
ed obje
t model allows to treat part 
onstellationsin shape spa
e, and thus a
hieves pose invariant dete
-tion, the learning method presented here in
orporatesonly invarian
e with respe
t to translation, not rota-tion and s
ale. We assume that the part positions,after translation has been eliminated by des
ribing allfeature positions relative to one referen
e feature, arewell represented by a Gaussian pdf.Formally, the dete
tion problem amounts to de
id-ing whether an instan
e of the 
lass (the foreground)is present in the image, or whether the image 
ontainsonly 
lutter (ba
kground). The problem of dete
tingthe exa
t position of the obje
t in the image 
an betreated under the same framework.The two stages of our re
ognition method are anindependent dete
tion of obje
t features, using di�er-ent types of feature dete
tors, followed by a hypothesisevaluation stage. During the latter, small sets of 
an-didate lo
ations in the image, whi
h have been labeledby the feature dete
tors, are evaluated as to their like-lihood of a
tually 
orresponding to an instan
e of theobje
t 
lass.We assume that the feature dete
tor responsesevoked by the ba
kground (the false dete
tions) aredistributed uniformly a
ross the image and are inde-pendent of ea
h other and of the foreground. Thisassumption is key to our method, whi
h, in a nut-shell, 
an be seen as �tting a mixture density modelto the data, whi
h 
onsists of a joint Gaussian densityover all foreground dete
tor reponses and a uniformdensity over ba
kground responses.The problem we are addressing in this paper isthree-fold, although we propose a single algorithm tosolve it.Firstly, we would like to avoid segmentation or la-beling of training images by hand. Ideally, the trainingalgorithm should determine whi
h parts of the image
ontain the obje
ts of interest. This may sound 
on-tradi
tory, as dete
ting the obje
ts was pre
isely theproblem we set out to solve in the �rst pla
e, but ourexperiments show that it is possible under 
ertain 
on-ditions. Se
ondly, we want to sele
t from a larger setof feature dete
tors the ones whi
h are able to 
on-sistently identify a shared feature of the obje
t 
lass.Finally, also the global shape representation should be

learned autonomously.We assume that we have at our disposal T trainingimages, identi�ed by subs
ripts � , and we suppose thata large number of simple generi
 dete
tors for featuressu
h as 
orners, dots or other points of high texture
ontent is available.The problem then be
omes to sele
t a subset offeature dete
tors, i.e. to 
hoose a model 
on�guration,and to learn the parameters of the global geometrymodel, with the �nal goal of maximizing re
ognitionperforma
e.To solve this problem, we �rst apply all feature de-te
tors to the training images and retain only the posi-tions at whi
h a given dete
tor has maximal response(lo
ally) on a given image. The only training data ex-tra
ted from the images are these 
andidate lo
ations.In order to a
hieve a high re
ognition performan
e,we then optimize for the maximum likelihood �t ofour obje
t model to the training data, using the EMalgorithm.2.1 NotationFor the remainder of this paper, we assume thata number, F , of feature dete
tors has been sele
tedto be part of the model. Although an obje
t 
ould, inprin
iple, exhibit several features of the same type, weassume for now, that every dete
tor is in
luded in themodel at most on
e, to avoid further 
ompli
ation ofthe following presentation. The extension to multiplefeatures of the same type is straightforward. As a fur-ther simpli�
ation, we derive the learning algorithmfor a Gaussian density of part positions in the image.The ne
essary 
hanges to obtain the translation ivari-ant version used in the experiments are minor. Thisis due to the fa
t that swit
hing to a representationwhere feature positions are des
ribed relative to a ref-eren
e feature, involves only a linear transformationand there is thus no need to depart from the 
lass ofGaussian pdf's.All information extra
ted from a training image,I� , is represented in the following matrix of feature
andidate positions,Xo = 0BBB� x11x12; : : : ; x1N1x21x22; : : : ; x2N2...xF1xF2; : : : ; xFNF :Every row 
ontains the (two dimensional) lo
ations ofdete
tions of feature type f .We will use the following random variables, whi
hrepresent either expli
it or unobserved information,D = fXo� ;xm� ;n� ;h� ;b�g:Here, h denotes a set of indi
es, also 
alled a hypoth-esis, for reasons to be
ome evident later, indi
ating



whi
h points in Xo are from the foreground distri-bution (i.e. on the surfa
e of the obje
t), so thathi = j; j > 0, means that point xij is a foregroundpoint, while j = 0 indi
ates that the 
orrespondingfeature has not been in
luded in Xo be
ause it is hasnot been dete
ted. We denote by b a binary ve
torwhi
h has entry bf = 1 if hf > 0 and zero otherwise.The positions of the o

luded or missed foregroundfeatures are 
olle
ted in a separate ve
tor xm. Thesize of xm varies between 0 and F depending on thenumber of unobserved features. Finally n� denotesthe number of ba
kground dete
tions. All variables,ex
ept Xo are 
onsidered hidden.2.2 The ModelFor a given training image, I� , we 
an write theprobability density fun
tion modeling the data as:p(Xo� ;xm� ;h� ;n� ;b� ) =p(n� ) p(b� ) p(h� jn� ;b� )�p(Xo� ;xm� jh� ;n� ;b� ):The probability density over the number of ba
k-ground dete
tions is modeled by a Poisson1 distribu-tion, p(n) = FYf=1 1nf ! (Mf )nf e�Mf ;whereMf is the average number of ba
kground dete
-tions per image. Admitting a di�erent Mf for everyfeature allows us to model di�erent dete
tor statisti
sand, ultimately, to distinguish between more or lessreliable dete
tors.The probability p(b) is modeled expli
itely by atable of size 2F whi
h equals the number of possiblebinary ve
tors of length F . If F is large, the expli
itprobability mass-table of length 2F might be
ome un-reasonably long. In that 
ase we 
an assume indepen-den
e between the feature dete
tors and model p(b)by a produ
t of independent densities,p(b) = FYf=1 p(bf ):The number of parameters redu
es in that 
ase from2F to F .The density p(hjn;b) is modeled by,p(hjn;b) = ( 1QFf=1 Nbff h 2 Hb0 other hwhere Hb denotes the set of all hypotheses 
onsistentwith b and n, and Nf denotes the total number ofdete
tions of feature f .1Given that we are dealing with a dis
rete set of pixel lo
a-tions, a binomial distribution might seem more natural. How-ever, sin
e the Gaussian foreground density is de�ned over a
ontinuum of part positions, the Poisson distribution is the nat-ural 
ounterpart for the ba
kground pro
ess.

Finally, we usep(Xo;xmjh;n) = G(zj�;�)U(xbg);where we de�ned zT = (xo xm) as the 
oordinates ofthe hypothesized foreground dete
tions (observed andmissing) and xbg as the 
oordinates of the ba
kgrounddete
tions. G(zj�;�) denotes a Gaussian with mean� and 
ovarian
e �. The positions of the ba
kgrounddete
tions are modeled by a uniform density,U(xbg) = FYf=1 1Anf ;where A is the area 
overed by the image.3 The EM algorithmSin
e our dete
tion method relies on the maximuma posteriori probability (MAP) prin
iple, we will ob-tain maximum dete
tion performan
e for those pa-rameters whi
h optimize the joint data likelihood. Asmentioned above, we treat as missing data the h, theb and the n. The positions of unobserved foregroundfeatures, i.e. those 
orresponding to zero entries in h,are 
olle
ted in xm and are, quite naturally, 
onsideredmissing as well.In standard EM fashion, we attempt to maximizethe log-likelihood of the observed data, whi
h is givenas L(Xoj~�) =TX�=1 logXh� Xb� Xn� Z p(Xo� ;xm� ;h� ;n� ;b� j�) dxm� ;where � represents the set of all parameters of themodel. Sin
e maximizing sums and integrals of a log-arithm is diÆ
ult in pra
ti
e, we 
hoose to 
omputeQ(~�j�) = TX�=1E[log p(Xo� ;xm� ;h� ;n� ;b� j~�)℄:where E[:℄ denotes taking the expe
tation withrespe
t to p(h� ;xm� ;n� ;b� jXo� ; �). Throughout thisse
tion, a tilde denotes parameters we are optimizingfor, while no tilde implies that the values from theprevious iteration are substituted. EM theory [5℄guarantees that the maximum of Q(~�j�) is at themaximum of the log-likelihood. The EM algorithmis a re
ipe to �nd this maximum (or at least a lo
almaximum) iteratively.Let us now derive update rules that will be used inthe M-step of the EM algorithm. The parameters weneed to 
onsider are those of the Gaussian governingthe distribution of the foreground features, i.e. � and�, the parameters of the density p(b) whi
h we willmodel expli
itly as a table of probability masses and



the parameters governing the ba
kground densities,M. It will be helpful to de
ompose Q into four partsQ(~�j�) = Q1(~�j�) +Q2(~�j�) +Q3(~�j�) +Q4(�)= TX�=1E[log p(n� j�)℄ + TX�=1E[log p(b� j�)℄+ TX�=1E[log p(Xo� ;xm� jh� ;n� ; �)℄+ TX�=1E[log p(h� jn� ;b� )℄The �rst three terms 
ontain parameters that will beupdated in the EM, while the last term 
ontains nonew parameters.Update rule for �Sin
e only Q3 depends on ~�, taking the derivative ofthe expe
ted likelihood yields��~�Q3(~�j�) = TX�=1E h~��1(z� � ~�)i ;where zT = (xo xm) a

ording to our de�nition above.Setting the derivative to zero yields the following up-date rule ~� = 1T TX�=1E[z� ℄:Update rule for �Similarly, we obtain for the derivative with respe
t tothe inverse 
ovarian
e matrix�� ~��1Q3(~�j�) = TX�=1E �12 ~�� 12(z� � ~�)(z� � ~�)T� :Equating with zero leads to~� = 1T TX�=1E[(z��~�)(z��~�)T ℄ = 1T TX�=1E[z�zT� ℄�~�~�T :Update rule for p(b)To �nd the update rule for the 2F probability massesof p(b), we need to 
onsiderQ2(~�j�) be
ause this is theonly term that depends on these parameters. Takingthe derivative with respe
t to ~p(�b) we �nd,��~p(�b)Q2(~�j�) = TX�=1 E[Æb;�b℄~p(�b)Imposing the 
onstraint P�b2B ~p(�b) = 1, for instan
eby adding a Lagrange multiplier term), we �nd the

following update rule for ~p(�b),~p(�b) = 1T TX�=1E[Æb;�b℄:Update rule for MFinally, we noti
e that Q3(~�j�) is the only term 
on-taining information about the mean number of ba
k-ground points per featureMf . Di�erentiating Q3(~�j�)with respe
t to ~M we �nd,�� ~MQ3(~�j�) = TX�=1 E[n� ℄~M � I:Equating to zero gives the intuitive result,~M = 1T TX�=1E[n� ℄:Computing the SuÆ
ient Statisti
sIn the previous se
tions we 
al
ulated the expressionsneeded for the M-step in the EM algorithm. All up-dates rules are expressed in terms of the so 
alled `suf-�
ient statisti
s' E[z℄; E[zzT ℄; E[Æb;�b℄ and E[n℄. Wewill now 
al
ulate these suÆ
ient statisti
s in what isformally 
alled the E-step of the EM algorithm. Inorder to do this we need to 
onsider the posterior den-sity. It is given by,p(h� ;xm� ;n� ;b� jXo� ; �) =p(h� ;xm� ;n� ;b� ; Xo� j�)Ph�2HbPb�2BP1n�=0 R p(h� ;xm� ;n� ;b� ; Xo� j�) dxm�We will �rst simplify the `zoo' of variables a bit by ob-serving that if we perform summations in the followingorder, Xh�2Hb Xb�2B 1Xn�=0we may repla
e n = N � b, where N is the to-tal number of dete
tions per feature type, and forgetthe summation over n. Furthermore, we may repla
eb = sign(h) (with sign(0) = 0) and forget the sum-mation over b. In the following we will assume thissimpli�
ation and treat n and b as fun
tions of h. Thedenominator in the expression above, p(Xo� ), is 
al
u-lated as follows. Choose a hypothesis 
onsistent withthe observed data. Integrate out the missing data inthat hyposthesis2. Cal
ulate b(h) and n(h) and insertthem into the joint density. Finally, sum over all pos-sible hypothesis. The expe
tations of the statisti
s are
al
ulated in a similar fashion. E[Æb;�b℄ is 
al
ulated by2Integrating out dimensions of a Gaussian is simply done bydeleting the means and 
ovarian
es of those dimensions



summing only over those hypotheses 
onsistent with�b in the numerator and dividing by p(Xo� ). Similarly,E[n� ℄ is 
al
ulated by averaging n(h) over all hypothe-ses. The 
ase E[z℄ is slightly more 
ompli
ated. Forevery hypothesis we make the split zT = (xo xm).E[xo℄ = xo be
ause there is no dependen
e on hiddeninformation. For E[xm℄ one needs to 
al
ulate,Z xm G(zj�; �) dxm = �m +�mo�oo�1(xo � �o);where we de�ned,� = � �o�m � � = � �oo �om�mo �mm �Doing this for every 
onsistent hypothesis, summingand dividing by p(Xo� ) establishes the result. Finallywe need to 
al
ulateE[zzT ℄ = � xoxoT xoE[xm℄TE[xm℄xoT E[xmxmT ℄ �Only the part E[xmxmT ℄ has not been 
onsidered.Again, we will make the split zT = (xo xm) for evey
onsistent hypothesis. Integrating out the missing di-mensions, xm, now involves,Z xmxmT G(zj�; �) dxm =�mm � �mo�oo�1�moT +E[xm℄E[xm℄T :Looping through all possible hypotheses and dividingby p(Xo� ) again provides the desired result. This 
on-
ludes the E-step of the EM algorithm.As des
ribed so far, our method assumes that amodel 
on�guration (the number and types of featuredete
tors) has been 
hosen prior to the EM phase.Without any further elaborate strategy, we would haveto �t a model for every possible model 
on�guration,hoping to �nd a model with satisfa
tory re
ognitionperforman
e. We will present, in the next se
tion, amethod to avoid this exhaustive sear
h through 
on-�guration spa
e.4 ExperimentsFor the experiments des
ribed in this se
tion, weused a translation invariant extension of the abovederivations. The algorithm 
ould have been used asdes
ribed above, if the training images had been pre-pared su
h that the target obje
t is in the same lo
a-tion in every image. This is in
onvenient, espe
iallysin
e our goal is to eliminate the need for user inter-vention.4.1 Choi
e of Dete
torsFor a general re
ognition task, the set of featuredete
tors should 
ontain a large number of simplegeneri
 dete
tors of basi
 features su
h as 
orners, T-jun
tions, line endings, line 
rossings et
. However,

Detector 1 Detector 2 Detector 3 Detector 4

Detector 5 Detector 6 Detector 7 Detector 8

Detector 9 Detector 10 Detector 11 Detector 12

Detector 13 Detector 14Figure 1: The above 14 templates were used as 
or-relation masks for the letter re
ognition experiment.The templates are normalized su
h that the mean isequal to zero.it is of 
ourse possible to add more spe
i�
 dete
tors,in the 
ase where prior knowledge about the possibletarget obje
ts is available.For the following demonstration of our method, weused a set of 14 simple 
orrelation templates, whi
hare shown in Figure 1.4.2 Learning LettersWe performed a re
ognition experiment on a set of30 \Dilbert" 
omi
 strips. The 
artoons had a sizeof 500 � 200pixels. Sin
e the original resolution wasfairly low, we applied the templates only at the high-est available resolution. To illustrate the feasability ofour method we attempted to learn several letters (`E',`T', `H' and `L') from the text segments of the 
omi
strips. This 
hoi
e was in part motivated by the fa
tthat the letters are hand-written, whi
h ensures a 
er-tain degree of variability a
ross ea
h 
lass. We used6 strips for training, whi
h provided us with 40{60training samples per letter. We presented ea
h letterin a window of approximately 12 times the area of asingle letter. Every letter was thus seen in its \natu-ral surrounding" (Fig. 2). The main limitation for theamount of ba
kground area in the training images isthe number of feature 
andidates en
ountered in theba
kground and the resulting 
omputational 
ost dueto the large number of hypothesis that need to be 
on-sidered during model learning.Greedy Con�guration Sear
hAfter applying all feature dete
tors to the trainingsamples, we 
hose the following greedy strategy to ex-plore di�erent model 
on�gurations.In a �rst step, we explore 
on�gurations with afew (e.g. three) di�erent features. The 
on�gura-tion whi
h yields the smallest training error (measuredas the probability of mis
lassi�
ation), is 
hosen andaugmented by one feature, trying all possible types.The best of these augmented models is then retainedfor subsequent augmentation. This pro
ess should be
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Figure 2: A text segment of a 
artoon is shown onthe top. One strip typi
ally 
ontains up to six su
hsegments. The frame in the upper image illustratesthe size of a training image. On the bottom we show a
olle
tion of 9 training \pat
hes" for ea
h letter. Notethat adja
ent letters are in
luded together with thetarget letter, whi
h is appearing in a di�erent lo
ationin every training image.stopped as soon as a 
riterion for model 
omplexity(su
h as an MDL measure) or desired dete
tion per-forman
e is met. In our 
ase we simply 
hose a totalnumber of �ve features in the model as a 
omplexitythreshold. It is possible, that no further improvementin dete
tion performan
e is obtained even before themaximum number of features is rea
hed. This was the
ase for the `L' and `T' models presented below.We found the EM algorithm to 
onverge rapidly in10 - 100 iterations. One iteration took about a se
ondusing a Matlab implementation of the method.Two of the learned models are presented in Fig-ure 3.Performan
e EvaluationWe measured dete
tion performan
e using 20 
omi
strips that were not in
luded in the training set. Here,
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Figure 3: We show the models learned for the letters`E' and `T'. Ellipses are shown at a one standard de-viation distan
e from the mean feature positions. Thefeature position are measured relative to a referen
efeature. No varian
e is shown for this feature, as theatta
hed variability would 
orrespond to overall trans-lation of the obje
t. The features 
hosen for the `E'are of types 3, 5 and 8, those for the `T' are of types1 to 3 and 12.we used the entire strips, in
luding not only the textregions but also the line drawings whi
h 
omprisedsome textured regions.Rather than 
lassifying every lo
ation in the imageby applying a �xed threshold, we 
omputed re
eiveroperating 
hara
teristi
s (ROCs), whi
h are shown inFig. 4.The overall dete
tion performan
e was good. Thisis, in part, due to the fa
t that line drawings do notsu�er from the typi
al 
hanges in appearan
e due todi�erent lighting 
onditions or 
hanges of pose in threedimensions, so that a reliable dete
tion of the featureswas obtained even with the simple dete
tors. The per-forman
e on individual letters seems to be governed bythe performan
e of the feature dete
tors. In parti
u-lar, obje
ts tend to be missed when individual featuresare not dete
ted. This o

ured mostly when letterswere too 
lose to adja
ent ones.As 
an be seen in the �gure, the performan
e of the`L'-dete
tor was 
onsiderably worse than that of theother three. This is due to the fa
t that the modelof the `L' 
ontains only three features. The result aremany false negatives, sin
e the letter is missed easilyas soon as one feature is missed.We present examples of image pat
hes with a highprobability of being mis
lassi�ed (see Figs. 5 and 6).Without settling on a parti
ular de
ision threshold, we
an identify those by pi
king the foreground sampleswith the lowest likelihood and the ba
kground lo
a-tions with the highest likelihood.A 
omplete strip with dete
tions of the letter 'E' isshown in Fig. 7.An interesting observation made during these ex-periments is that the model sometimes in
luded fea-tures from neighboring letters. If we suppose that theba
kground patterns in the training set resemble those
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Figure 4: ROC 
urves show the dete
tion performan
eof all four letter dete
tors. The probability of falsealarm is res
aled to re
e
t the expe
ted performan
eon an image of the size of the 
artoon strips. The prob-abilities of error at an operating point where the pro-bilities of false positives and false negatives are equal,are 3:9% for `E', 4:2% for `T', 2:0% for `H' and 9:2%for `L'.en
ountered when the model is �nally put to work,then knowledge about the neighbors of a letter to bedete
ted 
an and should be used to improve the per-forman
e.5 Con
lusion and Future WorkWe have presented a method whi
h 
an learn anoptimal obje
t 
lass model|in a maximum likeli-hood sense|with respe
t to the set of employed fea-ture dete
tors, as well as all other model parameters.The method signi�
antly fa
ilitates model a
quisition,sin
e human supervision is redu
ed to a minimum.Limitations are the remaining need for normaliza-tion for rotation and s
ale. The greedy strategy usedto sear
h possible model 
on�gurations also proved tobe relatively slow, whi
h is why we are 
urrently in-vestigating a method whi
h dynami
ally introdu
es orsuppresses Gaussian 
lusters during the maximizationpro
ess. We are also investigating the possiblity to di-re
tly learn a true shape model instead of a pdf overfeature position in the image plane.Referen
es[1℄ Yali Amit. A neural network ar
hite
-ture for visual sele
tion. Available athttp://galton.u
hi
ago.edu/~amit, November1998.
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Figure 5: Shown are, for every letter, the 16 lo
ationson the ba
kground of test images whi
h yielded thehighest likelihood.
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Figure 6: For every letter, we show the 16 lowest s
or-ing 
orre
t lo
ations.
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omi
 strip with dete
tions of the letter `E'. A few `E's were missed and a few `I's as well asother ba
kground noise were dete
ted. The threshold for this experiment was set su
h that at least 90% of alltrue o

uren
es of the letter were dete
ted throughout the 20 test strips.[2℄ M.C. Burl, T.K. Leung, and P. Perona. \Re
og-nition of Planar Obje
t Classes". In Pro
. IEEEComput. So
. Conf. Comput. Vision and PatternRe
ogn., 1996.[3℄ M.C. Burl, M. Weber, and P. Perona. A probabilis-ti
 approa
h to obje
t re
ognition using lo
al pho-tometry and global geometry. In pro
. ECCV'98,pages 628{641, 1998.[4℄ T.F. Cootes and C.J. Taylor. \Lo
ating Obje
tsof Varying Shape Using Statisti
al Feature Dete
-tors". In European Conf. on Computer Vision,pages 465{474, 1996.[5℄ A. Dempster, N. Laird, and D. Rubin. Maximumlikelihood from in
omplete data via the em algo-rithm. Journal of the royal statisti
al so
iety B,39:1{38, 1976.[6℄ G.J. Edwards, T.F.Cootes, and C.J.Taylor. Fa
ere
ognition using a
tive appearan
e models. InPro
. 5th Europ. Conf. Comput. Vision, H.Burkhardt and B. Neumann (Eds.), LNCS-SeriesVol. 1406{1407, Springer-Verlag, pages 581{595,1998.[7℄ M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange,C. v.d. Malsburg, R.P. Wurtz, and W. Konen.\Distortion Invariant Obje
t Re
ognition in theDynami
 Link Ar
hite
ture". IEEE Trans. Com-put., 42(3):300{311, Mar 1993.[8℄ K. N. Walker, T. F. Cootes, and C. J. Taylor.Lo
ating salient fa
ial features. In Int. Conf. on

Automati
 Fa
e and Gesture Re
ognition, Nara,Japan, 1998.[9℄ A.L. Yuille. \Deformable Templates for Fa
eRe
ognition". J. of Cognitive Neuros
i., 3(1):59{70, 1991.


