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Abstract

Many state-of-the-art approaches for object recognition
reduce the problem to a 0-1 classification task. Such re-
ductions allow one to leverage sophisticated classifiers for
learning. These models are typically trained independently
for each class using positive and negative examples cropped
from images. At test-time, various post-processing heuris-
tics such as non-maxima suppression (NMS) are required
to reconcile multiple detections within and between differ-
ent classes for each image. Though crucial to good perfor-
mance on benchmarks, this post-processing is usually de-
fined heuristically.

We introduce a unified model for multi-class object
recognition that casts the problem as a structured prediction
task. Rather than predicting a binary label for each image
window independently, our model simultaneously predicts
a structured labeling of the entire image. Our model learns
statistics that capture the spatial arrangements of various
object classes in real images, both in terms of which ar-
rangements to suppress through NMS and which arrange-
ments to favor through spatial co-occurrence statistics.

We formulate parameter estimation in our model as a
max-margin learning problem. Given training images with
ground-truth object locations, we show how to formulate
learning as a convex optimization problem. We employ a
cutting plane algorithm similar to [14] to efficiently learn
a model from thousands of training images. We show state-
of-the-art results on the PASCAL VOC benchmark that indi-
cate the benefits of learning a global model encapsulating
the spatial layout of multiple object classes.

1. Spatial Interactions in Object Detection

A contemporary and successful approach to object
recognition is to formulate it as a classification task, e.g.
“Does an image window at location i contain a given ob-
ject o?”. The classification formulation allows immediate
application of a variety of sophisticated machine learning
techniques in order to learn optimal detectors from train-
ing data. Such methods have the potential to encapsulate

those subtle statistical regularities of the visual world which
separate object from background. As a result, learning ap-
proaches have often yielded detectors that are more robust
and accurate than their hand built counterparts for a range
of applications, from edge and face detection to general pur-
pose object recognition [25, 6, 8].

In contrast to the well founded techniques used for clas-
sification of individual image patches, the problem of cor-
rectly detecting and localizing multiple objects from multi-
ple classes within an image of a scene has generally been
approached in a far more ad-hoc manner. For example,
non-max suppression (NMS) is required to remove some
detections returned by a classifier based on overlap criteria
or more complicated heuristics (e.g. the mode finding ap-
proach of [6]). Such tricks of the trade are essential to good
performance on benchmarks designed to penalize multiple
non-localized detections, however, they highlight a clear
disconnect between training and testing phases. The ob-
jective optimized during learning only characterizes a sub-
component of the final system used at runtime.

Furthermore, there is a wide range of possible interac-
tions between object detections which is not fully captured
by ad-hoc approaches. In street-level views, pedestrians are
likely to occur standing next to each other, nearly overlap-
ping, but unlikely to occur directly above or below each
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Figure 1. Our framework. Classification-based approaches for
recognition predict a binary label for a cropped window (left). We
formulate the recognition problem as predicting a sparse, struc-
tured label vector specifying which windows, if any, contain par-
ticular objects in an entire input image. The latter allows our
model to capture a wide range of contextual constraints among
objects as described in Table 1 and Fig 2.
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within-class between-class
activation textures of objects spatial cueing
inhibition NMS mutual exclusion

global expected counts co-occurrence
Table 1. A taxonomy of interactions captured in our model.
Within a single object class, our model can favor typical spa-
tial layouts of objects (people often stand in crowds) while di-
rectly learning how to inhibit overlapping detections in such cases
(NMS). Our model also captures long-range interactions between
objects, such as the constraint that there exists at most one object
instance (counting). Analogous interactions exist between object
classes, including typical spatial relations between objects (bottles
sit on tables), mutual exclusion (dog and cat detectors should not
respond to the same image region), and co-occurrence (couches
and cars do not commonly co-occur).

other (Fig.2). In general, spatial object-object interactions
may be arbitrarily complex and depend on latent informa-
tion which is not readily available from single image. As an
extreme example, studies of proxemics [11], the body spac-
ing and pose of people as they interact, shows that physical
spacing between people depends in complicated ways on
their “social distance”. While such complex interactions are
difficult to encode, we argue there does exist useful infor-
mation that is being ignored by current ad-hoc approaches
to NMS.

NMS is generally described in terms of intra-class in-
hibition, but can be generalized to suppression of overlap-
ping detections between different classes. We refer to this
more general constraint, that two objects cannot occupy the
same 3D volume at the same time, as mutual exclusion. As
seen in a 2D image projection, the exact nature of this con-
straint depends on the object classes. Fig.2(right) shows
an example of ground-truth labelings in the PASCAL VOC
dataset in which strict mutual-exclusion would produce sub-
optimal performance.

Object detections can also serve to enhance rather than
inhibit other detections within a scene. This has been an
area of active research in object recognition over the last
few years [22, 18, 10, 12, 13, 4, 15]. For example, different
object classes may be likely to co-occur in a particular spa-
tial layout. People ride on bikes, bottles rest on tables, and
so on. In contextual cueing, a confident detection of one
object (a bike) provides evidence that increases the likeli-
hood of detecting another object (a person above the bike)
[4, 10, 15]. Contextual cueing can also occur within an ob-
ject category, e.g., a crowd of pedestrians reinforcing each
other’s detection responses. An extreme example of this
phenomena is near-regular texture in which the spatial lo-
cations of nearly identical elements provides a strong prior
on the expected locations of additional elements, lowering
their detection threshold [17].

In Table 1 we outline a simplified taxonomy of different
types of object-object interactions, both positive and nega-
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Figure 2. Our novel contributions include the ability to learn in-
hibitory intra-class constraints (NMS) and inhibitory inter-class
constraints (Mutual Exclusion) in a single unified model along
with contextual cuing and spatial co-occurrence. Naive methods
for NMS or mutual exclusion may fail for objects that tend to
overlap themselves (left) and other objects (right). In contrast,
our framework learns how best to enforce such constraints from
training data. We formulate the tasks of NMS and Mutual Exclu-
sion using the language of structured prediction. This allows us
to compute an optimal model by minimizing a convex objective
function.

tive, within and between classes. The contribution of this
paper is a single model that incorporates all interactions
from Table 1 through the framework of structured predic-
tion. Rather than returning a binary label for a each image
window, our model simultaneously predicts a set of detec-
tions for multiple objects from multiple classes over the en-
tire image. Given training images with ground-truth object
locations, we show how to formulate parameter estimation
as a convex max-margin learning problem. We employ the
cutting plane algorithm of [14] to efficiently learn globally
optimal parameters from thousands of training images.

In the sections that follow we formulate the structured
output model in detail, describe how to perform inference
and learning, and detail the optimization procedures used
to efficiently learn parameters. We show state-of-the-art re-
sults on the PASCAL 2007 VOC benchmark[7], indicating
the benefits of learning a global model that encapsulates the
layout statistics of multiple objects classes in real images.
We conclude with a discussion of related work and future
directions.

2. Model

We describe a model for capturing interactions across
a family of object detectors. To do so, we will explicitly
represent an image as a collection of overlapping windows
at various scales. The location of the ith window is given
by its center and scale, written as li = (x, y, s). The col-
lection of M windows are precisely the regions scored by
a scanning-window detector. Write xi for the features ex-
tracted from window i, for example, a histogram of gradient
features [6]. The entire image can then be represented as the
collection of feature vectors X = {xi : i = 1 . . .M}

Assume we have K object models. We write yi ∈
{0 . . .K} for the label of the ith window, where the 0 la-
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Figure 3. A visualization of our spatial histogram feature dij . We
consider the location of the center of window j with respect to
a coordinate frame defined by window i, denoted by the thickly
outlined box. The dashed and dotted rectangles represent regions
over which the center of window j are binned. The relative lo-
cation of j must either be far or near. For near windows, we
consider above, ontop, below, and symmetric next-to bins
as shown. To allow our model to reproduce the behavior of base-
line modules that perform NMS with a criteria of 50% relative
overlap, we also include a binary overlap feature. This makes dij

a 7 dimensional sparse binary vector.

bel designates the background. Let Y = {yi : i = 1 . . .M}
be the entire label vector for the set of all sub-windows in
an image. We define the score of labeling image X with
vector Y as:

S(X,Y ) =
∑
i,j

wTyi,yj
dij +

∑
i

wTyi
xi (1)

where wyi,yj
represent weights that encode valid geometric

configurations of object classes yi and yj , and wyi
repre-

sents a local template for object class yi. dij is a spatial
context feature that bins the relative location of window i
and j into one of D canonical relations including above,
below, overlapping, next-to, near, and far (Fig3). Hence dij
is a sparse binary vector of length D with a 1 for the kth
element when the kth relation is satisfied between the cur-
rent pair of windows. wyi,yi encodes the valid geometric
arrangements of a single class. For example, if people oc-
cur beside one another but not above, the weight fromwyi,yi

associated with next-to relations would then be large.
Local model: In our current implementation, rather than

learning a local template, we simply use the output of the
local detector as the single feature. To learn biases between
different object classes, we append a constant 1 to make xi
two-dimensional.

Background class. Since we are concerned only with
the relative difference in scores between labelings, we have
an extra degree of freedom in defining the weights. We con-
strain local and pairwise background weights w0 and wi0
and w0i to be 0. Since the majority of windows in an image
will be labelled as background, this significantly speeds up
computations with the model.

3. Inference
Computing arg maxY S(X,Y ) is NP hard unless the

pairwise potentials happen to have some particular struc-

ture (e.g. sub-modularity with K = 2). For more general
cases, one must resort to search techniques such as branch-
and-bound or A* to find exact minima. In our experiments,
we use a simple greedy forward search.

3.1. Greedy Forward Search

Our algorithm for optimizing (1) is analogous to greedy
algorithms traditionally used for NMS [16]. (1) Initialize
the label vector Y to the background class for each window.
(2) Greedily select the single window that, when labelled as
a non-background class, increases the score S by the largest
amount. (3) Stop when instancing any other detection de-
creases the total score. Naively re-computing the score at
each step of the algorithm takes excessively long but we
can track the potential gain of adding each detection incre-
mentally.

We write I for a particular set of instanced window-class
pairs {(i, c)} and write Y (I) for the associated label vector
where yi = c for all pairs in I and yi = 0 otherwise. We
define the change in score obtained by adding window-class
pair (i, c) to the set of instances I as

∆(i, c) = S(X,Y (I ∪ {(i, c)}))− S(X,Y (I))
Initialize I = {}, S = 0 and ∆(i, c) = wTc xi and repeat:

1. (i∗, c∗) = arg max
(i,c) 6∈I

∆(i, c)

2. I = I ∪ {(i∗, c∗)}
3. S = S + ∆(i∗, c∗)

4. ∆(i, c) = ∆(i, c) + wTc∗,cdi∗,i + wTc,c∗di,i∗

until ∆(i∗, c∗) < 0 or all windows are instanced. In Step
4, we update ∆(i, c) for un-instanced window-class pairs
by adding in the pairwise costs due to the newly instanced
pair (i∗, c∗). For additional speed ups, we ran the above al-
gorithm on a set of windows that passed an initial minimal
threshold and conservative NMS step. This substantially re-
duces the number of windows the algorithm must consider.

Effectiveness: On small-scale problems where the the
brute-force solution is computable, we find that the above
algorithm tends to produce solutions whose score is quite
close to the score of the optimal solution, though the solu-
tions may differ in the labels of 1-3 windows. This suggests
our algorithm performs reasonably well in practice, though
we are investigating other optimization methods.

3.2. Marginals

Many object recognition benchmarks such as PASCAL
are scored by ranking detections with a precision-recall
curve. This means we need to associate a score with each
detected window. To obtain a score, we can appeal to a
probabilistic version of our model, which would correspond
to a conditional random field (CRF) written as P (Y |X) =



1
Z(X)e

S(X,Y ). The natural score for an individual detection
would be the posterior marginal or log-odds ratio

m(yi = c) = log
P (yi = c|X)
P (yi 6= c|X)

(2)

= log

∑
yr
P (yi = c, yr|X)∑

ys,c′ 6=c P (yi = c′, ys|X)

We write yr for a M − 1 vector of labels for the remain-
ing M − 1 windows other than i. We similarly define ys.
Both sums above require marginalizing out an exponential
number of labels. Let us assume the posterior mass inside
each sum is dominated by the most probable label r∗ and
the second best label s∗ with class c∗ respectively.

r∗ = arg max
r
S(X, yi = c, yr) (3)

(s∗, c∗) = arg max
(s,c′ 6=c)

S(X, yi = c′, ys)

Then the marginal log-odds ratio (2) can approximated by

m(yi = c) ≈ log
P (yi = c, yr∗ |X)
P (yi = c∗, ys∗ |X)

= S(X, yi = c, yr∗)− S(X, yi = c∗, ys∗)

It is straightforward to extend our greedy maximization
procedure for optimizing equation (1) to solve equation (3).
This is used for the per detection scoring presented in the
result section.

4. Learning
In order to describe the learning algorithm, we first re-

write the score function from (1) in terms of a single linear
parameter vector w. To do this, we encapsulate the effect of
Y and X in a potential function, writing

S(X,Y ) =
∑
i,j

wTs ψ(yi, yj , dij) +
∑
i

wTa φ(xi, yi)

where ws and ψ() are vectors of length DK2, and wa and
φ() are vectors of length KF , where D is the number of
spatial relations, K is the number of classes and F is the
length of feature vector xi. In general, each object class
may use a feature vector of different length. The vector ψ()
will contain at most D nonzero entries and the vector φ()
will contain only F nonzero entries. We can then write the
score as S(X,Y ) = wTΨ(X,Y ) where

w =
[
ws
wa

]
Ψ(X,Y ) =

[∑
ij ψ(yi, yj , dij)∑

i φ(xi, yi)

]
(4)

where our greedy inference procedure solves

Y ∗ = arg max
Y

wTΨ(X,Y ) (5)

4.1. Convex training

Assume we are given a collection of training images Xn

and labels Yn. We want to train a model w, that given a new
image Xn, tends to produce the true label vector Y ∗n = Yn.
We formulate this as a regularized learning problem:

arg min
w,ξn≥0

wTw + C
∑
n

ξn (6)

s.t. ∀n,Hn wT∆Ψ(Xn, Yn, Hn) ≥ l(Yn, Hn)− ξn

where ∆Ψ(Xn, Yn, Hn) = Ψ(Xn, Yn)−Ψ(Xn, Hn). The
constraint from (6) specifies the following: Consider the
nth training image Xn and its true label Yn. We want the
true label to score higher than all other hypothesized label-
ings {Hn}. However not all incorrect labelings are equally
bad. The loss function l(Yn, Hn) measures how incorrect
Hn is and penalizes the slack variable ξn in proportion. This
loss function formulation from (6) is often called margin-
rescaling [23].

We consider notions of loss that decompose across the
M windows: l(Y,H) =

∑M
i=1 l(yi, hi). One simple

window-specific loss is 0-1:

l01(yi, hi) = I(yi 6= hi)

Hence, the constraint from (6) requires that label Y scores
much higher than those hypotheses H that differ from the
ground-truth on many windows. However note that l01 in-
correctly penalizes detections that overlap true positives as
false positives. A more appropriate loss that handles overlap
a bit better is:

lov(yi, hi) =


1 : yi 6= bg ∧ hi 6= yi
1 : hi 6= bg ∧ ¬∃j

s.t.[ov(i, j) > .5 ∧ yj = hi]
0 : otherwise

(7)
The top condition corresponds to a missed detection, while
the second corresponds to a false positive (where we check
to make there does not exist an overlapping true detection).
One may also define a soft loss that assigns a value between
0 and 1 for partially overlapping windows, as in [5].

5. Cutting plane optimization

The training problem outlined in (6) is exactly the formu-
lation addressed by the excellent SVMStruct package [14].
However, in order to allow us greater flexiblity in caching
data vectors and scheduling model updates, we opted to
develop our own solver implementing the 1-slack cutting
plane algorithm [14]. We briefly outline our approach here
using the notation from [21].

Consider the following unconstrained formulation that is



equivalent to the constrained problem from (6):

w∗ = arg min
w
L(w) where L(w) =

1
2
||w||2 + CR(w)

R(w) =
N∑
n

max
H

(0, l(Yn, H)− wT∆Ψ(Xn, Yn, H))

In the above formulation, R(w) is a convex function
since it is the maximum of a set of linear functions. This
proves that the overall objective function L(w) in convex
since it is the sum of two convex functions.

Following [21]’s notation, we call (6) the master problem
and define the following reduced problem:

wt = arg min
w
Lt(w) where Lt(w) =

1
2
||w||2 + CRt(w)

(8)

where the convex hinge loss R is approximated by a piece-
wise linear function Rt. The approximation is constructed
from a small set of lower-tangent planes called cutting
planes. Each cutting plane will be a sub-gradient g of the
function R(w) computed at a particular point wj . The sub-
gradient is computed as:

g(wj) = −
N∑
n=1

πn∆Ψ(Xn, Yn, H
∗
n)

πn =
{

1 if l(Yn, H∗n)− wTj ∆Ψ(Xn, Yn, H
∗
n) ≥ 0

0 otherwise

H∗n = arg max
H

l(Yn, H)− wT∆Ψ(Xn, Yn, H) (9)

where H∗n is the most violated constraint for image n under
the current weight vector w. The subgradient provides a
linear lower bound for R(w).

R(w) ≥ R(wj) + g(wj)T (w − wj) ∀w (10)

To obtain a tighter lower bound ofR(w), we will take the
point-wise maximum of cutting planes computed at points
w1 . . . wt−1, adding the zero-plane to the set since the hinge
loss R is nonnegative:

Rt(w) = max(0, max
j=1...t−1

wT g(wj) + bj) ∀w (11)

5.1. Algorithm

Initialize t = 0 and the set of cutting planes to be empty.
Iterate:

1 Compute wt by solving the reduced problem (8). This
can be solved with a dual QP with t variables. Since t
is typically small (10-100), this can be solved with off-
the-shelf solvers. We use the publicly available sim-
plex solver from [1].

2 Add the new cutting plane wT g(wt) + bt.

As in [21], we iterate until the stopping condition
L(wt) − Lt(wt) < ε. Define the optimal solution as
L∗ = minw L(w). It is relatively straightforward to show
that ∀t, we have the lower and upper bounds Lt(wt) ≤
L∗ ≤ L(wt). The iteration must terminate because the
lower bound is non-decreasing Lt(wt) ≥ Lt−1(wt−1) and
there exists a finite number of cutting planes.

5.2. Finding most-violated constraint

In step (2) of (5.1), we need to compute the subgradient
of R(w) at the current wt. To do so, we need to compute
the most violated constraint for image n (9). Dropping the
n subscript notation, we can rewrite (9) as

H∗ = arg max
H

l(Y,H) + wTΨ(X,H) (12)

= arg max
H

∑
i,j

wThi,hj
dij +

∑
i

(wThi
xi + l(hi, yi))

Since the loss function decomposes into a sum over
windows, solving (12) is very similar to the original max-
imization (1) except that the local match costs have been
augmented by the loss function. Using the loss function (7),
the local scores for invalid object labels for a given window
are incremented by one. This makes these labels more
attractive in the maximization, and so they are more likely
to be included in the most-violated constraint H∗. We can
compute an approximate solution of (12) with a greedy
forward search as in Section 3.1. Our algorithm is an
under-generating approximation [9], implying that formal
garuntees of optimal learning no longer hold. However, as
stated in Sec.3.1, greedy forward search tends to produce
scores similar to the brute-force solution, and so we suspect
our solutions are close to optimal.

6. Results

Testbed: We have focused our experimental results for
multiclass object recognition on the PASCAL Visual Ob-
ject Challenge. It is widely regarded as the most diffi-
cult available benchmark for recognition. We use the 2007
data which is the latest for which test annotations are avail-
able. The data consists of 10000 images spanning 20 object
classes with a 50% test-train split. The images are quite var-
ied, making this an especially difficult testbed for high-level
contextual reasoning.

Baseline: State-of-the-art approaches tend to be scan-
ning window detectors [7]. We use the publicly available
code [2] as a baseline. It implements a intra-class NMS
post-processing step. The code is an improved version of
[8] that out-scores many of the previous best performers
from the 2007 competition, suggesting it is a strong base-
line for comparison.



Class [7] Baseline [8] MC-NMS Our model
plane .262 0.278 0.270 0.288
bike .409 0.559 0.444 0.562
bird .098 0.014 0.015 0.032
boat .094 0.146 0.125 0.142

bottle .214 0.257 0.185 0.294
bus .393 0.381 0.299 0.387
car .432 0.470 0.466 0.487
cat .240 0.151 0.133 0.124

chair .128 0.163 0.145 0.160
cow .140 0.167 0.109 0.177
table .098 0.228 0.191 0.240
dog .162 0.111 0.091 0.117

horse .335 0.438 0.371 0.450
motbike .375 0.373 0.325 0.394
person .221 0.352 0.342 0.355
plant .120 0.140 0.091 0.152
sheep .175 0.169 0.091 0.161
sofa .147 0.193 0.188 0.201
train .334 0.319 0.318 0.342
TV .289 0.373 0.359 0.354

Table 2. Per-class AP scores on PASCAL 2007 [7]. We show the
winning score from the 2007 challenge in the first data column.
This column is composed of various state-of-the-art recognition al-
gorithms. The second column is our baseline obtained by running
the code from [2]. It outperforms many of the 2007 entries, sug-
gesting it is a strong baseline for comparison. The third column
pools detections across multiple classes before applying NMS pro-
cedure from [2] (MC-NMS). The third column is our approach,
which provides a stark improvement over MC-NMS and generally
improves performance over classification-trained approaches.

Per-class scores: We follow the VOC protocol for re-
porting results [7]. A putative detection is considered cor-
rect if the intersection of its bounding box with the ground-
truth bounding box is greater than 50% of their union. Mul-
tiple detections for the same ground-truth are considered
false positives. We compute Precision-Recall (PR) curves
and score the average precision (AP) across classes in Ta-
ble 2. For twelve of the twenty classes, we achieve the best
score when compared to the 2007 competition and the base-
line model. We also compare to a version of [8] in which
detections from multiple classes are pooled before apply-
ing NMS (MC-NMS). This tends to hurt performance, in-
dicating the need for proper training of multiclass inhibi-
tion. The improvement over MC-NMS is generally large.
In most cases, the improvement over the baseline is small,
but for indoor classes such as tables and bottles and outdoor
classes such as motorbikes and trains, the improvement is
close to 10%.

Multi-class scores: Per-class APs do not score the con-
sistency of detections across classes on an image, which is
one of our goals for multi-class recognition. We consider
two approaches for multiclass scores in Fig.4. First we pool
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Figure 4. Multi-class AP scores on PASCAL 2007. On the left,
we score overall AP. We construct the baseline curve by pooling
detections across classes and images when computing PR curves.
Our global model clearly provides a noticeable boost in perfor-
mance in the low-recall high-precision regime. On the right, we
pool detections on a per-image base, compute the per-image AP,
and average the result over images. We see a noticeable improve-
ment of 10% over our baseline [2].

detections across classes and images (running the default
NMS procedure in [2] before pooling), and generate a sin-
gle PR curve. Our model provides a noticeable improve-
ment, particularly in the high precision - low recall regime.
We also pool detections on a per image bases, generating
a per-image multi-class AP. We average this AP across all
images. Our model again provided a strong improvement
of 10% over the baseline. This is because the baseline does
not correctly reconcile detections from various classes due
to the fact that the detectors were trained independently.

Models: We visualize the pairwise weights learned in
our models in both Fig.5 and Fig.6. These are trained dis-
criminatively, taking into account the behavior of the lo-
cal detector. For example, our model learns to aggres-
sively compete bottle and person detections because local
detectors confuse the two. This is contrast to simple co-
occurrence weights that are trained by frequency counting
as in [10, 4]. We also learn meaningful multiclass spatial
layouts - e.g., bottles tend to occur above tables. We re-
fer the reader to the captions for additional analysis. Fig.7
shows example multi-class detections from our model as
compared to the baseline. Our model appears to produce
better detections by understanding interactions between ob-
jects that spatially overlap, such as people when riding
horses. It also learns how to correctly enforce mutual exclu-
sion between classes, allowing people and sofas to overlap
but not people and bottles.

7. Discussion and Related Work

There has been a wide variety of work in the last few
years on contextual modeling in image parsing [22, 20, 13,
10, 19, 12, 3]. These approaches have typically treated the
problem as that of finding a joint labeling for a set of pixels,
super-pixels, or image segments and are usually formulated



Figure 7. Example test images. On the top row, we show the top 10 detections from the baseline model after standard NMS. On the
bottom row, we show the top 10 marginal detections from our global model. On the left, we see that horse and person detections are better
localized by the globally tuned NMS model. In the left center, our model seems to favor patterns of chair detections that overlap, as maybe
common in scenes of tables. In the right center, our model exploits co-occurrence cues favoring groups of animals. Finally, on the right,
our model appears to be exploiting relational cues about sofas and people while enforcing mutual exclusion between the bottle and people
detections.
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Figure 5. We visualize the weights for our overlap threshold across
all our models. Light areas correspond to an increase in score.
The structure in these weights indicate the subtlety required for
applying mutual exclusion across classes. For example, because
people and bottles have similar shapes, the local detectors we use
[8] can confuse them. Our global model learns to strongly compete
such overlapping detections using a negative weight. However,
people and sofas tend to overlap because people partially occlude
sofas when sitting down. In this case, we learn a positive weight
that reinforces both detections.

as a CRF. Such CRFs for pixel/segment labeling use sin-
gleton potential features that capture local distributions of
color, textons, or visual words. Pairwise potentials incor-
porate the labelings of neighboring pixels but in contrast to
older work on MRFs these pairwise potentials may span a
very large set of neighboring sites (e.g. [22, 24]). Learn-
ing such complicated potentials is a difficult problem and
authors have relied primarily on boosting [19, 22, 24] to do
feature selection in a large space of possible potential func-
tions.

These approaches are appealing in that they can simul-
taneously produce a segmentation and detection of the ob-
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bottles wrt tables

cars wrt trains

m.bikes

m.bikes wrt

Figure 6. We visualize the pairwise spatial weights for each pair of
classes as a 5×5 image (analogous to Fig3). Light areas indicate a
favorable arrangement. We show a closeup for particular relations
from classes where the global model helps performance. On the
top, we see that bottles tend to sit above tables. In the middle,
cars lie both near and far from trains, but rarely above or directly
next to them. On the bottom, we see that motorbikes tend to occur
next to one another in images.

jects in a scene. Thus they automatically enforce NMS and
hard mutual exclusion (although as our examples show, this
may not be entirely desirable). However, the discrimina-
tive power of these methods for detection seems limited.
While local image features work for some object classes
(grass, sky etc), a clear difficulty with the pixel/segment
labeling approach is that it is hard to build features for
objects defined primarily by shape. It still remains to be
shown whether such approaches are competitive with scan-
ning window templates on object detection benchmarks.

In principle, one could define unary potentials for CRFs



using, say, HOG templates centered on individual pixels.
However, the templates must score well when centered on
every pixel within a particular segment. Thus templates will
tend to be overly-smoothed. Our method is fundamentally
different in that the output is sparse. A complete object de-
tection is represented by the activation of a single pixel and
so the unary potential can be quite strong. Furthermore, a
detection in our model represses detections corresponding
to small translations while, in the pixel labeling model, ex-
actly the opposite has to happen. We thus make a tradeoff,
moving to more powerful discriminative unary features but
sacrificing tractable pairwise potentials.

Alternatively, [10, 15] group pixels into object-sized seg-
ments and then define a CRF over the labels of the seg-
ments. This approach has the advantage that unary poten-
tials can now be defined with object templates, say, centered
on the segment. However, the initial segmentation must
be fairly accurate and enforces NMS and mutual exclusion
without object-level layout models.

To our knowledge, the problem of end-to-end learning of
multi-object detection (i.e. learning NMS) has not been ex-
plored. The closest work we know if is that of [5] who use
structured regression to predict the bounding box of a sin-
gle detection within an image. Both models are trained us-
ing images rather an cropped windows. Both are optimized
using the structural SVM formalism of [23]. However, the
underlying assumptions and resulting models are quite dif-
ferent. In the regression formalism of [5], one assumes that
each training image contains a single object instance, and
so one cannot leverage information about the layout of mul-
tiple object instances, beit from the same class or not. The
models may not perform well on images without the object
because such images are never encountered during training.
In our model, we can use all bounding-box labels from all
training images, including those that do not contain any ob-
ject, to train a model that will predict those very labels.

8. Conclusion
We have presented a system for multi-class object detec-

tion with spatial interactions that can be efficiently trained
in a discriminative, end-to-end manner. This approach is
able to fuse the outputs of state of the art template based
object detectors with information about contextual relations
between objects. Rather than resorting to post-processing to
clean up detections, our model learns optimal non-max sup-
pression parameters and detection thresholds for each class.
The resulting system outperforms published results on the
PASCAL VOC 2007 object detection dataset.
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