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Abstract

We present a method to learn object class models for
the purpose of object recognition. We focus on a par-
ticular type of model where objects are represented as
constellations of rigid features (parts). The variabil-
ity within a class is represented by a joint probability
density function (pdf) on the shape of the constella-
tion and the output of feature detectors. The pdf may
be estimated from training data once a model structure
(type and number of features) has been specified. The
method automatically identifies distinctive features in
the training set and learns the statistical shape model.
It is assumed that a set of generic feature detectors
is available for the learning algorithm to choose from.
The entire set of model parameters is learned using
expectation mazximization.

1 Introduction and Related Work

We are interested in the problem of recognizing
members of object classes, where we define an object
class as a collection of objects which share characteris-
tic parts or features that are visually similar and occur
in similar spatial configurations.

Several solutions to this problem have recently been
proposed. In particular, Amit and Geman have devel-
oped a method for visual selection which learns a hier-
archical model with a simple type of feature detector
(edge elements) at the lowest level [1]. The method as-
sumes that training images are registered with respect
to areference grid. After an exhaustive search through
all possbile local feature detectors, a global model is
built, under which shape variability is encoded in the
form of small regions in which local features can move
freely.

We have proposed a statistical model in which
shape variability is modeled in a probabilistic setting
using Dryden-Mardia shape space densities [2, 3].

One should also mention the active appearance
models of Taylor et al. [4, 6] which model global de-
formations using Eigenspace methods, as well as the
Dynamic Link Architecture of v. der Malsburg and

colleagues, who consider deformation energy of a grid
that links landmark points on the surface of objects
[7]. Also Yuille has proposed a recognition method
based on gradient descent on a deformation energy
function in [9].

In this paper, we are concerned with several short-
comings of the above methods, related, in particular,
to the training of such models. Learning models like
the ones described above, typically requires a super-
vised stage in which the following questions need to
be answered:

e Which objects are to be recognized?
e Which object features are distinctive and stable?

e What are the parameters of the global geometry
or shape model that best describe the training
data?

By the first question we mean that target objects must
be identified in training images, be it by selection of
points or regions on the surface of the objects or by
segmenting the objects from the background. The
question of which object features are distinctive as well
as stable across different objects of the same class is
often left unanswered or approached by heuristics or
procedures of hand-selection by a trained human op-
erator. However, it is generally not established, that
features that appear distinctive to the human observer
will also lend themselves to successful detection by a
machine. A notable exception represents the work by
Walker et al. who address this problem in [8], albeit
outside the realm of statistical shape models. The
third problem is commonly solved through some opti-
mization technique.

We propose in this paper a method which addresses
all three problems at once. A compelling reason to
treat these problems jointly, is the existing trade-off
between localizability and distinctiveness. A very dis-
tinctive feature can be a strong cue, even if it appears
in an arbitrary location on the surface of an object
think e.g. of a manufacturer’s logo on a car. On the



other hand, a less distinct feature can only contribute
information if it occurs in a stable spatial relationship
trelative to other features.

2 Approach

We assume that instances of an object class are de-
scribed through a characteristic set of features (parts),
which can occur at variable spatial locations. The
parts are modeled as rigid, photometric patterns and
the positional variability is represented using a prob-
ability density function over the point locations of
the object features. Although our previously intro-
duced object model allows to treat part constellations
in shape space, and thus achieves pose invariant detec-
tion, the learning method presented here incorporates
only invariance with respect to translation, not rota-
tion and scale. We assume that the part positions,
after translation has been eliminated by describing all
feature positions relative to one reference feature, are
well represented by a Gaussian pdf.

Formally, the detection problem amounts to decid-
ing whether an instance of the class (the foreground)
is present in the image, or whether the image contains
only clutter (background). The problem of detecting
the exact position of the object in the image can be
treated under the same framework.

The two stages of our recognition method are an
independent detection of object features, using differ-
ent, types of feature detectors, followed by a hypothesis
evaluation stage. During the latter, small sets of can-
didate locations in the image, which have been labeled
by the feature detectors, are evaluated as to their like-
lihood of actually corresponding to an instance of the
object class.

We assume that the feature detector responses
evoked by the background (the false detections) are
distributed uniformly across the image and are inde-
pendent of each other and of the foreground. This
assumption is key to our method, which, in a nut-
shell, can be seen as fitting a mixture density model
to the data, which consists of a joint Gaussian density
over all foreground detector reponses and a uniform
density over background responses.

The problem we are addressing in this paper is
three-fold, although we propose a single algorithm to
solve it.

Firstly, we would like to avoid segmentation or la-
beling of training images by hand. Ideally, the training
algorithm should determine which parts of the image
contain the objects of interest. This may sound con-
tradictory, as detecting the objects was precisely the
problem we set out to solve in the first place, but our
experiments show that it is possible under certain con-
ditions. Secondly, we want to select from a larger set
of feature detectors the ones which are able to con-
sistently identify a shared feature of the object class.
Finally, also the global shape representation should be

learned autonomously.

We assume that we have at our disposal T training
images, identified by subscripts 7, and we suppose that
a large number of simple generic detectors for features
such as corners, dots or other points of high texture
content is available.

The problem then becomes to select a subset of
feature detectors, i.e. to choose a model configuration,
and to learn the parameters of the global geometry
model, with the final goal of maximizing recognition
performace.

To solve this problem, we first apply all feature de-
tectors to the training images and retain only the posi-
tions at which a given detector has maximal response
(locally) on a given image. The only training data ex-
tracted from the images are these candidate locations.
In order to achieve a high recognition performance,
we then optimize for the mazimum likelihood fit of
our object model to the training data, using the EM
algorithm.

2.1 Notation

For the remainder of this paper, we assume that
a number, F', of feature detectors has been selected
to be part of the model. Although an object could, in
principle, exhibit several features of the same type, we
assume for now, that every detector is included in the
model at most once, to avoid further complication of
the following presentation. The extension to multiple
features of the same type is straightforward. As a fur-
ther simplification, we derive the learning algorithm
for a Gaussian density of part positions in the image.
The necessary changes to obtain the translation ivari-
ant version used in the experiments are minor. This
is due to the fact that switching to a representation
where feature positions are described relative to a ref-
erence feature, involves only a linear transformation
and there is thus no need to depart from the class of
Gaussian pdf’s.

All information extracted from a training image,
I, is represented in the following matrix of feature
candidate positions,

T112125 -+ y T1IN,
T21X22, - -+ 3 L2Ny
X =
TF1TF2y--+ yTFNp

Every row contains the (two dimensional) locations of
detections of feature type f.

We will use the following random variables, which
represent either explicit or unobserved information,

D = {X?,x7,n,,h,.b,}.

Here, h denotes a set of indices, also called a hypoth-
esis, for reasons to become evident later, indicating



which points in X° are from the foreground distri-
bution (i.e. on the surface of the object), so that
h; = j, 7 > 0, means that point z;; is a foreground
point, while ;7 = 0 indicates that the corresponding
feature has not been included in X° because it is has
not been detected. We denote by b a binary vector
which has entry by = 1 if hy > 0 and zero otherwise.
The positions of the occluded or missed foreground
features are collected in a separate vector x". The
size of x™ varies between 0 and F' depending on the
number of unobserved features. Finally n, denotes
the number of background detections. All variables,
except X ¢ are considered hidden.
2.2 The Model

For a given training image, I,, we can write the
probability density function modeling the data as:

p(Xf7XT7hT7nT,bT) =

p(nr)p(br) p(h-,—|n.,-, b‘r) X
p(X2,xTh, . b,).

The probability density over the number of back-
ground detections is modeled by a Poisson' distribu-
tion,

U
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ny

where M/ is the average number of background detec-
tions per image. Admitting a different M, for every
feature allows us to model different detector statistics
and, ultimately, to distinguish between more or less
reliable detectors.

The probability p(b) is modeled explicitely by a
table of size 2F which equals the number of possible
binary vectors of length F. If F' is large, the explicit
probability mass-table of length 2" might become un-
reasonably long. In that case we can assume indepen-
dence between the feature detectors and model p(b)
by a product of independent densities,

F
= [ »(vs).
F=1

The number of parameters reduces in that case from
2F to F.
The density p(h|n,b) is modeled by,

ﬁ h 6 Hb
p(h\n,b) = f=1 Nf
0 other h

where H}, denotes the set of all hypotheses consistent
with b and n, and Ny denotes the total number of
detections of feature f.

LGiven that we are dealing with a discrete set of pixel loca-
tions, a binomial distribution might seem more natural. How-
ever, since the Gaussian foreground density is defined over a
continuum of part positions, the Poisson distribution is the nat-
ural counterpart for the background process.

Finally, we use

p(Xo7Xm‘h= Il) = G(Z‘/},7 E) U(ng)7

where we defined z7 = (x°x™) as the coordinates of
the hypothesized foreground detections (observed and
missing) and x4 as the coordinates of the background
detections. G(z|u,X) denotes a Gaussian with mean
p and covariance 3. The positions of the background
detections are modeled by a uniform density,

ng

A"f

where A is the area covered by the image.

3 The EM algorithm

Since our detection method relies on the mazimum
a posteriori probability (MAP) principle, we will ob-
tain maximum detection performance for those pa-
rameters which optimize the joint data likelihood. As
mentioned above, we treat as missing data the h, the
b and the n. The positions of unobserved foreground
features, i.e. those corresponding to zero entries in h,
are collected in x™ and are, quite naturally, considered
missing as well.

In standard EM fashion, we attempt to maximize
the log-likelihood of the observed data, which is given
as

L(X°|f) =

Zlogzzz/p(Xﬁ,xT,hT,nT,bTW)dx
r=1 h, b, n,

where 6 represents the set of all parameters of the
model. Since maximizing sums and integrals of a log-
arithm is difficult in practice, we choose to compute

T
Q(019) =Y Ellogp(X7,

=1

X by n,, b, |6)].

where E[.] denotes taking the expectation with
respect to p(h,,x™ n., b;| X2 6). Throughout this
section, a tilde denotes parameters we are optimizing
for, while no tilde implies that the values from the
previous iteration are substituted. EM theory [5]
guarantees that the maximum of Q(A|f) is at the
maximum of the log-likelihood. The EM algorithm
is a recipe to find this maximum (or at least a local
maximum) iteratively.

Let us now derive update rules that will be used in
the M-step of the EM algorithm. The parameters we
need to consider are those of the Gaussian governing
the distribution of the foreground features, i.e. u and
Y., the parameters of the density p(b) which we will
model explicitly as a table of probability masses and



the parameters governing the background densities,
M. It will be helpful to decompose () into four parts

QUE18) = Qi(018) + Q2(818) + Q3(0]6) + Qa(6)

T T
= Y Ellogp(n.|0)] + Y Ellog p(b.[6)]

T=1 T=1

T
+ Y Ellogp(X?,x]"|h,,n,,6)]

T
+ 3 Ellogp(hln,. b))

T=1

The first three terms contain parameters that will be
updated in the EM, while the last term contains no
new parameters.

Update rule for u

Since only Q3 depends on ji, taking the derivative of
the expected likelihood yields

ZE[ i)

where z x° x™) according to our definition above.
Setting the derivative to zero yields the following up-
date rule

0
a—ﬂQB 616) =

=

Update rule for

Similarly, we obtain for the derivative with respect to
the inverse covariance matrix

0
ox1

Qs(610) = ZE{Z—— =i - "]

Equating with zero leads to

T
5= > (e ) a0 = =5 BleraT) il

Update rule for p(b)

To find the update rule for the 27 probability masses
of p(b), we need to consider Q(8|#) because this is the
only term that depends on these parameters. Taking
the derivative with respect to p(b) we find,

Imposing the constraint Y gz p(b) = 1, for instance
by adding a Lagrange multiplier term), we find the

following update rule for (b),

1 I
:TZE[‘SMS]

T=1

Update rule for M

Finally, we notice that Q3(6|6) is the only term con-
taining information about the mean number of back-
ground points per feature M¢. Differentiating Q3(§|0)
with respect to M we find,

~

Q3 (616) =

OM

Equating to zero gives the intuitive result,

1= 73

’ﬂ |

Computing the Sufficient Statistics

In the previous sections we calculated the expressions
needed for the M-step in the EM algorithm. All up-
dates rules are expressed in terms of the so called ‘suf-
ficient statistics” E[z], E[zz"], E[d, ] and E[n]. We
will now calculate these sufficient statistics in what is
formally called the E-step of the EM algorithm. In
order to do this we need to consider the posterior den-
sity. It is given by,

p(hT:X:—n7nT:bT|X7(—770) =
p(hT7X:-n:nT7bT:X7q‘9)

ZhTGHb Zb,eB Zi:o fp(hT: X7

We will first simplify the ‘zoo’ of variables a bit by ob-
serving that if we perform summations in the following

order,
o0
h,€Hy b, eBn,=0
we may replace n = N — b, where N is the to-

tal number of detections per feature type, and forget
the summation over n. Furthermore, we may replace
b = sign(h) (with sign(0) = 0) and forget the sum-
mation over b. In the following we will assume this
simplification and treat n and b as functions of h. The
denominator in the expression above, p(X?), is calcu-
lated as follows. Choose a hypothesis consistent with
the observed data. Integrate out the missing data in
that hyposthesis®. Calculate b(h) and n(h) and insert
them into the joint density. Finally, sum over all pos-
sible hypothesis. The expectations of the statistics are
calculated in a similar fashion. E[dy, p] is calculated by

?Integrating out dimensions of a Gaussian is simply done by
deleting the means and covariances of those dimensions

,n,, b, X2|6) dx™



summing only over those hypotheses consistent with
b in the numerator and dividing by p(X?). Similarly,
E[n,]is calculated by averaging n(h) over all hypothe-
ses. The case El[z] is slightly more complicated. For
every hypothesis we make the split z/ = (x° x™).
E[x°] = x° because there is no dependence on hidden
information. For E[x™] one needs to calculate,

/Xm G(Z‘N,U) dx™ = um + Zmozoofl(xo _ HO)=

where we defined,

. HO _ EOO EOTTL
I‘L—(um) Z_<Emo me)
Doing this for every consistent hypothesis, summing
and dividing by p(X?) establishes the result. Finally

9
we need to calculate

Elzz"] = < Efin)f]foT E[f“[:;n;]f] )

Only the part E[x™x™T] has not been considered.
Again, we will make the split z7" = (x° x™) for evey
consistent hypothesis. Integrating out the missing di-
mensions, X", now involves,

/xmme G(z|p, o) dx™ =
wmm _ EmoZO()*lEmoT + E[Xm]E[Xm]T.

Looping through all possible hypotheses and dividing
by p(X?) again provides the desired result. This con-
cludes the E-step of the EM algorithm.

As described so far, our method assumes that a
model configuration (the number and types of feature
detectors) has been chosen prior to the EM phase.
Without any further elaborate strategy, we would have
to fit a model for every possible model configuration,
hoping to find a model with satisfactory recognition
performance. We will present, in the next section, a
method to avoid this exhaustive search through con-
figuration space.

4 Experiments

For the experiments described in this section, we
used a translation invariant extension of the above
derivations. The algorithm could have been used as
described above, if the training images had been pre-
pared such that the target object is in the same loca-
tion in every image. This is inconvenient, especially
since our goal is to eliminate the need for user inter-
vention.
4.1 Choice of Detectors

For a general recognition task, the set of feature
detectors should contain a large number of simple
generic detectors of basic features such as corners, T-
junctions, line endings, line crossings etc. However,
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Figure 1: The above 14 templates were used as cor-
relation masks for the letter recognition experiment.
The templates are normalized such that the mean is
equal to zero.

it is of course possible to add more specific detectors,
in the case where prior knowledge about the possible
target objects is available.

For the following demonstration of our method, we
used a set of 14 simple correlation templates, which
are shown in Figure 1.

4.2 Learning Letters

We performed a recognition experiment on a set of
30 “Dilbert” comic strips. The cartoons had a size
of 500 x 200pixels. Since the original resolution was
fairly low, we applied the templates only at the high-
est available resolution. To illustrate the feasability of
our method we attempted to learn several letters (‘E’,
‘T’ ‘H” and ‘L’) from the text segments of the comic
strips. This choice was in part motivated by the fact
that the letters are hand-written, which ensures a cer-
tain degree of variability across each class. We used
6 strips for training, which provided us with 40 60
training samples per letter. We presented each letter
in a window of approximately 12 times the area of a
single letter. Every letter was thus seen in its “natu-
ral surrounding” (Fig. 2). The main limitation for the
amount of background area in the training images is
the number of feature candidates encountered in the
background and the resulting computational cost due
to the large number of hypothesis that need to be con-
sidered during model learning.

Greedy Configuration Search

After applying all feature detectors to the training
samples, we chose the following greedy strategy to ex-
plore different model configurations.

In a first step, we explore configurations with a
few (e.g. three) different features. The configura-
tion which yields the smallest training error (measured
as the probability of misclassification), is chosen and
augmented by one feature, trying all possible types.
The best of these augmented models is then retained
for subsequent augmentation. This process should be
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Figure 2: A text segment of a cartoon is shown on
the top. One strip typically contains up to six such
segments. The frame in the upper image illustrates
the size of a training image. On the bottom we show a
collection of 9 training “patches” for each letter. Note
that adjacent letters are included together with the
target letter, which is appearing in a different location
in every training image.

stopped as soon as a criterion for model complexity
(such as an MDL measure) or desired detection per-
formance is met. In our case we simply chose a total
number of five features in the model as a complexity
threshold. It is possible, that no further improvement
in detection performance is obtained even before the
maximum number of features is reached. This was the
case for the ‘I and ‘T’ models presented below.

We found the EM algorithm to converge rapidly in
10 - 100 iterations. One iteration took about a second
using a Matlab implementation of the method.

Two of the learned models are presented in Fig-
ure 3.

Performance Evaluation

We measured detection performance using 20 comic
strips that were not included in the training set. Here,

The "E" - Model e T todel
-10 1
o (L d eeeneens 3
T ® ®
4 : = ot
" :
5|
-4 R @ ]
3 5
" 6 I:
a 7 :
0 Joceermmeem @ !

Figure 3: We show the models learned for the letters
‘E’ and ‘T°. Ellipses are shown at a one standard de-
viation distance from the mean feature positions. The
feature position are measured relative to a reference
feature. No variance is shown for this feature, as the
attached variability would correspond to overall trans-
lation of the object. The features chosen for the ‘E’
are of types 3, 5 and 8, those for the ‘T’ are of types
1to 3 and 12.

we used the entire strips, including not only the text
regions but also the line drawings which comprised
some textured regions.

Rather than classifying every location in the image
by applying a fixed threshold, we computed receiver
operating characteristics (ROCs), which are shown in
Fig. 4.

The overall detection performance was good. This
is, in part, due to the fact that line drawings do not
suffer from the typical changes in appearance due to
different lighting conditions or changes of pose in three
dimensions, so that a reliable detection of the features
was obtained even with the simple detectors. The per-
formance on individual letters seems to be governed by
the performance of the feature detectors. In particu-
lar, objects tend to be missed when individual features
are not detected. This occured mostly when letters
were too close to adjacent ones.

As can be seen in the figure, the performance of the
‘L’-detector was considerably worse than that of the
other three. This is due to the fact that the model
of the ‘L’ contains only three features. The result are
many false negatives, since the letter is missed easily
as soon as one feature is missed.

We present examples of image patches with a high
probability of being misclassified (see Figs. 5 and 6).
Without settling on a particular decision threshold, we
can identify those by picking the foreground samples
with the lowest likelihood and the background loca-
tions with the highest likelihood.

A complete strip with detections of the letter 'E’ is
shown in Fig. 7.

An interesting observation made during these ex-
periments is that the model sometimes included fea-
tures from neighboring letters. If we suppose that the
background patterns in the training set resemble those
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Figure 4: ROC curves show the detection performance
of all four letter detectors. The probability of false
alarm is rescaled to reflect the expected performance
on an image of the size of the cartoon strips. The prob-
abilities of error at an operating point where the pro-
bilities of false positives and false negatives are equal,
are 3.9% for ‘E’, 4.2% for ‘T’, 2.0% for ‘H’ and 9.2%
for ‘L.’

encountered when the model is finally put to work,
then knowledge about the neighbors of a letter to be
detected can and should be used to improve the per-
formance.

5 Conclusion and Future Work

We have presented a method which can learn an
optimal object class model in a maximum likeli-
hood sense with respect to the set of employed fea-
ture detectors, as well as all other model parameters.
The method significantly facilitates model acquisition,
since human supervision is reduced to a minimum.

Limitations are the remaining need for normaliza-
tion for rotation and scale. The greedy strategy used
to search possible model configurations also proved to
be relatively slow, which is why we are currently in-
vestigating a method which dynamically introduces or
suppresses Gaussian clusters during the maximization
process. We are also investigating the possiblity to di-
rectly learn a true shape model instead of a pdf over
feature position in the image plane.
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