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Abstract

Feature point matching for camera localization suffers
from scalability problems. Even when feature descriptors
associated with 3D scene points are locally unique, as cov-
erage grows, similar or repeated features become increas-
ingly common. As a result, the standard distance ratio-test
used to identify reliable image feature points is overly re-
strictive and rejects many good candidate matches. We pro-
pose a simple coarse-to-fine strategy that uses conservative
approximations to robust local ratio-tests that can be com-
puted efficiently using global approximate k-nearest neigh-
bor search. We treat these forward matches as votes in cam-
era pose space and use them to prioritize back-matching
within candidate camera pose clusters, exploiting feature
co-visibility captured by the 3D model camera pose graph.
This approach achieves state-of-the-art camera pose esti-
mation results on a variety of benchmarks, outperforming
several methods that use more complicated data structures
and that make more restrictive assumptions on camera pose.
We carry out diagnostic analyses on a difficult test dataset
containing globally repetitive structure which suggest our
approach successfully adapts to the challenges of large-
scale pose estimation.

1. Introduction
In this paper we consider the problem of estimating

the full 6DOF camera pose of a query image with respect
to a large-scale 3D model such as those obtained from a
Structure-from-Motion (SfM) pipeline [27, 34, 16, 25]. A
typical approach is to detect distinctive 2D feature points in
a query image and perform correspondence search against
feature descriptors associated with 3D points obtained from
the SfM reconstruction. This initial matching is performed
in descriptor space (e.g., SIFT [14] or SURF [3]) using
an approximate k-nearest neighbor search implementation
[17, 18]. Candidate 2D-3D correspondences are then fur-
ther filtered using robust fitting techniques (e.g., RANSAC
variants [10, 32, 15]) to identify inliers and the final camera
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pose estimated using an algebraic PnP solver and non-linear
refinement. Camera pose estimation is a fundamental build-
ing block in many computer vision algorithms (e.g., incre-
mental bundle adjustment), can provide strong constraints
on object recognition (see e.g., [33, 8]), and is useful in
robotics applications such as autonomous driving and navi-
gation.

Unfortunately, the performance of standard camera lo-
calization pipelines degrades as the size of the 3D model
grows. Finding good correspondences becomes difficult in
the large-scale setting due to two factors. First, standard
2D-to-3D forward matching is likely to accept bad corre-
spondences of a query feature with the model since the fea-
ture space becomes cluttered with similar descriptors from
completely different locations. Standard heuristics for iden-
tifying distinctive matches, such as the distance ratio-test
of Lowe [14], which compares the distance to the nearest-
neighbor point descriptor with that of the second-nearest
neighbor, fail due to proximity of other model feature de-
scriptors. Second, increasingly noisy correspondences ob-
tained from the matching stage drives up the runtime of
the robust pose estimation step, whose complexity typically
grows exponentially with the number of outliers. These
difficulties are particularly evident in large urban environ-
ments, where repeated structure is common and local fea-
tures become less distinctive [31, 1].

Related Work: These problems are well known and have
been approached in several ways in the literature. Works
such as [13, 12] focus on generating a simplified 3D model
that contains only a representative subset of distinctive
model points. With a smaller model and prioritized search,
it becomes possible to replace the traditional approach of
2D-to-3D forward matching, with 3D-to-2D back match-
ing, allowing the ratio test to be performed in the sparser
feature space of the query image.

An alternative to removing points from the model is to
cluster and quantize model point feature descriptors. [21]
use vocabulary trees to speed up forward matching by as-
signing each model point and each query feature to a vo-
cabulary word, yielding faster runtimes since the vocabu-
lary size is generally smaller than the model point cloud.
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Figure 1. Overview of our camera pose-estimation pipeline. We first exploit multiple nearest neighbor search and camera pose clustering to
identify candidate feature correspondences (red boxes, described in Section 2). We then utilize co-visibility to expand this set and prioritize
back-matching of model features (blue boxes, described in Section 3).

A linear search for the first and second nearest neighbors
is performed within each word bin, and a ratio test filters
out non-distinct correspondences. [22] use active search in
the vocabulary tree to prioritize back matching of 3D points
close to those that have already been found and terminate
early as soon as a sufficient number of matches have been
identified.

A very different approach is taken in the works of
[36, 29]. Camera localization is framed as a Hough voting
procedure, where the geometric properties of SIFT (scale
and orientation) provide approximate information about
likely camera pose from individual point correspondences.
By using focal length and camera orientation priors, each
2D-to-3D match casts a vote into the intersection of a vis-
ibility cone and a hypothesized ground-plane. Orientation
and model co-visibility are further used to filter out unlikely
matches, rapidly identifying the potential camera locations.

Our Contribution: Inspired by this prior work, we pro-
pose a fast, simple method for camera localization that
scales well to large models with globally repeated structure.
Our approach avoids complicated data structures and makes
no hard a priori assumptions on camera pose (e.g., gravity
direction of the camera). Our basic insight is to utilize a
coarse-to-fine approach that rapidly narrows down the re-
gion of camera pose space associated with the query image.
Specifically, we formulate a linear time voting process over
camera pose space by assigning each single model view to
an individual camera pose bin. This voting allows us to
identify model views likely to overlap the query image and
to prioritize back matching of those views against it while
exploiting co-visibility constraints and local ratio testing.

Figure 1 gives on overview of our pipeline. Our first
contribution (Section 2) is to introduce and analyze two
ratio-tests that can be used to find distinctive matches in
a pool of candidates produced by global k-nearest neigh-
bor search (kNN). Our second contribution (Section 3) uses
these forward matches as votes to prioritize back match-

ing of model images against the query image. Extensive
experimental evaluation (Section 4) suggests this approach
scales well and outperforms existing methods on several
pose-estimation benchmarks.

2. Ratio Tests for Global Matching

Forward-matching of query image points against a
model is effective when the model is small. In such mod-
els, approximate nearest-neighbors are often true corre-
spondences and ratio-testing is effective at discarding bad
matches. In this section we first establish that clustering
the model into smaller sub-models and performing forward-
matching within each cluster is sufficient to achieve good
performance for large models (Section 2.1). We then de-
scribe how to efficiently approximate exhaustive cluster-
wise matching by global forward-matching using approx-
imations to the local ratio test (Section 2.2) followed by
back-matching.

2.1. Clustering and Exhaustive Local Matching

A naive approach to solving camera localization at large
scale is to simply divide the 3D model into small pieces
(clusters) and perform matching and robust PnP pose esti-
mation for each cluster. This avoids the problems of global
feature repetition and difficulties of high density in the fea-
ture space. However, this is infeasible from a computational
point of view as it requires building a nearest-neighbor data
structure for each cluster and matching to each cluster sep-
arately at test time. Consider a kd-tree, where searching for
a match in a set with N descriptors is logarithmic in the set
size: O(log(N)). If we divide the model into |C| = N/S
clusters of constant size S, execution time is dominated by
the number of clusters which grows linearly in the model
size, O(|C|log( N

|C| )) = O(NS log(S)) > O(log(N)). While
not practical at scale, we take this exhaustive local match-
ing approach as a gold-standard baseline for evaluating our
coarse-to-fine approach.



#clusters #images #inliers ratio error [m] fwd [s] RNSC [s] total [s]

1 (global) 463 94 0.57 0.64 0.833 0.129 0.962
50 512 66 0.54 0.45 13.10 43.62 56.822

500 517 51 0.49 0.29 80.23 523.69 603.52

Table 1. Results on Eng-Quad using a standard localization frame-
work applied to model clusters. Performing localization separately
in each cluster improves the number of localized cameras and the
median error accuracy, at the expense of longer runtimes due to ex-
haustive matching. We also report the number of inliers and inlier
ratio, as well as forward matching, RANSAC, and total times.

Exhaustive Local Matching is effective but slow: To
evaluate clustering and local matching, we use the Eng-
Quad dataset from [9], and build two SfM models using
COLMAP [25]. The first model contains only the training
image set, while a second model bundles both the training
and test images and is used for evaluating localization ac-
curacy. We geo-register the resulting reconstructions with
a GIS model so that the scale of the SfM model is ap-
proximately metric. 5129 training images of the 6402 were
bundled, and 520 out of 570 test images were additionally
bundled in the test model. The resulting point cloud has
579,859 3D points and 2,901,885 feature descriptors. We
refer to these descriptors as views of the point.

To generate clusterings of the model, we construct a
scene matrix S whose (i, j) entry contains the number of
points that image pair Ii, Ij share in the SfM model. We
performed spectral clustering [26] on the scene matrix us-
ing the 50 largest eigenvectors and produce three different
granularities: no clustering at all (purely global), 50 clus-
ters, and 500 clusters. To evaluate exhaustive local match-
ing, we matched a query image against every cluster and
select the one that produces the smallest localization error.
For matching to a cluster, we use FLANN [18] to find the
first and second NN of each query point and apply a stan-
dard ratio test with a τ = 0.7 threshold. We ran RANSAC
on each set of candidate cluster correspondences using a
P3P solver [11] and a focal length prior based on the image
EXIF metadata. Similar to [13], an image is considered to
be successfully matched if it has at least 12 inlier correspon-
dences with a reprojection error less than ε = 6px.

Table 1 shows that exhaustive local matching within each
cluster performs much better than global matching, with
lower median error and fewer failures. However, the execu-
tion time grows roughly linearly with respect to the number
of clusters, motivating our coarse-to-fine strategy.

2.2. Local Ratio Tests for Global Matches

How can we get the benefits of local cluster-wise match-
ing while maintaining the computational cost associated
with a single global nearest-neighbor search? Cluster-wise
matching considers a nearest-neighbor per-cluster for each
query point. To try and recover this larger pool of candi-

Algorithm 1 Global Forward Matching
INPUT: Query features Q, Model features V , NN search depth
k, ratio test threshold τ , match count threshold NF

M = ∅
while |M| < NF do

q = random sample from Q
{v1, ..., vk+1} = kNN(q,V, k + 1)
αq = ‖q−v1‖

‖q−vk+1‖
if αq ≤ τ then
M =M∪ {(q, v1), ..., (q, vk)}

end if
end while
returnM

Figure 2. Cluster-wise ratio testing. Model views are divided into
clusters. For a query feature q in the image (red dot), we search
up to 5 nearest neighbors. Within clusters containing two or more
matches, we can perform a standard local 1-ratio test within the
cluster (e.g. v1 and v4 are the first and second NN in the green
cluster). For the singleton v3 in the pink cluster, we use an al-
ternate t-ratio test (Eq. 2) based on the matched view’s nearest
neighbor vNN (rather than the query point’s true second nearest
neighbor within the cluster).

date correspondences using global search, we propose to
retrieve the global top k nearest-neighbors for each query
point. Fortunately, approximate kNN searches are not sub-
stantially more costly since those points typically live in ad-
jacent leaves of the kd-tree (which must be explored even
for a 1-NN retrieval). A larger set of candidate matches
can address the problem of repeated structure by retrieving
the set of multiple scene points that might correspond to a
query point. However, it also results in a k-fold increase in
outliers which we now address.

We define a view v ∈ V as the 2D point observation of a
3D point p ∈ P in a particular model image I ∈ I. Given a
camera pose clustering C of the SfM model images, we as-
sign the view descriptors of each image to their correspond-
ing cluster c ∈ C. Note that these clusters divide images
in disjoint groups, but they do share common points, as a
3D point can have multiple views belonging to images as-
signed to different clusters. For a query image I with query
features Q, we search for k approximate nearest neighbors
using a global kd-tree structure built from all views V .



Global k-ratio tests: We start with a conservative global
ratio-test (Algorithm 1) to prune candidate matches by com-
paring the distance ratio of the first and k+1 nearest neigh-
bor retrieved, as proposed by [35]. If the ratio is greater than
threshold τ , we drop the query point. Otherwise, all k near-
est neighbors pairs {(q, v1), ..., (q, vk)} are included in the
set of putative correspondences M. This global ratio test
is much more conservative than the standard first vs second
NN test. In the remainder of this paper, we will refer to this
global test as k-ratio, defined formally as ‖q−v1‖

‖q−vk+1‖ ≤ τ .
The standard first versus second NN test will be referred as
1-ratio.

Proposition 1. If a candidate match fails the global k-ratio
test, it also fails the local 1-ratio test.

Proof. Let {vc1 , vc2} ⊂ {v1, ..., vk} be the first and second
local nearest neighbors of a particular query feature q. Since
the global set {v1, ..., vk} is sorted by ascending distance,
this implies that ‖q − vc2‖ ≤ ‖q − vk+1‖, and ‖q − vc1‖ ≥
‖q − v1‖. Formally,

‖q − vc1‖
‖q − vc2‖

≥ ‖q − vc1‖
‖q − vk+1‖

≥ ‖q − v1‖
‖q − vk+1‖

(1)

Hence, the local 1-ratio will always be equal or greater
than the global k-ratio. This guarantees that any correspon-
dence rejected by the k-ratio test would also have failed the
local 1-ratio test. A correspondence passing the k-ratio test
might not pass the local 1-ratio test, so the local 1-ratio test
is a more stringent criteria.

Cluster-wise ratio tests: After the initial global filtering,
we would like to perform local ratio testing within each
cluster. When more than two candidate matches for a query
point belong to the same cluster, we can simply re-rank
them and apply a standard 1-ratio test. For example, sup-
pose two global matches (q, v2) and (q, v4) which are the
second and fourth global NN of the query feature q fall
into the same cluster. If v2 and v4 are views of distinct 3D
points, then they are necessarily the first (q, vc1) and second
(q, vc2) local nearest-neighbors of q in that cluster (see Fig-
ure 2). Any lower-ranked matches within the cluster can be
ignored and the 1-ratio test applied to this pair.

When only a single global match falls within a cluster we
can no longer perform an exact local 1-ratio test since we
do not have immediate access to the 2nd nearest neighbor
within that cluster. Instead we develop a bound based on the
triangle inequality to define an alternate test for such cases
which we refer to as the t-ratio test.

Given a local correspondence vc1 ∈ c, we define vNN =
kNN(vc1 , c, 1) as the nearest neighbor of view vc1 in the
feature space defined by cluster c. Since vNN is obtained
purely from training data, we can pre-compute it offline and

access it at test time. We define the t-ratio test as:

‖q − vc1‖
‖q − vc1‖+ ‖vc1 − vNN‖

≤ τ (2)

Although we missed the local 2nd nearest neighbor in the
global search, the distance ‖vc1 − vNN‖ provides useful in-
formation on how far away the 2nd nearest neighbor might
be.

Proposition 2. If a candidate match fails the t-ratio test, it
also fails the local 1-ratio test.

Proof. Let q be a query feature, vc1 and vc2 the fist and
second local nearest neighbors in a cluster c, and vNN =
kNN(vc1 , c, 1). We can bound the distance to the second
nearest neighbor by the inequalities:

‖q− vc2‖ ≤ ‖q− vNN‖ ≤ ‖q− vc1‖+ ‖vc1 − vNN‖ (3)

where the first inequality holds since ‖q − vc2‖ ≤ ‖q −
v‖ ∀ v ∈ c \ vc1 , and the second holds by the triangle
inequality. Thus,

‖q − vc1‖
‖q − vc2‖

≥ ‖q − vc1‖
‖q − vc1‖+ ‖vc1 − vNN‖

(4)

Consequently, a singleton match that fails the t-ratio test
will always fail the local 1-ratio test. The t-ratio test thus
only filters correspondences that would have failed the local
ratio test if vc2 was available.

Back-matching and fitting: To provide additional ro-
bustness to outliers, we can back match views (model fea-
ture point descriptors) which were indicated as candidate
correspondences from the forward matching. For any such
candidate matching view, we search for the first and sec-
ond nearest neighbor matches using a kd-tree built over the
query image features and apply the 1-ratio test. We then
select as the final set of correspondences the intersection of
pairs (q, v) that passed the forward and back matching pro-
cess. These pairs are cluster-wise best buddies [7], since
each q and v of a pair are both discriminative features in the
query and model feature space.

2.3. Cluster-wise ratio-tests are effective and fast

The cluster-wise ratio test, defined in Algorithm 2,
prunes a large number of non-discriminative correspon-
dences while still maintaining the locally unique matches.
The complexity of this algorithm is linear in the number of
forward correspondences NF . For every local NN vc1 , we
simply look for its second NN pair vc2 within the list of k
nearest neighbors. The list of intra-cluster nearest neighbors
is simply a view-to-vNN vector that can be pre-computed
offline and accessed at constant time, similar to vocabulary-
based methods that store view-to-word assignments. Hence,
at most NF ratio tests will be performed.



Algorithm 2 Cluster-Wise Ratio Test
INPUT: matchesM, clusters C, threshold τ
MF = ∅
for c ∈ C do

for (q, vc1) ∈M with vc1 ∈ c do
if (q, vc2) ∈M with vc2 ∈ c then

α(q,c) =
‖q−vc1‖
‖q−vc2‖

. local 1-ratio test
else

vNN = kNN(vc1 , c, 1)

α(q,c) =
‖q−vc1‖

‖q−vc1‖+‖vc1−vNN‖
. t-ratio test

end if
if α(q,c) ≤ τ then
MF =MF ∪ (q, vc1)

end if
end for

end for
returnMF

#clusters #imgs #inl ratio err. fwd [s] RT [s] bck [s] RNSC [s] total [s]

1 481 115 0.74 0.69 0.821 0.008 0.021 0.046 0.895
50 477 127 0.59 0.66 0.818 0.008 0.028 0.061 0.915
500 480 133 0.56 0.61 0.821 0.009 0.038 0.066 0.934

5129 482 136 0.55 0.62 0.833 0.009 0.048 0.070 0.961

Table 2. Quantitative results on the 520 test image set using the
proposed localization framework of algorithm 2 and best-buddy
filtering. We used 5 nearest neighbors in the k-NN search. We
evaluated four spatial subdivisions, including a finest clustering in
which each camera in the model is considered a single cluster. Lo-
calization accuracy is competitive with exhaustive local matching
with achieving runtimes comparable to global matching.

We evaluated this cluster-wise approach using the same
settings as our gold standard baseline experiment. We
added a finer division of the model, consisting of atomic
clusters with a single image each. Table 2 shows the local-
ization performance on these different granularities. A sin-
gle global cluster gives surprisingly good results in the num-
ber of localized cameras, although it provides worse camera
position results. This is due to the restrictiveness of the ra-
tio test in denser search spaces, yielding fewer inliers and
missing some discriminative correspondences that would
improve results. As we increase the number of clusters, the
localization errors are reduced (8 cm on average) thanks to
the cluster-wise ratio test which provides more high confi-
dence matches (at the expensive of longer RANSAC run-
times). We obtain best results using the finest clustering
(a single model camera per cluster), successfully localizing
482 images. Compared to the gold-standard of Table 1, our
strategy is competitive, by only dropping 5% in localization
performance while being three orders of magnitude faster.
Moreover, the finest single-image clusters provide the best
result we can avoid running any complex clustering method
(e.g., spectral clustering). We use single-image clusters in
the remainder of the paper.

Dubrovnik - 800 test images
Method top-1 top-2 top-5 top-10 Time [s]

NF = 50 99.00% 99.38% 99.62% 99.88% 0.048
NF = 100 99.62% 99.75% 99.88% 99.88% 0.085
NF = 200 100% 100% 100% 100% 0.157

Eng-Quad - 520 test images
Method top-1 top-2 top-5 top-10 Time [s]

NF = 50 83.85% 85.96% 88.46% 88.65% 0.064
NF = 100 84.62% 86.54% 89.62% 90.96% 0.125
NF = 200 85.77% 87.69% 90.38% 91.35% 0.242
NF = 500 86.15% 88.27% 90.96% 91.35% 0.502
All features 86.92% 89.23% 91.15% 91.92% 0.833

Table 3. We achieve perfect location recognition results on the
Dubrovnik dataset using a random subset of 200 query features
that pass the k-ratio and cluster-wise ratio tests, suggesting that our
approach successfully finds local discriminative correspondences
for all 800 test images. We also obtain good results in the more
challenging Eng-Quad dataset, recognizing 478 (91.92%) images.
This agrees with the baseline results obtained in Table 2.

3. Accelerating Matching by Pose Voting

As Table 1 suggests, with appropriate cluster-wise test-
ing, forward matching now constitutes the primary compu-
tational bottleneck. Short of simplifying the model (e.g., as
pursued by [12, 13]), how might we further accelerate the
matching process? A natural strategy is to carry out forward
matching incrementally and stop as soon as we have a suf-
ficient number of matches to guarantee a good result. From
this perspective, we can view forward matching as “voting”
for the location of the query camera. Unlike [36, 29] where
votes were cast into a uniformly binned camera translation
space, we use each model camera pose as a putative bin
to cast our votes (also used in [19]). We avoid additional
data structures like vocabulary trees in favor of storing a
simple but effective view-to-vNN vector that enforces lo-
cal uniqueness. Once we have accumulated enough votes
to narrow down the camera pose to a few candidate clus-
ters, we can terminate forward matching and carry out back
matching with little loss in accuracy.

3.1. Coarse localization using cluster matching

To analyze how many votes are needed to determine a
good localization, we frame the problem as that of location
recognition [20, 30, 2, 24], namely producing a short ranked
list of model images that depict the same general location as
the query image. We follow the evaluation procedure of [5],
reporting if there exists at least one image among the top-
k images that shares 12 or more fundamental matrix inliers.
We benchmark performance on two datasets: Eng-Quad and
Dubrovnik [13].

The results in Table 3 are inspiring. Algorithm 2 is
able to recognize the location of all 800 test images in the
Dubrovnik dataset using 200 random features passing the
k-ratio test. Results on the more challenging Eng-Quad



Algorithm 3 Prioritized Back Matching
INPUT: forward matchesMF , clustering C, query features Q,
threshold τ , minimum number of matches NB , scene graph G
Hc = |(q, v) ∈MF : v ∈ c| ∀c . Cast votes
MB = ∅, V C = ∅
while (|MB| < NB) ∧ (|V C| ≤ 20) do

c∗ = argmaxc/∈V C H
Mc∗ = ∅
for v ∈ c∗ do

q1, q2 = kNN(v,Q, 2) . Back match v to query
αv = ‖v−q1‖

‖v−q2‖
if αv ≤ τ then
Mc∗ =Mc∗ ∪ (q1, v)

end if
end for
MB =MB ∪Mc∗

if |Mc∗ | ≥ 12 then
for (q, v) ∈Mc∗ do

for c′ ∈ C with v ∈ c′ do
Hc′ = Hc′ + 1 . Update votes

end for
end for

end if
V C = V C ∪ c∗ . Update visited clusters (images)

end while
returnMB

dataset provide almost 92% accuracy on recognizing the
landmarks of the 520 query images for which we have a
ground truth pose. Importantly, a random subset of a few
hundred query features achieves nearly as good recognition
results as using all image features (a query image usually
has 5,000 to 10,000 features). This suggests that the for-
ward matching can be terminated early while still maintain-
ing good localization performance.

3.2. Prioritized Back Matching

Determining the correct model image only provides
rough camera location and additional work is needed to
estimate the precise camera pose. To reap the computa-
tional benefits of subsampling, we thus modify our frame-
work slightly. We use forward matching with a subset of
NF query features in order to identify likely model images.
We then perform back matching within candidate images
in order to expand the set of matches used for fine cam-
era pose estimation. This back matching is carried out us-
ing a greedy prioritized search over images ranked by votes
and further exploits co-visibility information encoded in the
SfM model to find additional distinctive matches that were
not identified during the forward (sub-sampled) matching.

Algorithm 3 describes our back-matching approach.
Given the forward matches found using Algorithm 2, we
select the most voted model image c∗ and back-match all of
its views against the query image using the standard 1-ratio

Algorithm 4 Camera Localization
INPUT: Query features Q, Model features V , co-visibility
graphG, camera clusters C, NN search depth k, ratio test thresh-
old τ , match count thresholds NF , NB , projection error thresh-
old ε
M = GLOBAL-FORWARD-MATCH(Q,V, k,NF , τ )
MF = CLUSTER-WISE-RATIO-TEST(M, C, τ )
MB = PRIORITY-BACK-MATCH(MF , NB , G, τ )
IP , δ = ROBUSTFITTING(MB, ε)
if |δ ≤ ε| ≥ 12 then

return Camera Pose IP
else

return Error - Pose not found
end if

test with threshold τ . The correspondences Mc∗ found are
added to the pool of back matched pairs MB used for the
fine pose estimation. These back matches are also treated
as votes. We use the SfM model’s camera-point visibility
graph G, to cast votes for other images that observe the
same views as in Mc∗ . These new votes increase the like-
lihood that neighboring images are selected for subsequent
rounds of back-matching. To avoid introducing noise into
the voting process, we only allow a back-matched image
to cast votes if it depicts the same location (i.e., returns 12
or more matches). The algorithm terminates when MB is
large enough to guarantee a good camera localization, or a
certain total number of images have been back-matched.

4. Benchmark Evaluation
We evaluated our approach (Algorithm 4) on three dif-

ferent datasets: Eng-Quad, Dubrovnik, and Rome. Rome
is a large dataset of 15,179 training and 1,000 test im-
ages. Dubrovnik is a popular 6,044 training and 800 test
image dataset whose SfM model is roughly aligned to ge-
ographic coordinates, allowing for quantitative metric eval-
uation. While Eng-Quad has fewer images, it is perhaps
the most challenging due to the presence of strongly re-
peated structures in the modern architectural designs it de-
picts. When using P3P, we used EXIF metadata for Eng-
Quad test images and ground-truth focal lengths from the
SfM models for Dubrovnik and Rome. We also briefly ana-
lyze results on the city-wide SF-0 dataset [12].

Dubrovnik correctness: After carefully analyzing the
original models provided for Dubrovnik, we found that the
test set ground truth was often wrong, with extremely large
focal lengths and misaligned 2D-3D correspondences. This
in turn resulted in large errors in camera location and poor
alignment between projection of 3D points and the corre-
sponding 2D features. These problems are evident in results
published elsewhere. For example, [23] report better results
using P4Pf [4] than using P3P with the given “true” focal
lengths. This is contrary to what should be expected: know-



Dubrovnik (Original) - 800 test images
error [m]

Method #images #inliers ratio Q1 median Q3 <18.3m >400m time [s]

Sattler [21] 783.9 ≤100 - 0.4 1.4 5.9 685 16 0.31
Sattler [22] 795.5 ≤200 - 0.4 1.4 5.3 704 9 0.25
Zeisl [36] 796 - - 0.19 0.56 2.09 744 7 3.78
Svarm [28] 798 - - - 0.56 - 771 3 5.06
Ours (P3P) 800 358 0.65 1.09 7.92 27.76 550 10 0.62
Ours (P4Pf) 800 468 0.79 0.55 1.64 6.02 694 15 0.62

Dubrovnik (Corrected) - 777 test images
error [m]

Method #images #inliers ratio Q1 median Q3 <18.3m >400m time [s]

Sattler [21] 771 70 0.72 0.57 1.44 4.61 707 1 2.58
Sattler [22] 775 69 0.74 0.59 1.58 4.91 705 4 0.75
Ours (P3P) 777 591 0.88 0.33 0.66 1.60 759 1 0.48
Ours (P4Pf) 776 589 0.88 0.47 1.11 3.32 720 3 0.48

Eng-Quad - 520 test images
error [m]

Method #images #inliers ratio Q1 median Q3 time [s]

Sattler [21] 402 43 0.49 0.61 2.01 7.51 1.52
Sattler [22] 457 43 0.58 0.46 1.93 7.62 0.32
Ours (P3P) 509 112 0.66 0.33 0.67 1.47 0.69
Ours (P4Pf) 504 115 0.68 0.65 1.88 5.76 0.85

Rome - 1000 test images
Method #images #inliers ratio time [s]

P2F [13] 924 - - 0.87
Sattler [21] 976.90 ≤ 100 - 0.29
Sattler [22] 991 ≤ 200 - 0.28
Ours (P3P) 999 281 0.54 0.75
Ours (P4Pf) 1000 458 0.83 0.74

Table 4. Quantitative results of our method compared to related methods for camera pose estimation.

ing the ground-truth focal length (P3P) should outperform
joint estimation of pose and focal length (P4Pf). Examples
are shown in the supplementary material.

For this reason, we rebuilt a new version of the
Dubrovnik “ground-truth” model using the same set of key-
points provided for the original dataset and the excellent
SfM package COLMAP [25]. We aligned the new model
with the original one using a RANSAC-based Procrustes
analysis so that the scale is approximately metric. After
alignment, only 3853 of the recovered 6844 images were
located within 3 meters from their original position in the
model, further validating our concerns. Our reconstruction
provided ground-truth for 777 of the 800 query images.

Anytime performance: The runtime of our algorithm for
camera localization depends on two parameters: NF and
NB . Setting these parameters trades off localization accu-
racy with faster execution times. Figure 3 shows the in-
fluence of these variables using the Eng-Quad dataset. We
benchmarked forward matching times by randomly sam-
pling query features until a desired number NF pass the
global ratio under fixed values for NB . Similarly, we fixed
NF and evaluated different values for NB . In both cases,
the range of values tested vary from 50 up to 500 matched
features. Figure 3 shows the number of registered images
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Figure 3. Anytime performance: querying a small number of fea-
tures dramatically reduces runtime without a major loss in local-
ization performance. The forward subsampling does not affect
rough localization significantly and stabilizes after 0.3 seconds
(left) regardless of the NB value. Similarly, localization quickly
plateaus after 0.2 seconds at back matching time for different val-
ues of NF (right).

under these different configurations, and the time spent to
achieve such a level of performance.

Experimental details: We tested our localization
pipeline using the following settings: for each dataset,
we built a global kd-tree index using all model view
descriptors. We request k = 5 nearest neighbors and check
128 leaves. We set τ = 0.7 across all of our ratio tests. We
set NF = 200 and NB = 200 to provide a good balance
between camera localization and execution time. Algorithm
3 stops after 20 back-matched images, which is a generous
setting in these datasets (in most cases NB is achieved in
less than 5 loops). Experiments were performed using a
single thread on an Intel i7-5930 CPU at 3.50GHz. We
used the implementation of [21, 22] in Eng-Quad and the
re-bundled Dubrovnik comparisons, running a single thread
on an Intel i7-3770 CPU at 3.40GHz. We used a generic
vocabulary tree and default parameters: Nt = 100 for [21]
and N3D = 200 for [22]. Unfortunately, implementations
of [36, 28] were not available.

Camera Localization: We successfully localized all im-
ages in Dubrovnik, except one image in the corrected ver-
sion using P4Pf. We achieved the smallest localization er-
rors for all quartiles, and reported more images within the
18.3m threshold and fewer beyond the 400m mark. De-
spite finding a substantial higher number of inliers, our
method yielded larger average errors with respect to the
original Dubrovnik model due to its underlying defects in
the ground-truth. [28] and [36] (after RANSAC), who use
a shape-voting approximation to the rough image location
rather than the traditional match-and-RANSAC pipeline, re-
port smaller localization errors but at the cost of longer run-
times. Finally, we successfully localized all query images
in the Rome dataset using P4Pf. Rome also suffers the sim-
ilar inaccuracies as Dubrovnik, which resulted in the loss of
one test image using P3P.

The benefits of our approach are more pronounced on
Eng-Quad, due to its difficult characteristics. We localized



Eng-Quad Dubrovnik

Figure 4. Qualitative localization results. Left column: model images (gray) are highlighted (red) if they received one vote from Algorithm
2. Algorithm 3 quickly recognizes model images from the same general area of camera pose space (green). Right column: correspondences
used by the PnP solver (yellow), along the localized camera (green). Ground truth camera position is indicated with a red circle. Best viewed
zoomed in color.

more than 100 and 50 additional cameras w.r.t. [21, 22] re-
spectively, improving all localization errors except the first
quartile using P4Pf. We obtain faster runtimes than [13, 36]
while being competitive with those of [21, 22]. Notably,
our approach adapts better to the more difficult Eng-Quad
dataset, spending more time retrieving images with suffi-
cient correspondences. On the other hand, we quickly rec-
ognize landmarks in Dubrovnik with the first or second top
ranked images, quickly retrieving sufficient putative corre-
spondence and yielding faster localization times.

Location Retrieval: We obtained an asymptotic recall of
66.63% on the SF-0 dataset using the protocol of [12]. At
95% precision, the recall drops to 52.30% using the effec-
tive inlier count of [19], falling below performance of other
methods [6, 19, 1, 36] for location recognition. For this
test we used less stringent parameters: k = 7, NF = 500,

NB = 300, and back matched up to 50 images. We expect
tuning these parameters and utilizing re-ranking heuristics
exploited by other methods to provide a better approach for
such location retrieval problems.

5. Conclusion

Alternatives to large-scale image localization have fo-
cused on reducing the density of the search space to quickly
find discriminative correspondences. Here we have shown
that retrieving multiple global nearest neighbors and filter-
ing them using approximations to the ratio test can quickly
identify candidate regions of pose space. Such regions can
be further refined by back matching to yield state-of-the-art
results in camera localization, even for datasets with chal-
lenging global repeated structure.
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