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Natural-Scene Statistics Predict How the Figure–Ground Cue
of Convexity Affects Human Depth Perception
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The shape of the contour separating two regions strongly influences judgments of which region is “figure” and which is “ground.”
Convexity and other figure– ground cues are generally assumed to indicate only which region is nearer, but nothing about how much the
regions are separated in depth. To determine the depth information conveyed by convexity, we examined natural scenes and found that
depth steps across surfaces with convex silhouettes are likely to be larger than steps across surfaces with concave silhouettes. In a
psychophysical experiment, we found that humans exploit this correlation. For a given binocular disparity, observers perceived more
depth when the near surface’s silhouette was convex rather than concave. We estimated the depth distributions observers used in making
those judgments: they were similar to the natural-scene distributions. Our findings show that convexity should be reclassified as a metric
depth cue. They also suggest that the dichotomy between metric and nonmetric depth cues is false and that the depth information
provided many cues should be evaluated with respect to natural-scene statistics. Finally, the findings provide an explanation for why
figure– ground cues modulate the responses of disparity-sensitive cells in visual cortex.

Introduction
Estimating three-dimensional (3D) layout from the two-dimen-
sional retinal images is geometrically underdetermined, but biolog-
ical visual systems solve the problem nonetheless. This “inverse
optics problem” has generated interest for centuries (Berkeley,
1709; von Helmholtz, 1867). The current view is that perceived
depth is computed from features in the retinal images that pro-
vide information about depth in the scene. Theoretical and em-
pirical research of these so-called depth cues has yielded an
extensive taxonomy based on geometric analyses of the informa-
tion they provide (Palmer, 1999; Bruce et al., 2003). In this tax-
onomy, some cues, like binocular disparity, are called metric
depth cues because they allow the absolute distance between two
points in the scene to be recovered via simple trigonometry.
Other cues, such as those indicating occlusion, are called ordinal
depth cues because they do not directly indicate the distance
between two objects; consequently, they are said to provide only
“information about ordering in depth, but no measure of rela-
tive . . . distance” (Bruce et al., 2003).

To estimate depth as accurately and precisely as possible, all
relevant information should be used. Experimental evidence sug-
gests that the visual system combines information from multiple
metric depth cues in a statistically optimal manner (Knill and

Saunders, 2003; Hillis et al., 2004). However, it is unclear how
information from ordinal and metric cues should be com-
bined (Landy et al., 1995). Ordinal information conveys only
the sign of depth between pairs of surfaces, so either the ordi-
nal cue is consistent with the metric cue and provides no
additional numerical information, or the cues are inconsistent
and it is not obvious how to resolve the conflict. And yet, the
shape of an occluder’s silhouette affects the perceived depth
separation between the occluder and the background even
when a metric depth cue, disparity, is available (Burge et al.,
2005; Bertamini et al., 2008).

This counterintuitive result can be understood by consid-
ering the depth information potentially provided by both dis-
parity and the shape of the occluding contour. Disparity can
signal depth directly although uncertainty arises from noise in
disparity measurement (Cormack et al., 1997) and in other
signals required to interpret measured disparities (Backus et
al., 1999). There is no a priori geometric reason that contour
shape should provide metric depth information, but we pro-
pose that the convexity of an image region (i.e., the convexity
of a silhouette) is statistically correlated with depth in natural
viewing—just as other cues are statistically related (Brunswik
and Kamiya, 1953; Hoiem et al., 2005; Saxena et al., 2005)—
and therefore that convexity imparts information about met-
ric depth. If such a relationship exists, any system (human,
animal, or machine) could exploit it when estimating depth.
We measured natural-scene statistics and indeed found a sys-
tematic relationship between convexity and depth. In a paral-
lel psychophysical study, we found that humans use this
relationship when estimating 3D layout. These results demon-
strate a useful and previously unrecognized role for natural-
scene statistics in depth perception.
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Materials and Methods
Methods for natural-scene analysis. We investi-
gated the hypothesis that figure–ground cues—
specifically contour convexity—provide useful
metric depth information by examining
natural-scene statistics. Depth is defined as the
difference in viewing distance for two points
along a line of sight. We analyzed the figure–
ground cue of convexity because convexity can
be readily measured in images of natural scenes
(Fowlkes et al.,2007) and because convexity is
known to affect figure– ground assignment in
human perception (Metzger, 1953; Kanizsa
and Gerbino, 1976).

We measured the joint statistics of con-
vexity and depth in a collection of indoor
and outdoor scenes. To compute these statis-
tics, we analyzed �450,000 contour points sam-
pled from a collection of published luminance
and range images (spatially coregistered RGB and
time-of-flight laser-range data) (Potetz and Lee,
2003; Yang and Purves, 2003a). Figure 1a is an
example of a luminance image and Figure 1b is
the corresponding range image. Many of the
luminance images in the published reports
were underexposed (black), noisy, and/or
blurred, so we selected a well exposed, sharp
subset of 35 images [23 from Yang and Purves
(2003a) and 12 from Potetz and Lee (2003)]
that had localizable contours in a variety of in-
door and outdoor scenes. To identify a repre-
sentative set of region-bounding contours, five
people, who were naive to the experimental hy-
potheses, hand selected contours in the lumi-
nance images using a previously published
procedure (Martin et al., 2001). The contour
selectors were instructed to mark all image-
region boundaries in the luminance image that
were “important.” Using a computer mouse
and software tool, they segmented each image
into disjoint regions. The tool allowed them to
zoom in and refine boundaries until they were
satisfied with the result. The selectors gener-
ally did not mark shadows or contours for
image regions that subtended �3° (�20 pix-
els). To assess the selection consistency, two people marked each
image. The agreement in their selections was measured using local
consistency error (LCE) (Martin et al., 2001). The median LCE was
0.13, which is slightly larger than previously reported values of 0.08
(Martin et al., 2001). We did not use the range data to segment the
images because we were investigating the depth information provided
by the shape of luminance contours. To use the range image for
segmentation would, therefore, undermine the logic of our analysis.

For each point along a selected contour, we computed the distance and
the convexity of the local image regions on either side of the contour. The
local image region was defined by a circular analysis window of fixed
radius (2.16°, 15 pixels) centered at each point along a selected contour.
To compute depth, we determined the difference between the mean
distances to each pixel in the two regions. To compute local convexity, we
sampled pairs of pixels inside both regions and recorded the fraction of
pairs for which a line segment connecting them lay completely within the
region. We defined convexity, c, as the log ratio of the two fractions
(Fowlkes et al., 2007). Figure 1e shows convexity along each selected
contour in the expanded region from Figure 1a. Finally, we determined
the frequency of different depths as a function of region convexity. This
analysis (see Fig. 3) is the simplest possible in that it concerns the rela-
tionship between convexity and depth without regard to other image or
scene properties. For example, we did not consider how the convexity–

depth relationship varies with scene properties such as the distance to a
contour. Later, we consider how some low-level image properties affect
the relationship (see Fig. 10).

Methods for psychophysical experiments. We conducted three psy-
chophysical experiments. Two experienced observers participated in
experiment 1. Seven and ten observers participated in experiments 2
and 3, respectively. All had normal visual acuity and stereopsis. All
but one observer in experiment 3 were naive to the experimental
hypotheses.

The stimuli were presented on a cathode ray tube monitor (28.4 � 38.7
cm; 1600 � 1024 pixels) and subtended 4.4 � 3.6°. The two eyes were
stimulated separately with liquid-crystal shutter glasses (CrystalEyes,
StereoGraphics) synchronized to the display. The frame rate was 100 Hz,
so each eye’s image was refreshed at 50 Hz. To minimize cross talk be-
tween the two eyes’ images, only the red phosphor was used. The room
was otherwise dark. Viewing distance was 325 cm in all but the second
condition of experiment 3, in which it was 85 cm. The long viewing
distance was used for most of the experiments because it is associated
with a low reliability of depth from disparity (and therefore makes it
easier to see an effect of convexity) and because it minimized the reliabil-
ity of focus cues (and therefore avoided contamination by such cues)
(Watt et al., 2005). The observer’s head position was stabilized with a
chin and forehead rest. The stimuli were two adjacent equal-area regions
textured with randomly positioned dots (�250 dots/deg 2), separated by
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Figure 1. Luminance and range images. a, An example luminance image. b, Corresponding range image. Blue indicates nearer
distances, yellow intermediate distances, and red farther distances. c, Close-up of the luminance image with a representative hand
selection overlaid. d, Close-up of the associated range image with the same selection overlaid. e, The same image as d, but with
convexity flags added. Flags point toward the image region that was classified as more convex. Longer flags correspond to larger
convexity values.
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a luminance contour that was either curved (radius of curvature � 10.5
cm) or straight (Fig. 2). One region was black with red dots and the other
was red with black dots. Disparity specified that one region was in front of
the other. The contour had the same disparity as the nearer region. There
were three kinds of stimuli: consistent, inconsistent, and neutral. In
“consistent” stimuli, the near region, as specified by disparity, was made
convex by the contour (Fig. 2a). For “neutral” stimuli, the contour was a
vertical line (Fig. 2b,. In “inconsistent” stimuli, the disparity-specified
near region was concave (Fig. 2c). A textured frame surrounded the
two regions; it aided binocular fusion and had a crossed disparity of
2.5 arcmin relative to the nearer region. Other known figure– ground
cues— e.g., size, surroundedness (Rubin, 1921), contrast (Driver and
Baylis, 1996), lower region (Vecera et al., 2002)—were equated on
both sides of the contour. Stimulus features that could not be equated,
such as brightness, were the same in the two stimuli presented on each
trial. With this design, we can attribute changes in perceived depth to
changes in region convexity.

Experiment 1. Two stimuli were presented sequentially on each trial: a
standard and comparison. The disparity of the standard was fixed at one
of eight values: 2.5–20 arcmin in 2.5-arcmin steps. These disparities cor-
responded to simulated depths of �12–157 cm. The disparity of the
comparison varied about the standard disparity in 0.5-arcmin steps; the
minimum and maximum values were 0.5 and 30 arcmin. Only the dis-
parity of the far region changed, so observers could not base judgments
on the depth separation between the frame and the near region. We used
a 2-interval, forced-choice procedure. The standard and comparison
were presented for 1 s each in random order with an interstimulus
period of 0.5 s. Observers indicated the interval that contained the
greater apparent separation in depth between the near and far re-
gions. No feedback was provided. Five stimulus pairings were pre-
sented at each of the eight standard disparities: neutral– consistent,
neutral–inconsistent, neutral–neutral, consistent– consistent, and in-
consistent–inconsistent. The set of judgments for a given stimulus
pairing and standard disparity yielded a psychometric function: the
percentage of trials in which the comparison stimuli was said to have
greater depth as a function of its disparity-specified depth. The
disparity-specified depth separation in the comparison stimulus was
varied with 1-down/2-up and 2-down/1-up staircase procedures.
These staircases tend to sample points near the 29% and 71% points
of the psychometric function (Levitt, 1971). Each staircase termi-
nated after 12 reversals. Four staircases were run for each condition
for both observers. The observers completed 40 blocks of trials. Each
block presented all five conditions randomly interleaved at one stan-

dard disparity. Blocks consisted of 320 – 450 trials. We observed no
systematic effect for left-versus-right positioning of the near side, so
left and right data were combined. This resulted in �320 observations
per psychometric function. Psychometric data from all 40 conditions
(five pairings � eight standard disparities) were used in the subse-
quent analyses. For each observer and condition, we obtained esti-
mates of the point of subjective equality (PSE)—the disparity value of
the comparison stimulus that on average had the same apparent sep-
aration in depth as the standard stimulus—and estimates of the just-
noticeable difference (JND)— defined as 84% on the psychometric
function— by fitting a cumulative Gaussian to the psychometric data
(Wichmann and Hill, 2001).

Experiment 2. Seven observers participated in experiment 2. The
stimuli and procedure were the same as in experiment 1 with the
following exceptions. Instead of convex, concave, and straight con-
tours, there were only convex and concave contours. Instead of five
stimulus conditions, there were four: consistent– consistent, incon-
sistent–inconsistent, consistent–inconsistent, and inconsistent– con-
sistent. The standard stimulus had only one value: 15 arcmin. A
1-down/1-up staircase procedure was used to estimate the PSE: the
disparity value of the comparison stimulus that had on average the
same apparent depth as the standard stimulus. There were �200 trials
per condition for each observer.

Experiment 3. Seven observers participated in experiment 3. This
experiment was identical to experiment 2 with two exceptions. (1) We
used the method of adjustment instead of the 2-interval, forced-
choice procedure. We did so to check for the possibility that response
bias contaminated the results of experiments 1 and 2 (this issue is
explained in Results). (2) The stimuli were presented at two viewing
distances (325 and 85 cm) instead of one (325 cm). We used the
two distances to determine how changes in the reliability of depth
from disparity (greater at 85 than at 325 cm) affected the influence of
convexity.

Methods for modeling of psychophysics. The psychophysical results
suggest that human observers have incorporated the natural-scene
statistics associated with region convexity and depth. We next asked
whether the observed behavior is consistent with the behavior of an
ideal observer that has incorporated the natural statistics associated
with convexity and depth. To do so, we fit the observers’ responses
with a probabilistic model of depth estimation to determine the prob-
ability distributions that provided the best quantitative account of
their responses. We modeled the construction of the depth percept as

a cbRight Eye Left Eye Right Eye Left EyeRight Eye Left Eye

Figure 2. Examples of the experimental stimuli. The upper row contains stereograms that can be cross-fused to reveal two regions at different distances. The lower row depicts the disparity-
specified depth and contour shape for each stimulus type. a, “Consistent” stimulus: disparity and convexity both indicate that the white region is nearer than the black region. b, “Neutral” stimulus:
disparity specifies that the white region is nearer, while convexity does not indicate which region is nearer. c, “Inconsistent” stimulus: disparity specifies that the white region is nearer and convexity
suggests that it is farther. A reader who examines the stereograms closely might perceive a difference in depth separation between the different stimuli. But such an effect might not be apparent
because, as our data show, the perceptual effect is small.
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a probabilistic process. Assuming conditional independence, Bayes’
rule states the following:

P�� �d,c� �
P�d ��� P�c ��� P���

P�d,c�
. (1)

That is, the posterior probability of a particular depth, �, given a mea-
surement of disparity, d, across an contour bounding an image region
with convexity, c, is equal to the product of the likelihood of the disparity
measurement for a particular depth, P(d��), the likelihood of the con-
vexity measurement for a particular depth, P(c��), and the prior distri-
bution of depths, P(�), for all such contours, divided by a normalizing
constant, P(d,c). The product rule, P(c��)P(�) � P(c,�), allows us to
combine the latter two terms in the numerator into the joint probability
of c and � as follows:

P�� �d,c� �
P�d ��� P�c,��

P�d,c�
. (2)

We regroup using the product rule again as follows:

P�� �d,c� � � 1

P�d,c�/P�c�� P�d ��� P�� �c�, (3)

where 1/[P(d,c)/P(c)] is a normalizing constant, P(d��) is the disparity
likelihood, and P(��c) is the convexity– depth distribution, which is the
distribution we measured from the luminance range images (Fig. 1).
Note that the depth prior, P(�), has been absorbed by P(��c).

In this model, both the convexity of an image region and its disparity
relative to the adjoining region affect the expected perceived depth. This
is illustrated schematically below: Figure 4 shows probability distribu-
tions associated with convexity and disparity (left) and the posterior
distributions generated from the products of those distributions
(right). The disparity signal indicates that the region on one side of
the contour is nearer than the region on the other side. If the region is
bounded by a contour that makes it convex (upper left), the convexi-
ty– depth distribution is skewed toward larger depths than when the
region is concave (lower left). As a consequence, the estimated depth
will be greater in the convex case (upper right) than in the concave
case (lower right). Said another way, when region convexity and dis-
parity are consistent with one another (i.e., both indicate that the
same region is nearer than the other), perceived depth should be
greater than when they are inconsistent.

The disparity likelihood, P(d��), is plotted as a distribution over depth
(see Fig. 4). We can do this because of the following relationship between
depth and disparity:

d � f��� � 2�tan�1�I/2v� � tan�1�I/2�v � ����, (4)

where v is the fixation distance and I is the interocular separation
(Howard and Rogers, 2002).

In the psychophysical experiment, observers selected on each trial the
stimulus (standard or comparison) with greater perceived depth. Those
responses generated the psychometric data. We modeled the process that
generated the responses by computing posterior distributions for the
standard and comparison stimuli on each trial. We then used signal
detection theory (Green and Swets, 1966) to model the discrimination
and predict psychometric functions. These functions were the cumula-
tive probability that the comparison stimulus was perceived as having
more depth between its regions than the standard stimulus, as shown by
the following:

P��̂comp � �̂stnd� � 	
0


 P��̂comp�dcomp, ccomp�

	
0

�̂comp P��̂stnd�dstnd, cstnd� d�̂stnd d�̂comp. (5)

We thus sought distributions P(d��) and P(��c) that minimized the
squared difference between the model predictions and the raw psycho-

metric data for all comparison and standard disparities across all exper-
imental conditions as follows:

min�
i�1

5 �
j�1

8 �
k�1

n

Nijk �P��̂comp
ik � �̂stnd

ij � � ydata ��̂comp
ik � �̂stnd

ij ��2

,

(6)

where i indexes the five stimulus pairings, j the eight standard disparities,
and k the comparison disparities presented in each condition; ydata is the
proportion of times the comparison was selected at the presented dispar-
ity; and N is the number of observations at that disparity. We fit this
model to the raw psychometric data using nonlinear optimization to
minimize the squared deviation between each observer’s responses and
the model’s predictions across all measurements in all 40 conditions.

Previous research on disparity discrimination suggests that the dispar-
ity distributions can be approximated by Gaussians with SDs propor-
tional to their means plus a constant (McKee et al., 1990; Morgan et al.,
2000). Therefore, we modeled the disparity likelihood as follows:

P�d ��� � N� f���,�����, (7)

where f(�) is the mean disparity signal, d, for a given depth, and the SD,
�(�), increases with the mean. Specifically, we assumed the following:

���� � af��� � �0, (8)

where a is the rate at which the SD increases with increasing disparity,
and �0 is a small value that corresponds to the SD when the disparity is
zero. Thus, the disparity likelihoods were characterized by two parame-
ters for all experimental conditions.

For the convexity– depth distributions, we used a nonparametric
model that approximated them as piecewise log linear. We chose this
model (similar to Stocker and Simoncelli, 2006) because it makes very
few assumptions about the shape of the distributions. In this model, the
convex, concave, and straight-contoured convexity– depth distributions
were approximated with eight segments that were piecewise log linear as
a function of disparity. We used one segment for each disparity of the
standard stimulus. The shapes of the three convexity– depth distribu-
tions were therefore specified by 24 parameters. The nonparametric
model requires one of the 24 local slopes to be set by the modeler because
the relative shift between posteriors at a given disparity is determined by
the difference between the local slopes at that disparity; any two local
slopes with the same difference yield the same relative shift. We set the
slope of the straight-contoured distribution for the smallest standard
disparity to ensure that the curves were integrable and ranged between
10 �1 and 10 �10.

We also fit a parametric model in which the convexity– depth distri-
butions were assumed to follow a power law over depth. This has the
advantage of reducing the number of free parameters necessary to model
the convexity– depth distributions from 24 to 3. Three parameters, the
exponents for each of the three convexity– depth distributions, deter-
mined the shapes of those distributions. For the power-law model, we
set the power of the straight-contoured distribution based on the
best-fit, straight-contoured distribution estimated with the nonpara-
metric model.

To evaluate P(�̂comp � �̂stnd) requires computing the product of the
disparity likelihood and convexity– depth distributions once they are
expressed in common units. We expressed the distributions in disparity.
To approximate the posterior, we modeled the log of the convexity–
depth distribution as locally linear in the region of a given disparity
likelihood, which is justified if the distribution changes slowly across that
region. Log probability is described locally by the following:

ln�P���c�� � m�c,��� � b�c,��, (9)

where c is the convexity cue, m is the local slope, and b is a scaling factor
that ensures that the distribution is continuous and integrates to one. For
the piecewise log-linear model, the local slope is simply read out from the
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parameters. The local slope of a power law in log-probability space is
given by the following:

m�c,d� �
k

�
, (10)

where m is the local slope and k is the power-law exponent. To find the
local slope in disparity space, md(c,d), we mapped the approximation of
the convexity– depth distribution into disparity and used the chain rule
to find the derivative.

Assuming that the convexity– depth distribution is locally linear on a
log-linear plot, we can approximate the posterior in disparity as a Gauss-
ian as follows:

P�� �d,c� � exp��� f��� � d�2

2�2�f �1(d))
� md(c,d)f(�) � bd(c,d)�,

(11)

with mean d � md� 2(f�1(d)) and SD �(f�1(d)). We found that this
Gaussian approximation is quite accurate for all but the smallest depths,
where P(��c) has a very steep slope (results not shown). With the Gauss-
ian approximation to the posterior in hand, we can compute P(�̂comp �
�̂stnd) in closed form as a function of the parameters.

To fit the model, we optimized all parameters separately for the two
observers in experiment 1 using Matlab’s Nelder–Mead simplex routine.
The nonparametric model had 26 parameters (24 for the convexity–
depth distributions and 2 for the disparity distributions). When we mod-
eled the distributions as power laws, the model had only five parameters
(three for convexity– depth and two for disparity).

It is interesting to analyze Equation 11 in more detail. If we assume that
perceived depth is given by the maximum a posteriori (MAP) estimate,
and that the disparities are small enough for the small-angle approxima-
tion to apply, then differentiating the exponent in Equation 11 with
respect to d and setting it equal to zero yields the following expression for
perceived depth:

�̂�d,c� � f�1(d � md(c,d)�2(f�1(d))). (12)

The last term, md(c,d)� 2(f�1(d)), is the disparity bias associated with a
stimulus defined by disparity and convexity signals d � f(�) and c, re-
spectively. The power-law model makes a simple prediction in this re-
gard. Substituting Equations 8 and 10 into the expression for disparity
bias (again assuming the small-angle approximation) yields the follow-
ing: bias  k�, where k is the power-law exponent and � is the depth-
from-disparity signal. This means that the effect of region convexity
should increase in proportion to the depth specified by disparity.

Finally, we point out that only intrinsic uncertainty (e.g., uncertainty
due to neural noise) contributes to stochasticity in the response of an
ideal observer. Equations 4 and 5 assume that all the uncertainty in the
posterior distribution over depth, P(��d,c), contributes to stochasticity
and thus implicitly attributes this uncertainty to intrinsic sources. This is
reasonable for the disparity cue because the mapping from depth to
disparity is deterministic; all the uncertainty is presumably due to intrin-
sic sources. However, the mapping from convexity to depth contains
significant extrinsic uncertainty (Fig. 3), so Equation 5 is not strictly
correct. In the supplemental material, available at www.jneurosci.org, we
present a more detailed analysis that attributes sources of uncertainty
correctly. This analysis gives the same result as Equation 5 for the case
under consideration (i.e., when the convexity– depth distribution has
much greater variance than the disparity-depth distribution). Conse-
quently, in the fitting procedure, the SD of the disparity distribution
determines the slope of the ideal observer’s psychometric curve.

Results
Results of natural-scene analysis
Figure 3a shows the distribution of convexities for the contours
we analyzed. Figure 3b shows the statistical relationship between
convexity and depth, the distance between the regions on either
side of a contour. The most likely depth is approximately zero
because many contours correspond to rapid changes in surface
orientation or changes in reflectance due to surface markings.
Nonetheless, depth is clearly correlated with convexity. For all
positive depths, a region is always more likely to be near than far
if its bounding contour makes it convex. Put another way, if the
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Figure 3. Natural-scene statistics computed from�450,000 sampled contour points. a, Frequency of different convexities. A circular analysis window was centered at each point along a selected
contour. One of the two regions inside the window was arbitrarily chosen as the reference region. Positive values indicate that the reference region was more convex than the other region (light blue
shading); negative values indicate that the reference region was more concave (pink shading). b, Joint statistics of convexity and depth. Frequency of occurrence plotted as a function of depth
(distance to the region on the nonreference side of the contour minus distance to the reference region) for all convex (light blue) and concave (pink) reference regions. When the reference region is
nearer (“figure”), depths are positive. When the reference region is farther (“ground”), depths are negative. The two curves are mirror images because every curved contour has a convex region on
one side and a concave region on the other. c, Joint statistics of convexity and depth for depth intervals (0 –2 m) and convexities similar to those in the psychophysical experiments, plotted in log–log
coordinates. The means of the bins defined by the dashed vertical lines in a are similar to the convexities of the three stimulus types in the psychophysical experiments: convex (blue), concave (red),
and straight contoured (black). The straight bin has �10 times more samples than the convex and concave bins, so the black curve is smoother. Dotted lines are power-law fits to the data. Except
for depths at or very near zero, the data are well fit by a power law. The difference between the convex and concave power-law exponents, kdifference � kconvex � kconcave, is �0.4.
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occluding surface is convex, the distance
between the occluding and the occluded
surface is likely to be larger than if the con-
tour is concave.

To our knowledge, this is the first ev-
idence that a geometrically ordinal
depth cue—the figure– ground cue of
convexity—is statistically correlated with
depth magnitude. The effect is small, but
consistent. Thus, the relative convexity
between two adjacent image regions can
in principle provide information about
the probability of different depths be-
tween visible surfaces. The cause of the
statistical relationship is presumably that
most objects are mostly convex. The peak
of the distribution is at zero because many
of the analyzed contours corresponded to
changes in reflectance or lighting and not
changes in depth.

To examine conditions similar to those
in the psychophysical experiments we de-
scribe below, we analyzed the scene statis-
tics further. The depths specified in the
experiments were not large, so we focused
the scene analysis on depths between 0 and 2 m and on image
regions whose convexities were very nearly equal (e.g., straight
contours) or were significantly different, as they were in the psy-
chophysical experiments and as defined in Figure 3a. The distri-
butions conditioned on these three convexities at depths of 0 –2
m are shown in Figure 3c. The distributions are well described by
power laws (linear on log–log plots) at all depths except �0. The
power-law relationship is robust across subsets of images and
human contour selectors (supplemental Fig. S1, available at
www.jneurosci.org as supplemental material). We will take ad-
vantage of the power-law property and henceforth describe dis-
tributions by the difference in the exponents k of the best-fitting
functions: kdifference � kconvex � kconcave.

Results of psychophysical experiments
Figure 4 illustrates the expected influence of contour shape on
depth judgments. The upper row depicts the probability distri-
butions associated with consistent stimuli (Fig. 2a) in which con-
vexity and depth both indicate that a particular side is nearer. The
posterior distribution, given by the product of the distributions
in the left panel, is shifted slightly toward less depth than specified
by disparity. The lower row depicts the probability distributions
associated with inconsistent stimuli (Fig. 2c). The product of the
two distributions in the left panel is now shifted toward less depth
than occurs with consistent stimuli. Therefore, the observer
should perceive less depth with inconsistent stimuli (concave-
silhouetted occluders) than with consistent stimuli (convex-
silhouetted occluders) even when the disparity-specified depth is
the same.

We also expect the influence of convexity on perceived depth
to increase with increasing disparity. This expectation is based on
two well established findings: First, for an ideal observer, cues’
influences depend on their variances; if the variance of one cue
increases, the influence of other cues will increase (Ghahramani
et al., 1997). Humans behave similarly in many perceptual tasks
(Ernst and Banks, 2002; Knill and Saunders, 2003; Alais and Burr,
2004; Hillis et al., 2004). Second, the variance of depth from
disparity increases as the disparity increases; that is, discrimina-

tion thresholds increase in proportion to disparity (McKee et al.,
1990; Morgan et al., 2000). As a result, the difference in the pos-
teriors on the right side of Figure 4 should increase as disparity
increases: i.e., the influence of convexity on depth judgments
should increase as the disparity in the stimulus increases.

Experiment 1
The results from experiment 1 are shown in Figure 5. The PSE
changes in the two panels of Figure 5a show that to produce the
same perceived depth, consistent stimuli required less disparity
than neutral stimuli and inconsistent stimuli required more. For
example, at a standard disparity of 15 arcmin, observers EKK and
JIL respectively needed 1.1 and 3.9 arcmin less disparity in con-
sistent than in inconsistent stimuli to perceive the same depth
(i.e., PSEconsistent � PSEinconsistent � 1.1 and 3.9 arcmin). This
effect is consistent with observers using the relationship between
contour convexity and depth in judging the separation of the near
and far regions in our stimuli. The effect of contour shape in-
creased systematically with increasing disparity. This is also ex-
pected because the reliability of depth from disparity decreases
with increasing disparity (McKee et al., 1990; Morgan et al., 2000)
so the influence of contour shape should increase with increasing
disparity. The results thus suggest that contour shape provides
metric depth information to human observers.

Figure 5b shows that JNDs rose systematically with increasing
disparity, as expected, but did not vary significantly across con-
sistent, inconsistent, and neutral conditions. Interestingly, con-
vexity had a larger influence in observer JIL who had higher
discrimination thresholds than EKK, the expected result if both
observers had internalized the same natural-scene statistics for
convexity and depth.

Experiment 2
To make sure that the observations of experiment 1 would gen-
eralize, we performed a shorter version of the experiment with
more observers. Figure 6a shows that the seven observers exhib-
ited the same pattern of results as the observers in experiment 1.
Figure 6b shows the results averaged across observers. On aver-
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age, consistent stimuli required approximately 2.1 arcmin less
disparity than inconsistent stimuli to produce the same apparent
depth. We conducted a repeated-measures, two-factor ANOVA
with the standard stimulus type (consistent or inconsistent) as
one factor and the relationship between the standard and com-
parison stimuli as the other factor (control: conditions in which
the standard and comparison were the same: consistent versus
consistent and inconsistent versus inconsistent; or experimental:
conditions in which the standard and comparison were different:
consistent versus inconsistent and inconsistent versus consis-
tent). The interaction between the factors was highly significant
(F(1,6) � 34.8; p � 0.0011). A multiple-comparisons test showed
that the difference between consistent versus consistent and con-
sistent versus inconsistent conditions and between inconsistent

versus inconsistent and inconsistent versus consistent conditions
were both significant. The results from experiment 2 show that
the effect of contour convexity is generally observed.

Experiment 3
Experiment 3 tested the possibility that a response bias, rather
than a change in perceived depth, was responsible for the effects
we observed in experiments 1 and 2 (Gillam et al., 2009). In a
2-interval, forced-choice procedure like ours, observers must
choose a stimulus interval even if they are uncertain about which
interval contained more depth. Perhaps observers in this uncer-
tain state chose the stimulus in which the ordinal depth signaled
by convexity was compatible with the depth ordering specified by
disparity. Such a strategy could yield shifts in the PSEs similar to
those in Figures 5a and 6a,b. We circumvented this problem by
using the method of adjustment (Gillam et al., 2009): observers
adjusted the disparity in the comparison stimulus until it ap-
peared to have the same depth as the standard stimulus. By using
this technique, we made sure that observers were really equating
the perceived depth in the consistent and inconsistent stimuli.
Figure 6c shows the results for the 325 cm viewing distance. On
average, consistent stimuli required approximately 2.4 arcmin
less disparity than inconsistent stimuli to yield the same per-
ceived depth. A two-factor, repeated-measures ANOVA with the
same factors as in experiment 2 revealed a significant interaction
(F(1,9) � 8.68; p � 0.0163). Eight of ten subjects required incon-
sistent stimuli to have more disparity than consistent stimuli.
Figure 6d shows the results for the 85 cm distance. Consistent
stimuli now required 1.6 arcmin less disparity than inconsistent
stimuli. A three-factor, repeated-measures ANOVA revealed a
marginally significant three-way interaction between standard
stimulus type, standard/comparison relationship, and viewing
distance (F(1,9) � 4.50; p � 0.063). The trend toward a smaller
effect at the near viewing distance was expected because
disparity-specified depth is less reliable at long distance so
convexity-specified depth should have more influence at 325
than at 85 cm. The difference, however, was not significantly
smaller than the effect size at the far distance.

Thus, we observed the same pattern of results with the method
of adjustment in experiment 3 as we had with the forced-choice
procedure in experiments 1 and 2: Stimuli in which contour
shape and disparity were consistent required less disparity to
yield the same perceived depth as stimuli in which contour shape
and disparity were inconsistent.

Results for modeling of psychophysics
We first examined how the disparity likelihood distributions es-
timated from the psychophysical data compared with previous
findings in the literature. Figure 7 shows that the agreement be-
tween the two was quite good. This replication is important be-
cause it shows that our analysis recovered reasonable values for
the disparity distributions, and it supports our assumption that
disparity and convexity provide conditionally independent depth
estimates.

Figure 8 shows the convexity– depth distributions we esti-
mated from the psychophysical data in experiment 1. Figure 8a
shows the estimated distributions when we used the nonpara-
metric model, a model that makes very few assumptions about
the shapes of the distributions, but has 26 free parameters. The
estimated distributions are similar in many respects to the con-
vexity– depth distributions recovered from the natural-scene sta-
tistics (Fig. 3): (1) the distributions are skewed such that large
depths are more probable across contours that bound convex
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Figure 5. Results from experiment 1. Upper and lower rows show data from observers EKK and
JIL, respectively. a, Effects of contour shape and disparity on perceived depth. The abscissa is the
disparity of the standard stimulus. The ordinate is the disparity of the comparison stimulus that
on average had the same perceived depth as the standard (the PSE) minus the disparity of the
standard. This is the disparity increment of the comparison stimulus relative to the standard
disparity needed to match the perceived depth in the standard. Blue indicates the neutral–
consistent stimulus pairing, red the neutral–inconsistent pairing, and black the neutral–neu-
tral pairing. The symbols represent the mean of the cumulative Gaussian that best fit the raw
psychometric data in each condition. Error bars represent bootstrapped 95% confidence inter-
vals of the mean. The PSE data show that consistent stimuli needed less disparity and that
inconsistent stimuli needed more disparity than neutral stimuli to yield the same apparent
depth. Dotted lines represent predictions of the nonparametric model. Solid lines represent the
predictions of the power-law model. If convexity did not affect perceived depth, the data would
lie on a horizontal line through zero. b, JNDs plotted against the disparity of the standard. This
is the disparity difference that was required for observers to respond that the comparison
stimulus had greater depth than the standard 84% of the time. The three sets of data are for
neutral vs neutral (black), consistent vs consistent (blue), and inconsistent vs inconsistent (red).
Symbols represent the SD of the best-fitting cumulative Gaussian for each condition. Error bars
represent 95% confidence intervals on the SD. Dotted and solid lines are the predictions of the
best-fitting probabilistic models (nonparametric and power law, respectively).
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regions than straight-contoured or con-
cave regions; (2) all three distributions
have much heavier tails than Gaussians;
and (3) the estimated distributions are ap-
proximately linear in a log–log plot, which
means that they are similar to power laws.
Figure 8b shows the estimated distributions
when we used the power-law model, which
has only five free parameters (two for dis-
parity and three for convexity–depth
distributions).

Figure 9 shows that the power-law
model provides nearly as good a fit to the
data as the nonparametric model, even
though the power-law model had many
fewer free parameters. To assess the good-
ness of fit of a given model, we computed
the sum-squared error (SSE) between the
model predictions and the psychometric
data. We computed an upper bound on
goodness of fit by fitting separate cumula-
tive Gaussians to each experimental con-
dition. This Gaussian-fit model has 80 free
parameters. We then normalized the SSEs
so that a goodness-of-fit value of 1 repre-
sents an upper bound: specifically, our
measure of goodness of fit was SSEGaussian/
SSEmodel. We computed the normalized
SSE for four models: a random coin-
flipping model, a model in which the con-
vexity–depth distributions were identical
(equivalent to assuming convexity is not
used in depth estimation), and the afore-
mentioned power-law and nonparametric
models (Fig. 9). The nonparametric and
power-law models provided excellent and
nearly equal fits to the data. We conclude
that power laws are excellent descriptions of
the internal convexity–depth distributions.

While the convexity– depth distribu-
tions estimated from the psychophysical
experiment and natural-scene measure-
ments were similar in many ways, they
differed in one interesting respect: the ef-
fect of convexity was larger in the psycho-
physically estimated distributions). kdifference, the difference
between the exponents of the best-fitting power laws from the
experiment was �4.4 (Fig. 8b), while kdifference from the natural
statistics was �0.4 (Fig. 3c).

There is a plausible explanation for this discrepancy. The con-
tours presented in the psychophysical experiments were different
from the great majority of contours analyzed in the natural
scenes. The contours in the experiments were circular and high
contrast. Many contours in the natural-scene dataset had varying
curvatures (i.e., convex at some spatial scales and concave at oth-
ers, like the silhouette of a tree) and low contrast. Perhaps the
differences in contour properties were the cause of the discrep-
ancy between kdifference for the natural-scene and psychophysical
data. To test this idea, we recomputed the natural-scene statistics
for contours with greater contrast, more consistent convexity,
and greater average convexity. Figure 10a plots kdifference as a
function of the lowest contrast among the contours included in
the analysis. As minimum contrast increases (i.e., as average con-

trast increases), kdifference increases monotonically. Figure 10b
plots kdifference as a function of the consistency of convexity across
spatial scale. As convexity becomes more consistent (e.g., con-
tours become more circular), kdifference increases monotonically.
Figure 10c plots kdifference as a function of the convexity value.
When convexity is near zero (e.g., straight contours), there is little
difference in the convexities of image regions on either side of the
contour and kdifference is low. As convexity increases, the analyzed
contours become more similar to the contours presented in the
psychophysical experiment, and kdifference increases. We would
like to have been able to select contours on all three criteria com-
bined, but doing so leads to too few samples to compute mean-
ingful statistics.

The analysis in Figure 10 shows that restricting the contours in
the natural-scene dataset to be more similar to the contours in the
psychophysical experiment makes the natural-scene convexity–
depth distribution more similar to the psychophysically recov-
ered distributions. Unfortunately, we cannot further restrict the
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contours selected from the scene database to make them even
more similar to the experimental stimuli because doing so yields
too few samples to calculate meaningful statistics. As more
natural-scene data become available, one could pursue this
further.

Discussion
The depth information in figure– ground cues
Figure– ground cues are image features that bias observers to see
one region as occluding another (Palmer, 1999). Such cues— e.g.,
convexity, lower region, size, familiarity, contrast— help deter-
mine to which region a contour belongs; the figure region ap-
pears shaped by the contour and closer to the viewer. The role of
figure– ground cues in biological and machine vision has been
investigated extensively (Rubin, 1921; Peterson et al., 1991;
Driver and Baylis, 1996; Palmer, 1999; Sugita, 1999; Bakin et al.,
2000; Vecera et al., 2002; Burge et al., 2005; Qiu and von der
Heydt, 2005; Fowlkes et al., 2007; Bertamini et al., 2008), but no
comprehensive theory of how figure– ground cues affect con-
tour assignment and depth perception has emerged. Our anal-
ysis of natural-scene statistics reveals why convexity is a cue to
occlusion and metric depth, the probabilistic model shows
how convexity might be integrated with well established met-
ric depth cues, and the psychophysical results are consistent
with this form of integration.

Many other figure– ground cues could affect metric depth
percepts in similar manner. Consider the cue of lower region
(Vecera et al., 2002). Because objects typically rest on the ground
plane, positions low in the visual field are likely to be nearer to the
viewer than positions high in the field (Huang et al., 2000; Potetz
and Lee, 2003; Yang and Purves, 2003b,. In our analysis of
natural-scene statistics, we observed that the asymmetry in the
distribution of depth was affected more by elevation in the visual

field than by contour convexity. We therefore expect larger per-
ceptual effects from lower region than from convexity. Psycho-
physical experiments confirm this expectation: Lower region and
convexity determine figural assignment �70% and �60% of the
time, respectively (Vecera et al., 2002; Peterson and Skow, 2008).
Lower region is also a better predictor than convexity of depth-
ordering judgments in images of natural scenes (Fowlkes et al.,
2007).

Two other phenomena are consistent with our claim that fig-
ure– ground cues provide metric depth information. First, a mo-
nocularly viewed sequence of stacking disks generates a vivid
sense of movement toward the viewer (Engel et al., 2006). By the
traditional taxonomy, the depth cues in this stimulus—T-
junctions (Palmer, 1999), surroundedness, and size (Rubin,
1921)—provide only ordinal information. Second, a monocu-
larly viewed moving disk that occludes a background of vertical
bars when translating leftward and is occluded by the bars when
moving rightward is perceived as moving elliptically in depth; it
also elicits vergence eye movements consistent with an elliptical
path (Ringach, 1996). If cues to occlusion provide only distance-
ordering information, standard models cannot explain these
motion-in-depth percepts, nor the vergence eye movements in-
duced by the second stimulus. However, if occlusion cues provide
metric information, as proposed here, the percepts and eye
movements are readily understood.
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Other depth cues
Many other depth cues such as aerial perspective (Troscianko et
al., 1991), shading (Koenderink and van Doorn, 1992), and blur
(Mather and Smith, 2000) are regarded as nonmetric because
from the cue value alone, one cannot uniquely determine depth.
We propose that this taxonomy is unnecessary and that the visual
system uses the information in those cues probabilistically to
refine estimates of metric depth. By capitalizing on the statistical
relationship between images and the environment to which our
visual systems have been exposed, the probabilistic approach will
yield a richer understanding of how we perceive 3D layout.

The usefulness of treating depth cues in a probabilistic frame-
work is further evidenced by recent results in computer vision
(Hoiem et al., 2005; Saxena et al., 2005) in which machine-
learning techniques were used to combine statistical information
about depth and surface orientation provided by a diverse set of
image features. From the information in these features, the algo-
rithms could generate reasonably accurate estimates of 3D scene
layout. These results confirm that useful metric information is
available from image features that have traditionally been consid-
ered nonmetric depth cues. The results also reveal that useful
depth information is available from image features that have not
yet been identified as depth cues.

Neurophysiology and figure– ground cues
Figure– ground cues affect the responses of many neurons in
early visual areas. For example, the responses of V2 and V4 neu-
rons to the figure– ground cues of surroundedness and size have
been studied. A small square of one luminance— defined by sur-
roundedness and size—was presented on a uniform background
of another luminance (Zhou et al., 2000). Even though the infor-
mation specifying “figure” was outside the classical receptive
field, many neurons responded more to the contour when the
square was on the preferred side of the contour. Other research
has found that many V2 neurons selective for disparity-defined
contours specifying that one side of the contour is near, also
respond to figure– ground-defined contours indicating that the
same side is near. Importantly, these neurons respond more vig-
orously when disparity and figure– ground cues are consistent
than when they are inconsistent (Qiu and
von der Heydt, 2005). It would be inter-
esting to investigate whether convexity
modulates responses in similar manner.

Sensitivity to the consistency of dispar-
ity and figure– ground cues has been dem-
onstrated in other ways. Most V1 and V2
neurons respond vigorously to extended
bars of the preferred orientation. When a
small patch covers the classical receptive
field but only partially obscures the stim-
ulus bar, the response of some V1 and
many V2 neurons depend strongly on the
patch’s disparity relative to the bar: They
barely respond when disparity specifies
that the patch is in the plane of the bar or
behind it, but respond vigorously when
disparity specifies that the patch is in front
(Sugita, 1999; Bakin et al., 2000).

These neurophysiological results are
consistent with the view that a representa-
tion of cue-invariant object boundaries
emerges in processing from V1 through
V2 to V4 (Orban, 2008). The neurons in-

Figure 9. Goodness of fit for four models. The SSE between model predictions and the
psychometric data was calculated. Goodness of fit was indexed by SSEGaussian/SSEmodel so
that 1 represents an upper bound. The inverse of those values was then computed and
normalized such that 1 represents the normalized inverse error obtained by fitting a
cumulative Gaussian to each experimental condition independently (80 free parameters).
Larger values represent better fits (lower SSE). Normalized error is shown for four models
fit to the data: (1) Coin-flipping model (0 free parameters); (2) a model that assumed that
the convexity– depth distributions were the same for convex, concave, and straight-
contoured regions; this is equivalent to assuming that convexity was not used when
observers estimated perceived depth (3 free parameters); (3) power-law model (5 free
parameters); (4) nonparametric model (26 free parameters). We also measured the fits
when the difference between the convex and concave distributions was set equal to the
difference recovered from the natural-scene statistics. The fits were nearly as poor as the
model in which convexity is not used (relative fit error: EKK � 0.62; JIL � 0.67). Finally,
we measured the fit errors with Gaussians instead of power laws and found poor fits
(relative fit error: EKK � 0.7; JIL � 0.82); JIL’s Gaussian fit is comparable to the power-
law fit, but that fit required extremely low-variance disparity likelihoods, which were
inconsistent with McKee et al. (1990) and Morgan et al. (2000). We conclude the power-
law model is a good description of the internal convexity– depth distributions.
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volved in this representation may mediate the perceptual effects
reported here. A given disparity stimulates numerous cortical
neurons with different preferred disparities (Poggio et al., 1988).
Presumably, perceived depth is determined by a read-out from
the noisy population response. When a figure– ground cue is
added specifying a skewed distribution of depths, the cue may
increase the response of neurons with disparity preferences con-
sistent with the cue and/or decrease the responses of neurons
with inconsistent disparity preferences. This could yield an in-
crease in the perceived metric depth.

Natural-scene statistics
The importance of natural-scene statistics in perceptual tasks was
first articulated by Brunswik (Brunswik and Kamiya, 1953) who
argued that Gestalt cues could and should be ecologically vali-
dated. The role of natural-scene statistics has since been investi-
gated in relation to several perceptual tasks: contour grouping
(Geisler et al., 2001; Elder and Goldberg, 2002; Ren and Malik,
2002), figure– ground assignment (Fowlkes et al., 2007), and
length estimation (Howe and Purves, 2002). It is useful to distin-
guish this work from a much larger literature on the relationship
between the statistics of natural images and the efficiency of neu-
ral coding in early visual pathways (Barlow, 1961; Simoncelli and
Olshausen, 2001). To determine encoding efficiency, one must
know the statistics of the image properties to be encoded, so
recent work has focused on measuring natural-image statistics
and determining if cortical neurons exploit those statistics
(Olshausen and Field, 1996; Vinje and Gallant, 2000).

It is unclear, however, that efficient encoding is the primary
task of early visual processing. To make strong claims about the
role of natural statistics in perception, we believe it is important
to study tasks that are known to be critical for the biological
system under study. This makes it possible to distinguish subop-
timal performance from a mistaken hypothesis about what the
system does. Surely, estimating the 3D layout of the environment
is a crucial task because such estimation is required for guidance
of visuomotor behavior (Geisler, 2008). It is plausible, therefore,
that natural selection would work toward the incorporation of
3D information contained in natural-scene statistics.

Closing the loop in probabilistic models of perception
A key idea in the probabilistic characterization of perception is
that perceptual systems have internalized the statistical proper-
ties of their sensors and the natural environment, and that the
systems use those properties efficiently to make optimal percep-
tual estimates. Many observations in the literature are compatible
with this framework. These include the findings that the vari-
ances of multiple sources of sensory information are integrated
optimally (Ernst and Banks, 2002; Knill and Saunders, 2003; Alais
and Burr, 2004). There has also been work motivated by the idea
that prior information affects perception optimally (Mamassian
and Goutcher, 2001; Weiss et al., 2002). However, previous work
has not demonstrated that perceptual systems do in fact behave
optimally.

For example, perceived speed decreases when the contrast of
the moving stimulus is reduced (Weiss et al., 2002; Stocker and
Simoncelli, 2006). This effect can be understood if we assume that
the visual system has a prior for slow motion. With lower con-
trast, the variance of sensory measurement increases so the prior
is expected to have greater influence; it pulls perceived speed
toward zero. By varying contrast, Stocker and Simoncelli (2006)
estimated the speed prior from psychophysical data. Although
the estimated prior is consistent with several phenomena in mo-

tion perception (Weiss et al., 2002), there is no evidence that the
estimated prior actually matches the distributions of speeds en-
countered in natural viewing. Thus, it cannot be argued from
psychophysical analysis alone that the visual system has accu-
rately internalized statistical properties of the environment.

The work described here attempts to close this gap by measur-
ing the statistics from natural scenes and seeing whether observ-
ers have internalized those same statistics. We showed that people
behave as if they use an asymmetric convexity– depth distribu-
tion when making depth judgments in the presence of a region-
bounding contour. The convexity– depth distribution that best
explains their behavior is qualitatively similar to the distribution
for natural scenes. Our experiment thus demonstrates the eco-
logical validity of convexity as a cue to metric depth and explains
its usefulness to the visual system. But we too have not yet closed
the above-mentioned gap because the distributions estimated
from the psychophysical data were not quantitatively the same as
the natural-scene distributions. Thus, with the possible exception
of findings in categorical perception (Geisler et al., 2001; Elder
and Goldberg, 2002; Ren and Malik, 2002, Fowlkes et al., 2007),
the field still awaits evidence that the internalized statistics really
do match the statistics of natural scenes.

Summary
In the analysis of natural-scene statistics, we found that the con-
vexity of an image region provides information about the prob-
ability of different depths across the contour bounding that
region. We constructed a probabilistic model of how this infor-
mation can be used to maximize the accuracy of depth estimates.
In psychophysical experiments, we showed that convexity affects
depth estimation in a manner consistent with such a model. Our
work thus establishes the ecological validity of the figure– ground
cue of convexity and its usefulness to the human viewers. The
increasing availability of natural-scene datasets of the environ-
mental properties the visual system seeks to estimate— depth,
velocity, surface orientation, object identity—should allow sim-
ilar undertakings for many cues and tasks and guide the study of
neural mechanisms that underlie the relationship between scene
statistics and perceptual estimates.
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