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Abstract

Contextual information can have a substantial impact on
the performance of visual tasks such as semantic segmen-
tation, object detection, and geometric estimation. Data
stored in Geographic Information Systems (GIS) offers a
rich source of contextual information that has been largely
untapped by computer vision. We propose to leverage such
information for scene understanding by combining GIS re-
sources with large sets of unorganized photographs us-
ing Structure from Motion (SfM) techniques. We present
a pipeline to quickly generate strong 3D geometric priors
from 2D GIS data using SfM models aligned with mini-
mal user input. Given an image resectioned against this
model, we generate robust predictions of depth, surface
normals, and semantic labels. We show that the preci-
sion of the predicted geometry is substantially more accu-
rate other single-image depth estimation methods. We then
demonstrate the utility of these contextual constraints for re-
scoring pedestrian detections, and use these GIS contextual
features alongside object detection score maps to improve
a CRF-based semantic segmentation framework, boosting
accuracy over baseline models.

1. Introduction

In recent history, the problems of object detection and
estimation of 3D geometry have largely been pursued in-
dependently. However, there seem to be many good argu-
ments for why these two sub-disciplines should join forces.
Accurate recognition and segmentation of objects in a scene
should constrain matching of features to hypothesized sur-
faces, aiding reconstruction. Similarly, geometric informa-
tion should provide useful features and context for object
detection and recognition. The use of detailed stereo depth
data has already proven to be incredibly effective in the
world of object detection. More general formulations in-
tegrate structure from motion, scene and object recognition
as a joint problem (e.g., [4, 5, 20]. On the other hand, work
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such as [19, 14, 25, 31] have focused on the role of context
in a single image, operating under the assumption that the
camera and scene geometry are unknown and must largely
be inferred based on analysis of monocular cues. This prob-
lem is quite difficult in general although some progress has
been made [ 18, 28], particularly on indoor scenes of build-
ings where the geometry is highly regular [27, 15, 16].

In this paper, we argue that a huge number of pho-
tographs taken in outdoor urban areas are really photos of
“known scenes” for which rich geometric scene data ex-
ists in the form of GIS maps and other geo-spatial data re-
sources. Robust image matching techniques make it feasi-
ble to resection a novel image against a large database of
scene data and produce precise estimates of camera pose on
a world-wide scale [22]. Once a test photo has been pre-
cisely localized, much of this contextual information can be
easily backprojected into the image coordinates to provide
much stronger priors for interpreting image contents. For
the monocular scene-understanding purist, this may sound
like cheating, but from a practical perspective, such strong
context is already widely available or actively being assem-
bled and should prove hugely valuable for improving the
accuracy of image understanding.

The role of GIS map data in automatically interpreting
images of outdoor scenes appears to have received relatively
little attention in computer vision. Detailed GIS map data is
used extensively in analysis of aerial images [32, 33]. More
recently, a few groups have looked at using GIS data and
multi-view geometry for improving object recognition. The
most closely related work to ours is probably that of [24]
who introduced a geographic context re-scoring scheme for
car detection based on street maps. GIS data was also used
in [3] as a prior for static object detection and camera local-
ization. Finally, [7] resectioned and matched image patches
in monocular test images to a database of localized images
in order to automatically perform background subtraction to
improve object detection.

Contributions We present a new dataset test bed consist-
ing of over six thousand images covering a portion of a
university campus for which relative camera pose and 3D
coordinates of matching points has been recovered using
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Figure 1: System overview: GIS and SfM data are merged
using custom plugin inside the 3D modeling tool Sketchup
to allow easy import of images and camera parameters.
2D GIS data can then be easily extruded into a full 3D
model with relatively little user effort. This fused geocon-
text dataset provides a basis for efficiently transferring rich
geometric and semantic information from the to a novel test
image where it can be used to improve performance of gen-
eral scene understanding in monocular images.

structure from motion. We describe a method for align-
ing this geometric and photometric data with 2D GIS map
data derived from satellite images in order to quickly build
rough 3D polygonal models of buildings, sidewalks, streets
and other static structures with minimal user input. This
combined geo-semantic context dataset serves as a geomet-
ric reference against which novel test images can be resec-
tioned, providing a rich variety of geometric, geographic,
and semantic features for further image analysis. We de-
scribe methods for improving the accuracy of resection-
ing that makes use of both triangulated 3D points and the
polygonal scene model. Finally, we demonstrate the utility
of the strong contextual constraints provided by this data
for rescoring pedestrian detections, estimating scene depth
from a single image, and improve semantic segmentation.

The rest of the paper is structured as follows: Section
2 describes the dataset construction and a 3D modeling
pipeline that leverages GIS map data; Sections 3 and 4 de-
fine real world 3D geometric cues that will help reasoning
about object detection and semantic segmentation respec-
tively; Section 5 explains a validation protocol for the 3D
model built and results on scene context re-scoring; Sec-
tion 6 closes with a summary, discussion of limitations and
future work.

2. Lifting GIS Maps

Here we describe building a test-bed dataset for lever-
aging strong GIS-derived context. We focus on aspects of

this pipeline that emphasize bi-directional interaction where
SfM can be used to enhance GIS maps (lifting to 3D) and
where feedback from GIS context can improve camera re-
sectioning and triangulation.

Image database acquisition We collected a database of
6402 images covering a large area (the engineering quad) of
a university campus. Images were collected in a systematic
manner using a pair of point and shoot cameras attached to a
monopod. Locations were chosen so as to provide approx-
imately uniform coverage of the area of interest. Images
were generally collected during break periods when there
were relatively few people present although some images
still contain pedestrians and other non-rigid objects.
Running off-the-shelf incremental structure from motion
(i.e., [2, 30]) on the entire dataset produces a 3D structure
that is qualitatively satisfying but contains some metric in-
accuracies. In particular, there is significant drift over the
whole extent of the model which makes it impossible to
globally align the model with GIS map data with high pre-
cision. Even the use of state of the art GPS and inertial sen-
sors still result in inaccuracies in urban areas [21]. To guar-
antee the best possible alignment between camera poses es-
timated from bundle adjustment and map data, we devel-
oped a more scalable approach that performs bundle adjust-
ment on local clusters of cameras and then aligns these clus-
ters to a global model. While such local-to-global strategies
are not uncommon in the SfM and SLAM literature, our
contribution here is in optimizing trade-offs to assure the
best possible alignment between any given image and the
GIS model for later use in detection and segmentation tasks.

Local Structure from Motion To establish rough geo-
metric layout of all cameras, we ran incremental bundle
adjustment on the entire image set. We then generated
overlapping spatially localized clusters of cameras with the
property that each set shares many cameras with several
other sets. To accomplish this we proceed in two phases.
First, we performed disjoint spatial clustering of the
camera positions by running k-means on these initial cam-
era estimates to produce disjoint clusters. In our experi-
ments we used K = 10 which provide clusters with around
600 images each. Let C; denote the set of cameras in the
cluster ¢, m; denote the mean of each cluster and o; the
standard deviation around that mean. We define a pair of
clusters to be neighbors based on a simple thresholding

N = {(i,j) , dmismy) 3} (1)

o;+0;

For each pair of clusters (¢,j) € N we then run bundle
adjustment on the set of cameras P;; = C; U Cj.

From this large set of overlapping models we selected
a small high quality set that covers all the cameras. We
computed a quality measure for each camera set P;; by



calculating the ratio of bad camera pairs in P;; for which
there were less than 50 matched points successfully trian-
gulated during bundle adjustment. To select a subset of P;;
we find a minimum spanning tree of a graph whose nodes
correspond to clusters C; and whose edges correspond to
pair P;; with weights given by the quality of that camera
set. Figure 2 depicts the clusters and the spanning tree over
the clusters. The set of reconstructions corresponding to
the edges of the spanning tree have the property that every
camera cluster is covered, every reconstruction has signif-
icant overlap with at least two other reconstructions, and
the selected reconstructions are high quality (the cameras
are well connected). Since the tree is acyclic, we can eas-
ily produce an initial global alignment of all the clusters by
traversing the tree in some order and using Procrustes align-
ment between the recovered coordinates of the overlapping
cameras. For example F;; and P;, are aligned using their
respective estimates of the cameras in C}, using RANSAC
to reject outlier cameras.

Global GIS-structure alignment We obtained a 2D GIS
map of the campus maintained by the university’s techni-
cal office. The map was originally constructed from aerial
imagery and indicates polygonal regions corresponding to
essential campus infrastructure tagged with semantic labels
including building footprints, roadways, firelanes, lawns,
etc. (see Figure 2).

We would like to align our reconstructions with this
model. While GPS alone is not generally accurate enough,
one may leverage existing sets of geo-referenced images.
For example, [24] used aerial LIDAR and Google Street
View images with known geo-coordinates in order to pro-
vide an absolute coordinate reference. To seed our model,
we utilized hints from a user who identified corresponding
3D points in the model with 2D coordinates in the GIS map.
We used vertical building corners which are easily visible
and distinctive in both sets and are very close to parallel
in 3D. We then applied Procrustes alignment between 3D
points on the building corner and vertical lines perpendicu-
lar to the map at the corresponding building corners.

Once a particular camera set P;; has been aligned to the
geocoordinate system, we can easily traverse the cluster tree
to automatically produce an initial alignment for all remain-
ing camera sets. Specifying additional correspondences in
other clusters and smoothing cluster alignment estimates
over the tree (e.g., using dynamic programming) provides
an efficient mechanism for fixing global drift seen in incre-
mental bundle adjustment without having to re-optimize all
cameras and tracks. To aid this process we built a simple
tool to visualize the alignment projected back on to the GIS
map to allow fast interactive refinement of the correspon-
dences as necessary.

Figure 2: Spatial camera clusters and associated spanning
tree overlaid on the GIS map data. Each edge in the
tree defines a camera set P;; for which the bundle adjust-
ment yielded a high quality, densely connected reconstruc-
tion. Camera sets overlap and so can be automatically
aligned and then further refined using user-supplied corre-
spondences in order to correct for drift over the tree.

Image assisted 3D model construction We developed a
custom plugin for the 3D modeling tool Sketchup [1] to al-
low efficient user-assisted “lifting” of 2D GIS map data into
a full 3D model. We import the GIS 2D polygons with their
corresponding semantic labels as well as selected images
and their corresponding extrinsic and intrinsic camera pa-
rameters estimated previously. The user is then presented
with an overlay in which the 3D model is backprojected
into the selected camera viewpoint and overlayed with the
image to assist in building the model. Figure 3 shows an
example of this visualization.

In a few clicks, a full, 3D mesh can be easily extruded
from the 2D map by lifting buildings up, carving stairs
down, tilting non-fully horizontal surfaces, etc. Additional
more detailed geometry can be easily created, as well as
new semantic labels or corrections to the original data. With
the assistance of these aligned camera views, constructing
a fairly detailed model in Sketchup covering 10 buildings
takes approximately 1-2 hours. This can be considered an
offline task since the modelling effort is performed only
once, as buildings are largely static over time.

Model-assisted Structure from Motion The previous
subsections discussed how GIS information helped to
achieve a better alignment of structure from motion mod-
els to real world coordinates and correct drift. On the other
hand, we can also exploit the 3D model in order to detect
poorly calibrated cameras and outlier 3D points in the SfM



Figure 3: We built a full 3D model from 2D GIS data by
creating a toolbox that imports structure from motion re-
construction data into Sketchup. The toolbox allows to read
camera information and properly display the image overlaid
on the modelling interface. The user then models the 3D ge-
ometry by extruding, tilting, and carving the 2D data until
it is aligned with the image.

model. This curation of the database by removing noisy el-
ements improves test-time camera resectioning process by
eliminating potential cases in which a test image 2D fea-
tures might match wrongly calibrated 3D points.

Since our structure from motion models now live in real
world coordinates, it is easy to define several heuristics for
determining if a camera is well posed. To prune bad cam-
eras from any model P;;, we compute the camera height
with respect to the ground and remove those cameras whose
height is outside a reasonable range between 1 and 4 meters.
Also, we measure the up vector of a camera and prune those
cases where they are tilted more than 30 degrees. When
pruning a camera, we also remove its point tracks from the
SfM model.

Given a 3D polygonal model, many poorly recovered 3D
points can be pruned by the following simple test. For each
3D point visible in a camera, we compare the depth of the
point with the depth of the backprojected 3D model along
the same ray. By applying a generous threshold of 25 me-
ters depth discrepancy, the model prunes most of the wildly
generated 3D points, while keeping other points of interest
not accurately modeled in the GIS data (like trees, benches,
trash bins, etc). A final filtering step is performed to detect
(1) cameras with less than 6 track points and (2) 3D points
with only 1 track. The resulting curated model then com-
prises all the SfM reconstruction data that is consistent with
the GIS model and will serve as a fixed database against
which to apply image resectioning in our tests.

Test-time camera resectioning To estimate camera pose
for test images, we performed resectioned against the model
using a RANSAC-based 3-point absolute pose (P3P) cam-
era resectioning procedure, based on 2D-3D matching cor-
respondences. Each test image was matched against ev-
ery SfM cluster pair P;; model included in the cluster tree.
A best camera pose estimate was selected using the same

match quality, height and orientation criteria used in build-
ing the original model. If a camera is geometrically rea-
sonable in more than one model, we select the one with the
highest number of matched inliers.

Resectioning of a test image produces immediate predic-
tions of scene depth, surface orientation, and semantic la-
bels at every image pixels. It is interesting to compare these
to previous work that attempts to estimate such geometric or
semantic information from a single image. By simply resec-
tioning the image against our 3D model we are immediately
able to make surprisingly accurate predictions without run-
ning a classifier on a single image patch! In the remainder
of the paper we discuss how to upgrade these “blind” pre-
dictions by incorporating backprojected model information
into standard detection and segmentation frameworks.

3. Strong Geometric Context for Detection

Estimating camera pose of a test image with respect to
a 3D GIS model can aid in reasoning about the geometric
validity of object hypotheses (e.g. pruning false positives
placed in unlikely places, or boosting low-score results on
suitable areas). In this section we describe methods for us-
ing these constraints to improve the performance of a pedes-
trian detector.

Geometric hypothesis sampling Let b be a candidate 2D
bounding box in a test image / with an associated height
in pixels h"™. If we assume that the object is resting on
the ground-plane and the base of the object is visible, then
we can estimate the depth z of the object with respect to the
camera by intersecting the ray going from the camera center
through the bounding box base with the 3D model. Impor-
tantly, unlike many previous works, the ground is not nec-
essarily a plane (e.g., our model includes stairs and ramps).
Given camera focal length f, we can estimate the height of
the in world coordinates by the following expression:

z .
h=—=h"™ 2
7 (@)

Unfortunately, the object’s “feet” might not be visible at
all times. We rely on our detector to let us know when that
circumstance happens. We use a deformable part model that
consists of a mixture over three different template filters:
full-body, half upper body, and head. We set the image de-
tection height h'™ based on which mixture fires as 1, 2 or 3
times the bounding box height respectively.

When the feet are not visible, we cannot simply find the
ground intersection point. Instead our strategy is to sam-
ple scene depth hypotheses z along a ray through the top
center of the candidate bounding box. For each depth, we
hypothesize possible world heights A and then compute the
vertical elevation e(z, h) of the object above (or below) the



ground surface of the 3D model. For computational effi-
ciency we only consider a small discrete range of depth hy-
potheses (30cm intervals) centered around depths where an
average height object is at zero elevation. We also prune
those samples lying beyond walls to further reduce the pool
of samples generated.

Hypothesis scoring Let v = (s,h,e,g) be a hypothe-
sized object where s is the detector score associated with
the corresponding 2D bounding box, h is the hypothesized
height, e is the elevation from the ground, and g is the se-
mantic label on the ground point below the object location.
To score a hypothesized detection, we interpret the detector
score s as the log of a probability to which we add penalties
associated with the height or elevation priors.

First, we assume a Gaussian prior on human height with
mean up = 1.7m similar to the work of [17]. Second, we
penalize elevations e which suggest the detected pedestrian
is flying above or tunnelling beneath the ground. Finally,
we prune those candidate detections lying in an unlikely
semantic region. Let W be the set of semantic labels in
the GIS data defining a human walkable space (streets, fire-
lanes, walks, etc.). The final penalized detection score is
given by:

_ —h 2 _ 2 w
S(y):{s_wamh 12 = Bllel g;w -

where parameters «, capture the degree of variation
around the mean height as well as inaccuracies in our es-
timation of the height from image features. We performed
exhaustive search over parameters « and 3 to find a global
performance optimum at « = 0.4 and 5 = 0.3. How-
ever, performance was robust to these parameters and set-
ting them both to 1 provided an accuracy difference less
than 0.5% of the overfitting settings.

4. Strong Geometric Context for Segmentation

The geometric and semantic information contained in
the GIS data and lifted into the 3D GIS model can aid in
reasoning about the geometric validity of class hypotheses
(e.g., horizontal surfaces visible from the ground are not
typically buildings). We describe methods for using such
constraints to improve semantic segmentation performance.
We follow a standard CRF-based labeling approach, built
on the high quality implementation of Gould et al. [13] and
an augmented set of image features from [29]. We explore
simple ways to enhance this set of features using GIS data
and study its influence on semantic labeling accuracy.

GIS label prior distributions The GIS-derived model
provides an immediate estimation of pixel labels based on
semantic labels in the original GIS map. If a camera pose is
known, we can backproject the model into the image plane
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Figure 4: Qualitative depth comparison. Our GIS backpro-
jected depth map is shown in the last column. While it lacks
many details such as foliage and pedestrians which are not
included in our coarse GIS-based 3D model, simply back-
projecting depth provides substantially more accurate esti-
mation than existing monocular approaches.

and transfer the polygon label in the GIS model to the pro-
jected pixel. However, camera pose estimation is not perfect
and might contain minimal deviations from its ground truth
pose. In order to account for slight camera pose inaccura-
cies, we define a feature descriptor to softly handle these
cases. Given an image I, a pixel x € I, and a backprojected
GIS semantic label g(z), we define the feature hl,(x)

M) =5 Y o) = @

yilly—z| <r

as the normalized count of class k pixels in a circular disc
of radius r around x, where N is the number of pixels in
the disc. In our experiments, r is defined so that the angular
error of the camera pose is 0, 1, 3, and 5 degrees.

GIS surface normal distributions In a similar manner,
a surface normal can be quickly estimated for any pixel by
backprojecting the 3D model into the camera plane. Surface
normals can be discriminative of certain classes like pave-
ment, roads, buildings, etc. Following the same structure as
in equation 5, we define the feature h] (x) as

M = Y

yilly—z||<r

[n(y) € Ni] ()

where Ny, is one of 3 possible surface orientation bins: hor-
izontal (ground), horizontal (ceiling), vertical (wall).

GIS Depth features Depth can also be efficiently es-
timated when from a 3D model when a camera pose is
known. Following other methods like [35, 26], we extract
histograms of oriented gradients [6] to encode depth varia-
tions. However, we did not find these absolute depth fea-
tures to provide a substantial gain in our experiments.
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6 < 1.25 11.15% 26.03% | 68.13%
5 < 1.252 30.68% 46.24% 83.59%
5 < 1.25° 48.96% 67.15% | 89.33%

Figure 5: Quantitative comparison of depth estimation
methods: Make3D [28], Deep Neural Network [8], and GIS
backprojection. We use the maximum allowed relative er-
ror max( ig:t , ‘Z:it ), where d; is the ground truth depth and
d,st is the estimated depth at some point. DNN model was
re-scaled to overfit our ground truth data since the model

provided is adapted only for indoor scenes.

DPM as a context feature Inspired by other works that
try to create segmentation-aware detectors [10], we also in-
corporate the outputs of category-specific object detectors
in our segmentation model. To do so, we collect the scores
of a DPM detector for an object category ¢ and generate a
DPM feature map h. by assigning to every pixel the max-
imum score of any of the candidate detection boxes inter-
secting the given pixel. Let 2. be the set of candidate de-
tections and B; the bounding box for the ith detection, then

hS(z) = max(s; - [z € By]) (6)

1€Q,
5. Experimental results

In our experiments we started from a test set compris-
ing 570 pictures taken in the area covered by the 3D model.
These images were taken over different days and collected
several months after the initial model dataset was acquired.
Of these images, 330 images were successfully resectioned
(verified by visual inspection). This success rate compares
favorably with typical success rates for incremental bun-
dle adjustment (e.g., [24] register 37% of their input im-
ages). To evaluate performance of detection, we annotated
these 330 test images with ground-truth bounding boxes for
1450 pedestrians visible in the images using the standard
VOC procedure including tags for truncated and partially
occluded cases. We also manually segmented 302 of these
images using the segmentation tool provided by [23] and
labeled each segment with one of 9 semantic categories.

5.1. Monocular Depth Estimation

To verify that the coarse-scale 3D GIS model provides
useful geometric information, despite the lack of many de-
tailed scene elements such as trees, we evaluated resection-
ing and backprojection as an approach for monocular depth
estimation. While our approach is not truly monocular in
the sense that it relies on a database of images to resection
the camera, the test time data provided is in fact monocular.
Furthermore, this type of accurate camera localization is in-
creasingly practical for many outdoor urban environments.

To establish a gold-standard estimate of scene depth, we
scanned 14 locations of the area covered by our dataset us-
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Figure 6: Accuracy of predicted depth estimates compared
to gold-standard provided by a laser-scanner for 14 images.
Top histogram shows the distribution of absolute depth er-
rors between Make3D, DNN and depth computed from
resectioning and backprojecting GIS derived 3D model.
The bottom plot shows the distribution of relative error
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ing a Trimble GX3D terrestrial laser scanner. We took the
scans at in a range of resolution between 5 and 12 cm in
order to keep the total scanning time fairly low, resulting in
roughly a half a million 3D points per scan. We mounted
a camera on top of the laser scanner and used the camera
focal length to project the laser-based 3D point cloud onto
the camera image plane, interpolating depth values to ob-
tain a per-pixel depth estimate. We then resectioned the test
image and synthesized the depth map predicted by our 3D
GIS model.

Figure 5 shows quantitative results of our GIS backpro-
jection depth estimation against other single-image depth
approaches for the 14 scan dataset. We used the provided
pre-trained models included in [28, 8] as baselines for com-
parison. Since the DNN model [8] was trained on indoor
scenes, we estimated a scaling and offset for the output that
minimized the relative error over the 14 images. While the
reader might consider comparison with pretrained models
unfair, we point out that collecting large amounts of high-
quality outdoor depth data requires specialized hardware
(i.e. laser scanner) while our approach makes surprisingly
accurate predictions using only camera pose and a map,
with no “training data” required.



5.2. Object Detection

We evaluated our geometric and semantic object rescor-
ing scheme applied to the widely used deformable part
model detector [9] implemented in [11].

Since we hypothesize full-height bounding boxes for our
contextual rescoring, we apply a variant of non-max sup-
pression we term “Full Body NMS” on these full height
bounding boxes so that the suppression is applied fairly
among boxes of the same aspect ratio. The output detec-
tions are benchmarked using the original (non-full height)
boxes since our ground truth annotations do include trun-
cated and occluded objects. A candidate output bounding
box is considered a true positive if the standard VOC inter-
section over union overlap is higher than 0.5.

The standard DPM on the test set provide a baseline per-
formance with an average precision (AP) of 0.509 using the
standard NMS approach. Using the Full Body NMS im-
proved results significantly, increasing AP to 0.564. Even
without a geometry context, we are able to prune false
positives that would pass the overlap criteria when their
height is simply the bounding box size rather than their full-
body height. Rescoring hypotheses based on height, eleva-
tion and semantic label constraints provides a further small
boost in performance, raising AP to 0.576. Figure 7 shows
the behaviour of DPM with Full Body NMS when eleva-
tion and height priors are applied. If we only consider fully
visible ground-truth pedestrians and detections, the relative
gain in AP is slightly higher, from 0.66 to 0.679.

Figure 8 shows examples of DPM and DPM+GIS
rescored detections at a fixed level of recall. As can be seen
in the figure, geometric context can quite effectively sup-
press high scoring detections in improbable locations (e.g.,
the trees) but the same rescoring effectively boosts other ge-
ometrically plausible hypotheses near the walkable ground
surfaces. As a result, we observe only small overall gains in
average precision. We note that this parallels similar find-
ings by [24] where 3D context between cars and streets al-
lowed for improved geometric reasoning about car orienta-
tion but only small gains in detection performance (in fact
their final model had lower average precision relative to a
baseline DPM model).

5.3. Semantic Segmentation

We trained baseline semantic segmentation models on
two different sets of training images using the code provided
by [12]. We trained one model using 100 images taken from
our labeled set of engineering quad images (ENGQ) and re-
served 202 remaining images as held-out test data for eval-
uating labeling accuracy. We also trained a generic model
using images collected from the online SUN dataset [34] by
querying for multiple categories in the SUN label set that
are semantically equivalent to the 9 categories labeled in
the ENGQ images.
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Figure 7: Precision recall curves for detector baseline us-
ing Full Body-NMS (red), and GIS-rescored (blue). Dashed
lines evaluate the scenario in which only full body annota-
tions and full body detector outputs are available.

DPM DPM+GIS

Figure 8: Detection results at 0.75 recall. Yellow boxes cor-
respond to ground truth annotations, while red and green
indicate false and true positives respectively. Inferred full-
body bounding boxes are drawn in dashed lines. Left col-
umn shows original DPM output; right shows GIS-rescored
detections.

Detectors Improve Segmentation We collected DPM
score features as described previously for two objects of in-
terest: pedestrian and bicycle. Figure 9 shows the influence



[ Model [[ building | plants | pavement |

sky

[ bench [ wall ][ ped. [ ped.sit | bicycle |

[ GIS-Only || 0.1 | 0346 | 0876 ] 0.664 | 0.000 | 0.104 ]| 0.000 | 0.000 | 0021 |
SUN 0.767 | 0589 | 0878 [ 0.872 | 0.000 | 0.000 ]| 0.012Z | 0.000 [ 0.000
+GIS-Only || _0.787 | 0581 | 0890 | 0.880 | 0.000 | 0,000 || 0.000 | 0000 | 0.000
+DPM 0.778 | 0.607 | 0876 | 0.871 | 0.000 | 0.000 || 0.146 | 0.000 | 0.002
ENGQ 0014 | 0890 | 0934 [ 0923 | 0.128 | 0323 ]| 0399 | 0.030 | 0.157
+GIS 0034 | 0897 | 0947 | 0961 | 0170 | 0484 || 0.405 | 0.036 | 0.181
+DPM 0020 | 0898 | 0939 | 0.937 | 0.130 | 0368 || 0.596 | 0.024 | 0.683
+DPM+GIS || 0.937 | 0.904 | 0949 | 0.963 | 0.16] | 0.494 || 0572 | 0.048 | 0.654

Figure 9: Quantitative segmentation results for models trained with generic (SUN) and scene specific (ENGQ) data. Accuracy
is measured using average overlap score between labeled regions and ground-truth. Adding geometric (+GIS) and detection
(+DPM) features outperformed the baseline models. Combining both methods gave the best overall results in the scene
specific model, although some classes did not achieve their best accuracy individually.

of adding these features into the model. Besides a slight
general improvement across all categories, we were able to
boost pedestrian accuracy from 0.399 to 0.596 and bicycle
from 0.157 to 0.683 in the scene-specific model.

GIS-aware Segmentation To evaluate the influence of
GIS features, we first trained a “blind” model on the ENGQ
without any image features (GIS-Only), instead using only
the features extracted from the backprojected GIS model.
This yielded relatively good accuracy in those categories
present in the GIS data (building, plants, pavement, and
sky) but poor results for many others, indicating that certain
labels cannot be learned just from context features. This
is quite natural since, e.g., our GIS model doesn’t include
detailed scene elements such as benches and provides al-
most no information about which particular pixels might be
a bike or pedestrian on any given day.

On the other hand, combining these GIS features with
standard image features gave a significant benefit, outper-
forming the ENGQ-trained scene-specific baseline in all
categories (+GIS rows in figure 9). For example, perfor-
mance on wall jumps from 0.368 to 0.494 when GIS fea-
tures are added. This can be explained by the fact that build-
ings and retaining walls often have similar local appearance
but the global context provided by the 3D model can resolve
this ambiguity.

Evaluating the benefit of GIS model context is more dif-
ficult for the generic SUN-based appearance model since
the GIS features were not available for SUN images. In-
stead, we evaluated a hybrid SUN+GIS-Only model which
combined pretrained unary terms from each model. We
adapted a single parameter o = 0.7 which controlled the
relative weighting of the SUN appearance unary and GIS-
Only geometry unary terms to optimize performance. We
found similar gains as in the scene-specific trained with
ENGQ data.

6. Discussion

The rapid growth of digital mapping data in the form of
GIS databases offers a rich source of contextual informa-
tion that should be exploited in practical computer vision

Image GIS prior SUN ENGQ
M building M plants M pavement ™ sky ™ pedestrian
ped. sitting M bicycle M bench wall

Figure 10: Qualitative segmentation results with overlaid
images. Our context-exploited classifier (ENGQ) includes
both GIS and DPM features, outperforming the generic
baseline.

systems. We have described a basic pipeline that allows
for integration of such data to guide both traditional geo-
metric reconstruction as well as semantic segmentation and
recognition. With a small amount of user supervision, we
can quickly lift 2D GIS maps into 3D models which imme-
diately provide strong scene geometry estimates (typically
less than 5-10% relative error), greatly outperforming exist-
ing approaches monocular depth estimation and providing
a cheap alternative to laser range scanners. This backdrop
provides a strong basis for geometric and semantic context
which can be exploited to improve detection and segmenta-
tion and even make surprisingly accurate predictions with-
out even analyzing image appearance.
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