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Abstract

Many computer vision problems involving feature corre-
spondence among images can be formulated as an assign-
ment problem with a quadratic cost function. Such problems
are computationally infeasible in general but recent ad-
vances in discrete optimization such as tree-reweighted be-
lief propagation (TRW) often provide high-quality solutions.
In this paper, we improve upon these algorithms in two
ways. First, we introduce covering trees, a variant of TRW
which provide the same bounds on the MAP energy as TRW
with far fewer variational parameters. Optimization of
these parameters can be carried out efficiently using either
fixed–point iterations (as in TRW) or sub-gradient based
techniques. Second, we introduce a new technique that uti-
lizes bipartite matching applied to the min-marginals pro-
duced with covering trees in order to compute a tighter
lower-bound for the quadratic assignment problem. We
apply this machinery to the problem of finding correspon-
dences with pairwise energy functions, and demonstrate
the resulting hybrid method outperforms TRW alone and
a recent related subproblem decomposition algorithm on
benchmark image correspondence problems.

1. Introduction
Image correspondence is a classical problem in computer

vision. Identifying corresponding points or parts across a
pair of images is the basis for a wide range of success-
ful techniques in 3D reconstruction, camera self-calibration,
image registration and motion estimation. Correspondence
also arises in object recognition with pictorial structures or
deformable templates where parts in a model are matched
to locations in a target image.

It is common to formulate correspondence as a discrete
optimization problem in which each point in a source image
or model may be assigned to some set of discrete locations
in a target image. A good objective function for such an op-
timization should assure that local appearance of matched
points are similar and that the spatial layout of points in the
target image is consistent with the source image or model.

It may also be desirable to enforce other constraints, for
example that the matching be one-to-one or that the match-
ing satisfies the epipolar constraint. The choice of objective
function is also greatly influenced by which objectives can
be efficiently optimized.

From the perspective of tractability, a natural choice is
the linear assignment problem in which the matching cost
depends only on similarity of matched points and one-to-
one constraints can be easily enforced. While such prob-
lems can be efficiently optimized (using for example the
Hungarian algorithm) they provide no direct control over
whether the resulting matching is spatially coherent. There
have been various attempts to remedy this by using richer
unary scores which take into account some spatial context
along with multiple iterations of matching [1, 4].

Including spatial coherence in the objective directly re-
quires the introduction of quadratic or higher-order terms
which assign a cost to the joint assignment of two or more
points. One classic formulation is that of graph match-
ing, in which the layout of features are described by at-
tributed graphs and the goal is to find a permutation of the
vertices of one graph which aligns it with the other (see
e.g., [11, 13]). Depending on the exact measure of align-
ment, this is formally equivalent to the Quadratic Assign-
ment Problem studied in the operations research literature.
We consider a more somewhat more general formulation in
which the cost is an arbitrary quadratic function of the as-
signment variables.

While such cost functions are often sparse (e.g., only
defined between neighboring points in the source image)
such discrete quadratic optimization problems are gener-
ally intractable and one must resort to some approximation
scheme such as spectral rounding [7], loopy belief propaga-
tion, dual decomposition [10] or local search [8, 2]. Inter-
estingly, these approximation techniques often require that
we drop the one-to-one matching constraint which is so eas-
ily incorporated in the linear assignment problem.

In this paper, we tackle the problem of finding solu-
tions which approximately minimize the quadratic objec-
tive and also satisfy the one-to-one constraint. Our ap-
proach consists of two components. The first is a variant on
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tree-reweighted belief propagation (TRW) which efficiently
computes lower-bounds on the minimum achievable costs
of assigning a point to a given location using a covering
tree of the graph describing the original quadratic objective.
We then solve a variant on the linear assignment problem
we term bottleneck assignment rounding which uses edge
costs derived from the lower-bounds on the min-marginal
costs computed with the covering tree. This can be thought
of as a procedure for “rounding” solutions to the nearest
one-to-one assignment while simultaneously computing a
tighter lower-bound on the true constrained objective mini-
mum. The result is both a matching and a lower-bound on
the minimum of the true objective providing a measure of
the approximation quality.

In the first half of the paper we discuss the covering
tree algorithm (CT) which can be applied to optimize gen-
eral pairwise energy functions found in a variety of vision
problems. In section 2 we give a background on the prob-
lem decomposition technique on which TRW, CT and other
variants are based. In section 3 we prove the equivalence
of the bounds given by the CT and TRW decompositions.
Section 4 gives a simple algorithm for optimizing the CT
bound which guarantees monotonic convergence. We also
present experiments on randomly generated problems com-
paring the convergence rate to other proposed techniques in
the literature. In the later half of the paper we describe bot-
tleneck assignment rounding and show theoretically that it
gives tighter bounds than CT alone (section 5). We demon-
strate that the rounding procedure yields improvement in
matching accuracy on a simple image matching problem
and compare to other recently proposed techniques in sec-
tion 6.

2. Energy Minimization Bounds
Consider the problem of minimizing an energy function

of the form:

E(X, θ) =
∑
i

θi(Xi) +
∑
i,j

θij(Xi, Xj) (1)

where each Xi takes on values in some finite set of states.
The pairwise and singleton functions are described by the
collection of parameters θ = {θi;k, θij;kl} with

θi(Xi) =
∑
k

θi;kXi;k

and
θij(Xi, Xj) =

∑
k,l

θij;klXi;kXj;l

respectively, whereXi;k = 1[Xi=k] denotes a binary indica-
tor that variable Xi takes on state k. Typically, the param-
eters θij;kl are sparse. For example if the Xi correspond
to part locations in a model, θij;kl may be non-zero only

for nearby parts i, j. We can define a graph G(θ) whose
vertices correspond to variables {Xi} in the energy func-
tion and with an edge connecting Xi and Xj if and only if
θij;kl 6= 0 for some pair of states k, l.

In the matching problems we consider, θij;kl encodes the
cost of matching some part i to location k while simultane-
ously matching part j to location l. In the classical quadratic
assignment problem, θij;kl factors into the the product of
two terms θij;kl = AijBkl where, e.g., Aij represents the
amount of material that needs to be transported from facil-
ity i to j and Bkl is the distance between possible facility
locations k and l. We are interested in the more general
case in which θij does not factor. These more general prob-
lems commonly arise in pictorial structures or deformable
template matching where the entries of θij may be some ar-
bitrary function of image features and geometry, typically
learned from training data.

Minimizing the energy function E(X, θ) is hard in gen-
eral but efficient solutions can be found for certain classes
of problems. For example, if the graph G(θ) forms a tree
then an optimal solution can be found using dynamic pro-
gramming. Dynamic programming passes messages in the
tree to compute the min-marginal or cost-to-go functions

µij;kl = min
X:Xi=k,
Xj=l

E(X; θ) µi;k = min
l
µij;kl

Wainwright et al. [12] suggest an approach to lower
bounding the energy of the minimum energy configuration
by decomposing the problem θ into a set of tractable sub-
problems (i.e., tree structured subgraphs of G) and solving
each subproblem independently. This technique is gener-
ally known as dual-decomposition. Let t index a collection
of subproblems defined over the same set of variables X
and whose parameters sum up to the original parameter val-
ues, so that θ =

∑
t θ
t. Since the energy function is linear

in θ we have

EMAP = min
X

E(X,Θ) = min
X

∑
t

E(X,Θt)

≥
∑
t

min
Xt

E(Xt,Θt)

where the inequality arises because minimizing X indepen-
dently in each subproblem may yield a set of solutions {Xt}
which are not consistent, so that Xt

i 6= Xs
i for some s, t, i.

However, if the solutions of all the subproblems do agree,
then the inequality is tight and we have found a minimizing
solution to the original problem.

Since there is some freedom in how we decompose the
original problem, we can try to find an optimal decomposi-
tion which maximizes the lower bound:

EMAP ≥ max
{θt}P
t θ

t=θ

∑
t

min
Xt

E(Xt, θt) = ETRW
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Figure 1. A graphical depiction of bound equivalence. We show
that the original collection of spanning trees used in the TRW
bound (b) can be split into a collection of single edges (c) and
then joined into a covering tree (d). Each of these steps preserves
the same lower-bound on the minimal energy configuration of (a).
Here superscripts index copies of nodes in the original problem
which are free to take on different states (e.g., X1

4 , X2
4 correspond

to X4)

Computing the optimal lower bound, ETRW , amounts to
finding a maximum of the lower envelope of a set of lin-
ear functions, one for each possible setting of the Xt; this
forms a convex optimization problem. Imposing the con-
straint that each θt has a particular tree structure, the in-
ner minimization for each Xt can be solved efficiently us-
ing dynamic programming, allowing one to use an iterative
optimization procedures such as projected subgradient or a
cutting plane techniques. Wainwright et al. [12] show that
this bound can also be optimized using a message passing
scheme called tree reweighted belief propagation (TRW).

3. Covering Tree Bounds

The work of [12] and [5] suggest bounding the minimum
energy of the original problem by a convex combination of
spanning trees. We now show that it is sufficient to con-
sider a single covering tree which includes each edge in the
original graph exactly once, but includes duplicate copies of
some nodes as necessary. Such a covering tree can be con-
structed, for example, by performing a breadth first search
of the original graph without revisiting any edge.

Figure 1 shows an example graph (a) and one possible
covering tree (d). In the covering tree, copies of a variable
from the original problem are now free to take on different
states and the original singleton term in the energy function
is split among the copies. As with the TRW decomposi-
tion into a collection of spanning trees, we have the possi-
bility that different copies of a node Xi in the covering tree
take on different minimizing states. For any given allocation
of the the singleton parameters to copies of their respective
variables, a minimizing configuration of the variables in the
covering tree provides a lower bound on EMAP , and again
this lower bound is tight if and only if there is a minimiz-
ing configuration in which all corresponding variable copies
agree.

With a slight abuse of notation, we will use Xt
i to refer

to the copies of variable Xi, where the range of the index t

depends on which variable Xi we are considering. Let

ECT = max
{θt}P

t θ
t
i;k=θi;k

min
X

∑
i,t

∑
k

θti;kX
t
i;k+

∑
(i,j)

∑
k,l

θij;klX
tij

i;kX
tji

j;l

where (i, j) are the edges in the original graph, and tij is
the copy of node i which is adjacent to a copy of node j in
the covering tree.

Intuitively, optimizing the covering tree lower bound ap-
pears quite attractive since there is only a single minimiza-
tion over X , computable by a dynamic program on the cov-
ering tree. Furthermore, there are fewer variational parame-
ters than TRW, since there is no decomposition of the edge
parameters into multiple subproblems. In the following sec-
tion we show that despite possessing fewer variational pa-
rameters, the covering tree bound achieves the same opti-
mum as TRW, so that EMAP ≥ ECT = ETRW .

3.1. Equivalence to TRW bounds

Figure 1 provides a graphical overview of the proof. The
basic idea is that it is possible to perform various sorts of
surgery on the tree subproblems to produce a new set of
subproblems which give the exact same variational bound.
This includes splitting a tree at a node and joining two trees
at a duplicate node. In splitting a node, we introduce new
variational parameters, while joining removes parameters
from the bound. We show that at optimal parameter settings,
the bound before and after these operations is the same.

We introduce some notation to characterize the optimal
parameters and configurations. Let Θ = {θ1, θ2, . . .} de-
note the set of parameters for the whole collection of span-
ning trees. We say Θ ∈ T if Θ is a valid decomposition of
the original problem, i.e.,

∑
t θ
t = θ. For a given setting

of parameters Θ there may be more than one minimizing
configuration for some variable Xt

i . Let M(Xt
i ,Θ) denote

the set of optimizing configurations for node Xt
i given the

parameters Θ. If A = {X1
i , X

2
i , . . .} is a set of copies of

Xi then let M(A,Θ) = ∩Xt
i∈AM(Xt

i ,Θ).
We first state a lemma which describes a necessary con-

dition for optimality of the bound, namely that at opti-
mal settings of Θ all copies of a given node should share
a common set of optimizing configurations. This condi-
tion is equivalent to “weak tree agreement” derived by Kol-
mogorov [5].

Lemma 3.1 If for some Θ ∈ T there is a set of nodes
A = {X1

i , X
2
i , . . .} corresponding to Xi with M(A,Θ) =

∅ then there exists Θ̂ ∈ T with a strictly greater minimum
energy

∑
t minXt E(Xt, θ̂t) >

∑
t minXt E(Xt, θt)

Proof See the supplementary material. Intuitively, if none
of the optimal values of a copy Xt

i are optimal for some



other copy Xt′

i , we can transfer some of θt
′

i to increase the
energy contribution of copy Xt

i , without changing any of
the variables’ optimal configurations.

The next two lemmas establish that for optimal settings
of the variational parameters, we can split or join trees that
make up the bound without changing the minimal energy.

Lemma 3.2 Joining copies of a node from two trees which
share an optimizing configuration does not change the min-
imum energy.

Proof Let k ∈ M({Xu
i , X

v
i },Θ) for optimal Θ. Then by

the definition of an optimizing configuration, we have

min
Xt

∑
t

E(Xt, θt) = min
Xt:Xu

i =Xv
i =k

∑
t

E(Xt, θt)

= min
Xt:Xu

i =Xv
i

∑
t

E(Xt, θt)

so a reduced problem in which nodes Xu
i and Xv

i are iden-
tified will yield the same bound.

Lemma 3.3 Splitting a tree by duplicating a node and op-
timizing the allocation of singleton parameters between the
duplicates does not change the minimum energy.

Proof Let E(X, θ) be the energy of some tree T . If we
split the tree at node Xi let E(X1, θ1), E(X2, θ2) denote
the energy of the resulting pieces with X1

i and X2
i denoting

the duplicates ofXi and Θ = {θ1, θ2} the set of parameters.
Let

Θ∗ = arg max
Θ

min
X1,X2

E(X1, θ1) + E(X2, θ2)

By Lemma 3.1 we know there exists k ∈
M({X1

i , X
2
i },Θ∗) (otherwise Θ∗ would not be opti-

mal). By Lemma 3.2 we know that joining the two trees
back into a single tree will not increase the energy, so we
have the equalities

max
Θ

min
X1,X2

E(X1, θ1) + E(X2, θ2)

= max
Θ

min
X1

i =X2
i =k

E(X1, θ1) + E(X2, θ2)

= max
Θ

min
X:Xi=k

E(X, θ)

= max
Θ

min
X

E(X, θ)

Note that splitting only applies to trees. In general we can-
not, for example, split a cycle into a chain and expect to
find the minimum energy configuration simply by optimiz-
ing the singleton parameters of the end points.

Theorem 3.4 ETRW = ECT

Proof We proceed by tree surgery. Start with any collec-
tion of edge spanning trees which cover every edge of G(θ)
at least once. We repeatedly split each of these trees until
we are left with a collection of doublets, or trees consisting
of only a single edge and two nodes. By Lemma 3.3, if we
optimize the variational (singleton) parameters across these
doublets, we will achieve the same lower-bound as with the
set of spanning trees. At this point, we can merge any dou-
blets which are duplicates by simply adding together their
parameters. This yields a minimal number of doublets, one
for each edge in the original graph. Lastly, we join these
doublets into a single covering tree. As stated in Lemma
3.2, for optimal settings of the parameters, all copies of
a node have at least one optimizing configuration in com-
mon so constraining them to take on the same state will not
change the bound.

3.2. Discussion

There are a number of potentially useful insights to ob-
serve from this proof. First, the proof provides a slightly
different outlook which hopefully sheds some light on the
work of Wainwright and Kolmogorov. For example, it is
easy to see why the exact choice of spanning trees in TRW
is inconsequential as long as every edge is covered at least
once, since we can always split and merge any such choice
of trees down to the same set of doublets. In terms of the
achievable bound, there is no advantage to working with
(say) the entire set of spanning trees. In fact, the cover-
ing tree provides the smallest representation (in terms of the
fewest number of variational parameters) which yields the
same bound. Finally, Lemma 3.1 points out a fundamental
feature of this approach: at the optimal bounds, unless there
is tree agreement there will always be some degeneracy in
the minimum energy configuration of the covering tree.

4. Algorithms for Bound Optimization

Now that we have seen that the covering tree represen-
tation provides the same bound as TRW at optimal settings
of the parameters θti , we turn to optimizing the bound over
these parameters. We show both a fixed point update which
monotonically increases the bound, generalizing TRW-S [5]
and tree-block coordinate ascent [9], as well as giving a sub-
gradient update for the parameters similar to [6].

To initialize, we choose a covering tree of the original
graph and initial setting of parameters. Each iteration then
consists of a pass of dynamic programming in the covering
tree (computing cost-to-go functions µ and an optimizing
configuration X̂) and a parameter update step to any subset
S of the parameters of copied nodes. The algorithm itself is
given in Figure 2.

The sub-gradient rule takes a gradient step to increase
the bound given the configuration X̂ . If this update does not



Until convergence:

1. Choose any subset S of the copied nodes (potentially
all nodes), and define Si = {t : Xt

i ∈ S}, the copies
of node i in S

2. Run dynamic programming to compute the cost-to-go
functions µti and an optimizing configuration X̂ at each
node.

3. Do either of the following updates for each θti in S,
with step-size γ:

(a) Fixed point update:

θ̄ti;k = θti;k − γ(µti;k −
1
|Si|

∑
t∈Si

µti;k)

(b) Subgradient update:

θ̄ti;k = θti;k + γ(X̂t
i;k −

1
|Si|

∑
t∈Si

X̂t
i;k)

where X̂t
i;k is an indicator function that Xt

i takes
on value k in X̂ .

Figure 2. Covering Tree Algorithm.

change the optimal configuration it corresponds to gradient
ascent, but in general can decrease the bound if the config-
uration changes. For an appropriate schedule of step-sizes,
subgradient ascent is guaranteed to find a global optimum.
This update method corresponds to the algorithm proposed
in [6].

The fixed point update has a similar form, and attempts
to match the µti at different copies t of node i. This update
can be made to monotonically increase the bound for any
choice of S (including all nodes); however, like other fixed-
point parameter updates for TRW it can become stuck at
suboptimal settings which satisfy weak tree agreement [5].

The covering tree algorithm is exceptionally simple, and
does not require building or maintaining forests of span-
ning trees. It contains a strictly smaller number of param-
eters than previous methods, and never modifies the edge
parameters θij . This last point may be useful if the pair-
wise parameters are themselves sparse (for example, a few
preferred or undesirable configurations). Finally, covering
trees generalize TRW-S and tree-block updates in the sense
that these algorithms consist of a subset of updates on the
covering tree, and the covering tree can be used to update
a strictly greater set of parameters if desired, up to and in-
cluding all variational parameters in one step.

4.1. Monotone Updates

We would like to determine a “step size” γ which guar-
antees that the fixed point update always increases our
lower-bound on the objective. We show that for any selec-
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Figure 3. Comparison of bound optimization algorithms on ran-
dom 10x10 Ising grid problems with repulsive potentials. Curves
show energies averaged across 100 problem instances. The x-axis
indicates the number of rounds of dynamic programming over the
graph. Dashed lines indicate an upper-bound given by the energy
of the lowest energy state found among the subproblems. TRW-S
and TreeBlock updates update a single node or spanning tree on
each pass while the CT updates every node in the covering tree.
TRW-S* is the efficient version of TRW-S for ordered chains.

tion of nodes in step 1 of the covering tree algorithm, there
is a step size which guarantees monotonic increase in the
lower-bound.

Theorem 4.1 The fixed point parameter update given in
Figure 2 with step size γ = 1/|S| strictly increases the
bound: ECT (Θ̄) ≥ ECT (Θ).

Proof See supplementary material. We modify the repa-
rameterization construction of Sontag and Jaakkola [9] to
apply to the covering tree data structure (in which the indi-
vidual copies of each variable are connected by some path),
and to update an arbitrary subset S of the variables.

4.2. Convergence

Figure 3 shows an experimental comparison of the the
convergence rates for different bound optimization ap-
proaches. Here we compare the covering tree update in
which all parameters are updated simultaneously. In this
setting, each step incorporates longer-range information
than tree-block coordinate descent, providing a similar im-
provement to tree-block updates over naı̈ve TRW-S and
generalizing both, in the sense that these algorithms can be
thought of as acting on subsets of the covering tree. In prac-
tice, we also find that the step size 1

|S| may be overly con-
servative; an alternative strategy is to begin with a relatively
large step size (we use γ = 1

2 ), compute the bound after
each step, and decrease the stepsize anytime non-monotonic
behavior is observed.

Kolmogorov [5] also provides a highly efficient update
strategy for TRW-S which makes use of ordered chains



along which parameters are updated as the messages are
computed (TRW-S* in Figure 3). This essentially inter-
leaves the parameter updates with the dynamic program-
ming and gives much larger gains in the bound per message
passed than the naı̈ve implementation. We note in passing
that, given an ordering, this same strategy can also be im-
plemented on a covering tree to provide the same benefits.

5. Bottleneck Assignment Rounding
We now turn to the quadratic assignment problem we

use for finding correspondences. We can formulate the
quadratic assignment problem in the same discrete mini-
mization framework:

EAMAP = min
X∈A

E(X, θ)

= min
X∈A

∑
i

θi(Xi) +
∑
i,j

θi,j(Xi, Xj)

where we have now added a constraint; A is the space of
1-to-1 assignments, so that for solutions X , if Xi = k then
Xj 6= k ∀j 6= i.

The addition of the assignment constraint often makes
this problem considerably more difficult to solve. The as-
signment constraints can be encoded by adding hard pair-
wise potentials between each pair of nodes in the model,
giving energy ∞ to configurations which violate the con-
straint. Although this yields an unconstrained QP, its corre-
sponding graph structure is dense (fully connected), so that
TRW approximations will be forced to break many of these
dependencies and cannot guarantee a feasible solution. We
suggest an alternative scheme which finds a low-cost 1-to-
1 assignment guided by the covering tree solution for the
unconstrained problem.

Suppose for each variable Xi we have computed a lower
boundH(i, k) on the energy of a solution in whichXi takes
on state k. We can compute such a lower bound via dynamic
programming on the covering tree to compute the cost-to-go
functions for each node and set H(i, k) = maxt µti;k

1. We
then can compute a lower-bound on the minimum energy
assignment as

EBAR = min
X∈A

max
i
H(i,Xi)

This is a variant of the linear assignment problem known as
linear bottleneck assignment (see [3]). We refer to this pro-
cedure as bottleneck assignment rounding since it finds an
assignment which is, in some sense, nearest to the uncon-
strained solution given by the covering tree.

It is easy to show thatEBAR can be computed efficiently.
A simple algorithm to compute EBAR is to construct a

1the max is only necessary if we have stopped the CT algorithm prior
to convergence

sequence of bipartite graphs Gt for different thresholds t
which contain an edge (i, k) iff H(i, k) > t. For a thresh-
old t, EBAR ≤ t only if there exists a matching in G. The
minimal value of t for which a matching still exists specifies
the minima of Equation 5 and can be found by performing
a binary search over the possible values of t.

We now establish that EBAR is a lower-bound on the
minimum energy assignment and is tighter than the cover-
ing tree bound ECT alone.

Theorem 5.1 ECT ≤ EBAR ≤ EAMAP

Proof Let X̂ = arg minX∈AE(X, θ) be the minimizing
assignment. LetQ(i, k) = minX;Xi=k,X∈AE(X, θ) be the
true costs-to-go in the original graph (with the assignment
constraint) and H(i, k) = maxt minX:Xt

i =k E(X,Θ) the
lower bound on the costs-to-go given by the covering tree
so that H(i, k) ≤ Q(i, k). We then have:

ECT = min
X

E(X,Θ) = min
X

max
i
Hi,Xi

≤ min
X∈A

max
i
Hi,Xi

= EBAR

where the first line is by definition of the cost-to-go H and
the inequality arises because we are adding the additional
constraint that X is an assignment. In turn,

EBAR ≤ max
i
Hi,X̂i

≤ max
i
Qi,X̂i

= EAMAP

The first inequality arises since any valid assignment
(including the optimal one X̂) must cost at least as much as
the minimal bottleneck assignment and the second since H
is a lower bound on Q. The final equality is by definition of
the true cost-to-go energy Q. This establishes that EBAR
is an upper bound onECT and is a lower bound onEAMAP

6. Experimental Comparisons
We tested the efficacy of bottleneck assignment round-

ing for finding matched features in wide-baseline matching
tasks on the CMU “house” image sequence. Image feature
detection positions, along with ground truth matchings for
comparison, were obtained from Caetano et al. [4]. A pair
of images from the sequence and its 30 features are shown
in Figure 4, with true correspondences indicated by match-
ing colors.

Following Caetano et al. [4] and Torresani et al. [10], we
use Shape Context features to define the singleton (node)
potentials:

θi;k = −‖F 1
i − F 2

k ‖2

where F ab is the shape context vector for point b in image a.
For pairwise similarity cost parameters, we use a weighted



Figure 4. CMU “house” data set, showing corresponding feature
points by matching color. Singleton energy functions capture sim-
ilarity of appearance, and pairwise energies measure similarity in
the points’ relative geometry.

combination of angle and distance similarity between the
feature positions in the first and second images:

θij;kl = −wa‖∠ij − ∠kl‖2 − wd‖dij − dkl‖2

This is similar to the geometric energy function given in
[10]. As in Torresani et al. [10], we restrict our set of pair-
wise interaction terms to a small neighborhood of features,
so that the edges in G correspond to the k nearest neighbors
of each point in the reference image.

We compare three algorithms for correspondence: our
bottleneck assignment rounding applied to the covering tree
marginals (BAR), a naı̈ve covering tree which does not take
into account any additional assignment constraints (beyond
those included in the nearest neighbors’ pairwise functions),
and the graph matching algorithm of Torresani et al. [10].
The latter approach also utilizes a decomposition into sim-
pler subproblems, but with a more sophisticated collection
of subproblems than trees. The graph matching code is writ-
ten in Visual C++, while the covering tree and bottleneck
assignment rounding algorithms are implemented in Mat-
lab. We also considered a fourth baseline algorithm based
on the classical Gilmore-Lawler bound which has been pre-
vious used, e.g. in [8, 2], as an initialization for local search.
However, we found that while efficient, it was generally not
competitive in terms of bounds or accuracy.

Figure 5 shows the performance of the algorithms as a
function of the image baseline. For nearby images, the
correspondence problem is not difficult and all methods do
well. However, as the problem becomes more difficult, we
begin to see the differences among the algorithms. To bet-
ter illustrate these differences, in our comparisons we focus
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Figure 5. Accuracy of the algorithms as a function of image base-
line separation. Curves show the mean accuracy with error bars
indicating quartiles computed over N=15 image pairs at each base-
line separation. For frames which are more widely separated in
the image sequence (larger baseline), the change in perspective in-
creases, making the task of finding a good set of correspondences
more difficult. For nearby image pairs from the sequence, all three
methods perform well. However, by the indicated region (85–90
frames) there are more measurable differences between the meth-
ods.
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Figure 6. Comparing bottleneck assignment to covering trees with-
out enforcing additional assignment constraints, on graphs with 3-
or 4-nearest-neighbor (3-NN, 4-NN) interactions. In both cases,
the inclusion of assignment constraints improves the accuracy of
the solutions.

specifically on the indicated region of large baseline, be-
tween 85 and 90 frames of separation between the images.

We first compare the performance of covering trees
(CT) with and without the bottleneck assignment round-
ing (CT+BAR). There are 105 pairs of images in total with
baseline change in the selected range, and Figure 6 shows
a scatterplot of the accuracy of CT+BAR (y-axis) com-
pared with CT (x-axis) on models created using 3- and 4-
nearest-neighbor interactions. For 3-NN graphs, the accu-
racy increases slightly with inclusion of assignment con-
straints (85.6% compared to 78.2% on average); however,
with the inclusion of 4-NN interactions, the assignment
constraints lead to considerably better solutions (average
accuracy 99.4% compared to 89.9% for covering trees).

Next, we compare the CT+BAR solution to the graph
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Figure 7. Comparing covering trees with bottleneck assign-
ment rounding (CT+BAR) to Graph Matching [10]. (a)-(b) For
problems of equal complexity (3-nearest-neighbor interactions),
CT+BAR gives similar accuracy but is significantly faster. (c)-
(d) Using 4-NN interactions in CT+BAR and only 2-NN in graph
matching, CT+BAR provides significantly more accuracy in a sim-
ilar amount of time.

matching methods of Torresani et al. [10]. Timing and ac-
curacy values are plotted in Figure 7. The top row shows
the accuracy and timing comparison using 3-NN interac-
tions in both algorithms. The accuracies of the two methods
are reasonably similar (85.6% for BAR compared to 81.8%
for graph matching overall); however, the CT+BAR algo-
rithm is considerably faster in all cases (by factors ranging
between 6 and 60 times).

To compare the algorithms on a more equal timing foot-
ing, we simplify the model used by graph matching to in-
clude only 2-NN interactions, while increasing the interac-
tions used by CT+BAR to 4-NN. Under these conditions,
the algorithms are similar in runtime (CT+BAR remains a
factor of 1–7× faster), but now CT+BAR significantly out-
performs graph matching in terms of accuracy, achieving an
average of 99.4% compared to 64.7%. Within our experi-
ments, using the covering tree with bottleneck assignment
rounding compared to graph matching was on average al-
ways faster, more accurate, or both.

7. Conclusion
In this paper we have introduced two new techniques

which are applicable to combinatorial optimization prob-

lems of interest to vision researchers. It is worth noting
that these two techniques are largely independent. Cover-
ing Trees can be applied to general energy minimizations
problems which abound in computer vision (such as infer-
ence in Markov random fields). Similarly, the bottleneck
assignment rounding can be applied to strengthen the out-
put of any algorithm which gives lower-bounds on the cost-
to-go for partial matches. Taken together, these algorithms
improve upon the state-of-the art speed and accuracy for
correspondence as seen in our preliminary image matching
experiments.
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1. Proof of Lemma 3.1
We first give two lemmas which show that since there is

an energy gap between optimizing and non-optimizing con-
figurations, there must always exist some “slack” in the sin-
gleton potential parameters corresponding to those states.

Lemma A If k 6∈ M(Xt
i ,Θ) then there exists Θ̂ with

θ̂ti;k < θti;k and all other entries the same, so that
M(Xt

i ,Θ) = M(Xt
i , Θ̂).

Proof If k 6∈ M(Xt
i ,Θ) and l ∈ M(Xt

i ,Θ) then there
exists some gap ε > 0 with minXt:Xt

i =k E(Xt, θt) >

minXt:Xt
i =lE(Xt, θt) + ε. Choose Θ̂ = Θ except for

θ̂ti;k = θti;k − ε. Then, even though we have decreased
the energy of Xt

i taking on state k, it is still the case that
k 6∈M(Xt

i , Θ̂) since

min
Xt:Xt

i =l
E(Xt, θ̂t) = min

Xt:Xt
i =l

E(Xt, θt)

< min
Xt:Xt

i =k
E(Xt, θt)− ε

= min
Xt:Xt

i =k
E(Xt, θ̂t)

Lemma B There exists Θ̂ where ∀l ∈ M(Xt
i ,Θ), θ̂ti;l >

θti;l and all other entries the same so that M(Xt
i ,Θ) =

M(Xt
i , Θ̂).

Proof For each k 6∈ M(Xt
i ,Θ) we can choose εk > 0 (as

in the previous lemma) so that ∀l ∈M(Xt
i ,Θ)

min
Xt:Xt

i =k
E(Xt, θt) > min

Xt:Xt
i =l

E(Xt, θt) + εk

Then set θ̂ti;l = θti;l + mink εk for all l ∈ M(Xt
i ,Θ). The

optimizing configurations are unaltered by this perturbation
since ∀k 6∈M(Xt

i ,Θ), l ∈M(Xt
i ,Θ) we have

min
Xt:Xt

i =l
E(Xt, θ̂t) < min

Xt:Xt
i =k

E(Xt, θ̂t)

and ∀k, l ∈M(Xt
i ,Θ) we have

min
Xt:Xt

i =l
E(Xt, θ̂t) = min

Xt:Xt
i =k

E(Xt, θ̂t)

Now we are ready to prove Lemma 3.1 which establishes
a necessary condition for optimality, namely that at optimal
settings of Θ all copies of a given node should share a com-
mon set of optimizing configurations.

Lemma 3.1 If for some Θ ∈ T there is a set of nodes
A = {X1

i , X
2
i , . . .} corresponding to Xi with M(A,Θ) =

∅ then there exists Θ̂ ∈ T with a greater minimum energy∑
t minXt E(Xt, θ̂t) >

∑
t minXt E(Xt, θt)

Proof Let G and H be non-empty subsets of A where H
contains a single node Xh

i , M(G,Θ) 6= ∅, M(H,Θ) 6= ∅
and G and H don’t share any optimizing configurations,
M(G,Θ) ∩M(H,Θ) = ∅ (see Lemma C below for proof
that G and H always exist).

We first modify Θ to assure that each node in G has the
same set of optimizing configurations. Let S be the largest
subset of G with some state k ∈ M(S,Θ) but for which
k 6∈ M(G,Θ). There must exist some Xt

i ∈ G for which
k 6∈ M(Xt

i ,Θ). Let θ̂ti;k = θti;k − ε and ∀s ∈ S set
θ̂si;k = θsi;k + ε

|S| . Clearly θ̂ ∈ T and by Lemma A we
can choose ε > 0 small enough that k doesn’t join the opti-
mizing configurations of Xt

i but the positive increment will
drive it out of the optimizing configurations of the nodes
in S. This cleanup can be repeated without changing the
energy until M(Xt

i , Θ̂) = M(G, Θ̂) for all Xt
i ∈ G.

We now make a final perturbation to Θ̂ which increases
the minimal energy without changing the optimizing con-
figurations. Let εG > 0 be smaller than the energy gap
between the optimizing and non-optimal configurations of
G (as in Lemma B). Let εH > 0 be smaller than the gap for
H = {Xh

i }. Let ε = min(εG, εH). For all l ∈M(G, Θ̂) set
θ̂hi;l ← θ̂hi;l−ε and for all twithXt

i ∈ G set θ̂ti;l ← θ̂ti;l+
ε
|G| .

The value of ε is small enough so as to not change the op-
timizing configuration, however, we have increased the pa-
rameters associated with those configurations so the mini-
mizing energy increases∑

t

min
Xt

E(Xt, θ̂t) =
∑
t

min
Xt

E(Xt, θt) +
ε

|G|

>
∑
t

min
Xt

E(Xt, θt)

1



while Θ̂ ∈ T .

Lemma C Sets G and H as prescribed in the proof of
Lemma 3.1 always exist.

Proof The following procedure constructs subsets G and H
satisfying the properties prescribed in the proof of Lemma
3.1. Let A be a set of nodes X1

i , X
2
i , X

3
i ...X

T
i . Let A have

at least one element and let M(A,Θ) 6= ∅ given potentials
Θ. We will show by construction G ⊂ A, H ⊂ A,
G ∩ H = ∅,M(G,Θ) 6= ∅,M(H,Θ) 6= ∅, M(G,Θ) 6= ∅,
M(H,Θ) 6= ∅, M(G,Θ) ∩M(H,Θ) = ∅, |H| = 1

Let G← {X1
a}

let i← 2
while M(G ∪ {Xi

a}) 6= ∅
. G← {G ∪ {Xi

a}}
. i← i+ 1
H ← {Xi

a}

Note this procedure must terminate for some i ≤ T
since M(A,Θ) 6= ∅. Since an element will never be added
to G which makes M(G,Θ) empty and H only has one
element so both M(G,Θ) and M(H,Θ) can not be empty.
Since each element in A can be added to G,H or neither but
not both G ∩ H = ∅. Since all elements in G are member
of A and one element in A is in H and G ∩ H = ∅ then
G ⊂ A and H ⊂ A. Lastly, the termination condition
assure that M(G ∪ {Xi

a},Θ) 6= ∅ and sets H ← {Xi
a} so

M(G ∪H,Θ) = ∅.

2. Proof of Theorem 4.1
We now show that for any selection of nodes in step 1

of the covering tree algorithm, there is a step size which
guarantees monotonic increase in the lower-bound.

Theorem 4.1 The fixed point parameter update given in
Figure 2 with step size γ = 1/|S| strictly increases the
bound: ECT (Θ̄) ≥ ECT (Θ).

Proof Suppose our covering tree is specified by parameters
Θ = {θti} ∪ {θij} and we have computed the cost-to-go
functions µij;kl, µti;k. We can reparameterize the factors
into a form similar to that proposed in Sontag and Jaakkola
[9],

λti;k =
1
|S|

(µti;k − αti)

λij;kl = µij;kl − αij −
Sij
|S|

(µtij

i;k−α
tij

i )− Sji
|S|

(µtji

j;l−α
tji

j )

where Sij is the number of nodes in S nearer to Xtij

i than
to Xtji

j in the covering tree (including Xtij

i itself, if in S),
and we choose αti = mink µti;k and αtij = minkl µij;kl.

A straightforward counting argument modified from Sontag
and Jaakkola [9] demonstrates that the λ is a valid reparam-
eterization plus a scalar, i.e., E(X; Θ) = E(X; Λ) +

∑
α.

Furthermore, all parameters λ are nonnegative. Since by
definition µi;k, µj;l ≤ µij;kl it must be that µij;kl−wµi;k−
(1 − w)µj;l ≥ 0 for 0 ≤ w ≤ 1 so there exists a config-
uration X̂ of the covering tree nodes {Xt

i} which achieves
E(X̂; Λ) = 0.

Now, consider the averaging update,

λ̄ti =
1
|Si|

∑
t

λti and λ̄ij = λij .

Again, all entries in λ̄ti and λ̄ij are nonnegative. Moreover,
if M(Si,Λ) = ∅ (no optimizing configuration is shared by
all copies of Xi), then λ̄i will be strictly positive. Thus,
E(Λ̄) ≥ E(Λ), with equality if and only if weak tree agree-
ment holds at all nodes in S.

Finally, to obtain our update rule, we simply consider re-
versing the reparameterization Θ↔ Λ. Reparameterization
simply shifts values between the singleton and pairwise pa-
rameters, preserving the energy function itself. Defining the
net reparameterization amounts by β, so that

θij;kl = λij;kl + β
tij

i;k + β
tji

j;l + αij

θti;k = λti;k −
∑
j∈Γt

i

βti;k + αti

we can immediately see that

θ̄ij;kl = λ̄ij;kl − β
tij

i;k−β
tji

j;l −αij = θij;kl

θ̄ti;k = λ̄ti;k +
∑
j∈Γt

i

βti;k − αti = θti;k + (λ̄ti;k − λti;k)

which, applying the definition of λti;k gives the update in
Figure 2. Thus we have that E(Θ̄) = E(Λ̄) +

∑
α ≥

E(Λ) +
∑
α = E(Θ), and our fixed-point update provides

a monotonic increase in the lower bound, with equality at
weak tree agreement.


