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Abstract

This paper studies the problem of combining region and
boundary cues for natural image segmentation. We employ
a large database of manually segmented images in order
to learn an optimal affinity function between pairs of pix-
els. These pairwise affinities can then be used to cluster
the pixels into visually coherent groups. Region cues are
computed as the similarity in brightness, color, and texture
between image patches. Boundary cues are incorporated
by looking for the presence of an *“intervening contour™, a
large gradient along a straight line connecting two pixels.

We first use the dataset of human segmentations to in-
dividually optimize parameters of the patch and gradient
features for brightness, color, and texture cues. We then
quantitatively measure the power of different feature com-
binations by computing the precision and recall of classi-
fiers trained using those features. The mutual information
between the output of the classifiers and the same-segment
indicator function provides an alternative evaluation tech-
nique that yields identical conclusions.

As expected, the best classifier makes use of bright-
ness, color, and texture features, in both patch and gradi-
ent forms. We find that for brightness, the gradient cue
outperforms the patch similarity. In contrast, using color
patch similarity yields better results than using color gra-
dients. Texture is the most powerful of the three channels,
with both patches and gradients carrying significant inde-
pendent information. Interestingly, the proximity of the two
pixels does not add any information beyond that provided
by the similarity cues. We also find that the convexity as-
sumptions made by the intervening contour approach are
supported by the ecological statistics of the dataset.

1. Introduction

Boundaries and regions are closely intertwined. A closed
boundary generates a region while every image region has a
boundary. Psychophysics experiments suggest that humans
use both boundary and region cues to perform segmentation
[43]. In order to build a vision system capable of parsing
natural images into coherent units corresponding to surfaces

and objects, it is clearly desirable to make global use of both
boundary and region information.

Historically, researchers have focused separately on the
sub-problems of boundary and region grouping. Region
based approaches are motivated by the Gestalt notion of
grouping by similarity. They typically involve integrating
features such as color or texture over local patches of the im-
age [8,12,32] and then comparing different patches [26,31].
However, smooth changes in texture or brightness caused by
shading and perspective within regions pose a problem for
this approach since two distant patches can be quite dissim-
ilar despite belonging to the same image segment. To over-
come these difficulties, gradient based approaches detect lo-
cal edge fragments marked by sharp, localized changes in
some image feature [4, 24,18, 30, 20]. The fragments can
then be linked together in order to identify extended con-
tours [28,42, 6].

Less work has dealt directly with the problem of finding
an appropriate intermediate representation in order to incor-
porate non-closed boundary fragments into segmentation.
Mathematical formulations outlined by [11, 25, 23] along
with algorithms such as [19, 13] have attempted to unify
boundary and region information. More recently, [17, 40]
have demonstrated the practical utility of integrating both
in order to segment images of natural scenes.

There are widely held “folk-beliefs” regarding the vari-
ous cues used for image segmentation: brightness gradients
(caused by shading) and texture gradients (caused by per-
spective) necessitate a boundary-based approach; edge de-
tectors are confused by texture, so one must use patch-based
similarity for texture segmentation; color integrated over lo-
cal patches is a robust and powerful cue. However, these
contradictory statements have not been empirically chal-
lenged. By using a dataset of human segmentations [21, 5]
as groundtruth, we are able to provide quantitative results
regarding the ecological statistics® of patch- and gradient-
based cues and gauge their relative effectiveness.

We treat the problem of integrating both gradient and
patch information for segmentation within the framework of

10ur approach follows the lines of Egon Brunswik’s suggestion nearly
50 years ago that the Gestalt factors made sense because they reflected the
statistics of natural scenes [3].
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Figure 1: Pixel affinity images. The first row shows an image
with one pixel selected. The remaining rows show the similarity
between that pixel and all other pixels in the image, where white
is most similar. Rows 2-4 show our patch-only, contour-only, and
patch+contour affinity models. Rows 5 and 6 show the pixel sim-
ilarity as given by the groundtruth data, where white corresponds
to more agreement between humans. Row 6 shows simply the
same-segment indicator function, while row 5 is computed using
intervening contour on the human boundary maps.

pairwise clustering [38,44,37,39,7,29,10,41]. In contrast to
central clustering techniques such as k-means or mixtures-
of-Gaussians which compare each pixel (or other image el-
ement) to some small set of prototypes, pairwise techniques
rely on the evaluation of an affinity function between each
pair of image pixels. While pairwise techniques tend to be
more computationally expensive, they have the advantage
of removing the constraint that pixels be explicitly embed-
ded in some normed vector space where Euclidean or Ma-
halanaobis distances “make sense”. Instead, pixels are im-
plicitly described by their similarity to every other pixel in
the image.

The pairwise framework allows patch and gradient in-
formation equal footing in the following way. Associate a
descriptor to each pixel that captures color, brightness and
texture in a neighborhood of the pixel. The patch based sim-
ilarity between two pixels is a function of the difference in
their descriptors. A gradient is computed as the change in
these local descriptors between nearby pixels. For each pair
of pixels, record the magnitude of the gradient encountered
along a straight path connecting the two pixels in the image
plane. Large gradients indicate the presence of an “inter-
vening contour” [15] and suggests the pixels do not belong
to the same segment. The pairwise affinity between the i-th

and j-th pixel is given by a function whose arguments are
the similarity between the i-th and j-th local descriptors and
the gradients along the path from ¢ and j.

Most applications of pairwise clustering to segmenta-
tion have made use of heuristically derived affinity func-
tions (e.g. [17]). It is a natural proposal [22] to learn op-
timal pairwise affinities from training data. In the results
presented here, nearly all free parameters (i.e. filter scales,
histogram binning and quantization, descriptor windowing,
combination of gradient features, etc.) have been carefully
optimized with respect to training data. Our goal is to ex-
plicitly model the posterior probability of two pixels be-
longing to the same image segment conditioned on photo-
metric properties of the image. Figure 1 shows examples
of both groundtruth affinity functions and affinity models
learned from data.

We provide two general schemes for evaluating the ef-
fectiveness of different combinations of features. The first
is to train a classifier which declares two pixels as lying
in the same or different segments given some set of fea-
tures. Classifier performance is then evaluated by consider-
ing the trade-off between precision and recall. The second
approach is to compute the mutual information between the
classifier output and the same-segment indicator provided
by the human segmentations. These two schemes are in
strong agreement which lends force to our findings:

e Segmentations of the same image by different humans
are quite consistent with each other. “Fine” segmen-
tations tend to be “coarse” segmentations with regions
that have been refined by breaking them into roughly
convex parts.

e The ecological statistics of the dataset show that re-
gions are mostly convex, validating the assumptions
made by the intervening contour approach.

e Intervening contour and patch comparisons both
provide significant, independent information about
whether two pixels belong in the same segment.

e The color cue is best captured using patches, while for
brightness one should use gradients. For texture, both
gradients and patches are valuable.

e The proximity between two pixels does not pro-
vide any information not given by the patch-based or
gradient-based similarity. It is simply a result of group-
ing, not a cue.

2. Methodology

We formulate the problem of learning the pixel affinity
function as a classification problem of discriminating same-
segment pixel pairs from different-segment pairs. Let S;;
be the true same-segment indicator so that S;;=1 when pix-
els ¢ and j are in the same segment, and S;;=0 when pixels
i and j are in different segments.
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Figure 2: Performance of humans compared to our best pixel
affinity models. The dots show the precision and recall of each of
1366 human segmentations in the 250-image test set when com-
pared to the other humans’ segmentation of the same image. The
large dot marks the median recall (99%) and precision (63%) of
the humans. The iso-F-measure curve at F=77% is extended from
this point to represent the frontier of human performance for this
task. The three remaining curves represent our patch-only model,
contour-only model, and patch+contour model. Neither patches
nor contours are sufficient, as there is significant independent in-
formation in the patch and contour cues. The model used through-
out the paper is a logistic function with quadratic terms which per-
forms the best among classifiers tried on this dataset.

The Berkeley Segmentation Dataset [21, 5] provides
the groundtruth segmentation data. This dataset contains
12,000 manual segmentations of 1,000 images by 30 hu-
man subjects. Half of the images were presented to subjects
in grayscale, and half in color. We use the color segmen-
tations for 500 images, divided into test and training sets
of 250 images each. Each image has been segmented by at
least 5 subjects, so the groundtruth S;; is defined by a set
of human segmentations. We declare two pixels to lie in the
same segment only if all subjects declare them to lie in the
same segment.

Given a classifier output S‘ij, we can evaluate the classi-
fier’s performance in two ways. Our first evaluation tech-
nique uses the precision-recall (PR) framework, which is
a standard method in the information retrieval community
[33]. This framework was used by Abdou and Pratt [1] to
evaluate edge detectors, and is similar to the ROC curve
framework used by Bowyer et al. [2] for the same pur-
pose. The approach produces a curve parameterized by de-
tector threshold which shows the trade-off between noise
and accuracy as the threshold varies. For example see Fig-
ure 2. Precision measures the probability that two pixels
declared by the classifier to be in the same segment are in
the same segment, i.e. P(S;;=1|5;;=1). Recall measures
the probability that a same segment pair is detected, i.e.
P(S;; =1|S;; =1). The PR approach is particularly ap-
propriate when the two classes are unbalanced. By focus-
ing on the scarcer class—same-segment pairs in our case—

performance is not inflated by the ease of detecting the dom-
inant class.

Precision and recall can be combined with the F-
Measure, which is simply a weighted harmonic mean: F' =
pr/{ap + (1—a)r). The weight « represents the relative
importance of precision and recall for a particular applica-
tion. We use a = 0.5 in our experiments. The F-measure
can be evaluated along the precision-recall curve, and the
maximum value used to characterize the curve with a single
number. When two precision-recall curves do not intersect,
the F-measure is a useful summary statistic.

The second approach to evaluating a classifier mea-
sures the mutual information I between the classifier out-
put S and the groundtruth data S. Given the joint dis-
tribution p(x,y) = P(S=x,S=y), the mutual informa-
tion is defined as the Kullback-Liebler divergence between
the joint and the product of the marginals, so I(S;S) =

p(z,y) .. . . .
fz’yp(m, y) log 2@p)” We compute the joint distribution

by binning the soft classifier output.

3. Features

We will model the affinity between two pixels as a function
of both patch-based and gradient-based features. In each
case, we can use brightness, color, or texture, producing a
total of six features. We also consider the distance between
the pixels as a seventh feature.

3.1. Patch-Based Features

Given a pair of pixels, we wish to measure the brightness,
color, and texture similarity between circular neighbor-
hoods of some radius centered at each pixel. Distributions
of color in perceptual color spaces have been successfully
used as region descriptors in image retrieval systems such as
QBIC [26], as well as many color segmentation algorithms.
We employ the 1976 CIE L*a*b* color space separated into
luminance and chrominance channels. We model bright-
ness and color distributions with histograms constructed by
binning kernel density estimates. Histograms are compared
with the x2 histogram difference operator [32].

For the brightness cue, we use the L* histogram for each
pixel. In the case of color, it is not necessary to compute
the joint a*b* histogram. Instead, it suffices to compute
separate a* and b* histograms, and simply sum their x?2
contributions. This is motivated by the fact that a* and b*
correspond to the green-red and yellow-blue color opponent
channels in the visual cortex, as well as the perceptual or-
thogonality of the two channels (see Palmer [27]).

The x2 histogram difference does not make use of the
perceptual distance between the bin centers. Therefore,
without smoothing, perceptually similar colors can have
large x2 differences. Because the distance between points
in CIELAB space is perceptually meaningful in a local
neighborhood, binning a kernel density estimate whose ker-



nel bandwidth o matches the scale of this neighborhood
means that perceptually similar colors will have similar his-
togram contributions. Beyond this scale, where colors are
incommensurate, x2 will regard them as equally different.
The combination of a kernel density estimate in CIELAB
with the x2 histogram difference is a good match to the
structure of human color perception.

For the patch-based texture feature, we compare the dis-
tributions of filter responses in the two discs. There is
an emerging consensus that for texture analysis, an image
should first be convolved with a bank of filters tuned to var-
ious orientations and spatial frequencies [8, 18]. Our filter
bank contains elongated quadrature pair filters—Gaussian
second derivatives and their Hilbert transforms—at six ori-
entations, along with one center-surround filter. The empir-
ical distribution of filter responses has been shown to be a
powerful feature for both texture synthesis [12] and texture
discrimination [31].

There are many options for comparing the distributions
(see Puzicha et al. [31]), but we use the approach developed
in [17] which is based on the idea of textons. The texton
approach estimates the joint distribution of filter responses
using adaptive bins, which are computed with k-means. The
texture descriptor for a pixel is therefore a k-bin histogram
over the pixels in a disc of radius  centered on the pixel.
As in [17], we compare descriptors with the x? difference.

All of the patch-based features have parameters that re-
quire tuning, such as the radius of the discs, the binning
parameters for brightness and color, and the texton parame-
ters for texture. Section 4.3 covers the experiments that tune
these parameters with respect to the training data.

3.2. Gradient-Based Features

Given a pair of pixels, consider the straight-line path con-
necting them in the image plane. If the pixels lie in different
segments, then we expect to find, somewhere along the line,
a photometric discontinuity or intervening contour [15]. If
no such discontinuity is encountered, then the affinity be-
tween the pixels should be large.

In order to compute the intervening contour cue, we re-
quire a boundary detector that works robustly on natural
images. For this we employ the gradient-based boundary
detector of [20]. The output of the detector is a P,image
that provides the posterior probability of a boundary at each
pixel. We consider the three B, images computed using
brightness, color, and texture gradients individually, as well
as the P, image that combines the three cues into a single
boundary map. The combined model uses a logistic func-
tion trained on the dataset, which is well motivated by ev-
idence in psychophysics that humans make use of multiple
cues in localizing contours [34] perhaps using a linear com-
bination [14]. Other classifiers besides the logistic function
performed equally well.

The gradients are computed in a nearly identical man-
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Figure 3: Agreement between human segmentations. The left
panel shows the distribution of precision and recall for the 5555
human segmentations of all 1020 images in the dataset. The pre-
cision and recall are measured with respect to the class of same-
segment pixel pairs, and each human is compared to the union of
all other humans. High recall and lower precision supports the
hypothesis that the different subjects perceive the same segmenta-
tion hierarchy, but segment at different levels of detail. The right
panel shows the distribution of precision and recall when the left-
out human and union-of-humans come from different images. This
comparison provides a lower-bound for the similarity between seg-
mentations without changing the statistics of the data.

ner to our patch features. Instead of comparing histograms
between two whole discs, the gradient is based on the his-
togram difference between the two halves of a single disc,
similar to [36, 35]. The orientation of the dividing diagonal
sets the orientation of the gradient, and the radius of the disc
sets the scale. All of the parameters of the gradients have
been tuned by [20] on the same dataset to optimally detect
the boundaries marked by the human subjects.

We compute the intervening contour cue for two pix-
els ¢ and j from the B, values that occur along the straight
line path T'(¢) connecting the two pixels. We consider

the family of measures LP(T') = (3, Pb(l“(t))p)l/p for
p = {0,1,2,4, 00}, as well as the mean of P,(I'(¢)). The
next section will cover the choice of the intervening contour
function, as well as the best way to combine the contour in-
formation from the brightness, color, and texture channels.

4. Findings
4.1. Validating the Groundtruth Dataset

Before applying the human segmentation data to the prob-
lem of learning and evaluating affinity functions, we must
determine that the dataset is self-consistent. To this end,
we validate the dataset by comparing each segmentation to
the remaining segmentations of the same image. Treating
the left-out segmentation as the signal and the remaining
segmentations as ground-truth, we apply our two evaluation
methods.

The left panel of Figure 3 shows the distribution of pre-
cision and recall for the entire dataset of 1020 images.
Since the “signal” in this case is binary-valued, we have
a single point for each segmentation. The distribution is
characterized by high recall, with a median value of 99%.
This indicates that 99% of the same-segment pairs in the
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Figure 4: The left panel shows the same two distributions as Fig-
ure 3, with precision and recall combined using the F-measure.
The right panel shows the distribution of mutual information for
the same-image and different-image cases. The low overlap in
each panel (2.7% and 2.2%) attests to the self-consistency of the
data. As expected, significant information is shared between seg-
mentations of the same image. The median F-measure of 0.76 and
mutual information of 0.25 represents the target performance for
our affinity models.

ground-truth are contained in a left-out human segmenta-
tion. The median precision is 66%, indicating that 66% of
the same-segment pairs in a left-out human segmentation
are contained in the ground-truth. These values support
the interpretation that the different subjects provide con-
sistent segmentations varying simply in their degree of de-
tail. For comparison, the right panel of the figure shows the
distribution when the left-out human segmentation and the
groundtruth segmentations are of different images.

The left panel of Figure 4 shows the distribution of the
F-measure for the same-image and different-image cases.
Similarly, the right panel shows the distributions for mu-
tual information. The clear separation between same-image
and different-image comparisons attests to the consistency
of segmentations of the same image. The median F-measure
of 0.76 and mutual information of 0.25 represent the max-
imum achievable performance for pairwise affinity func-
tions.

4.2. Validating Intervening Contour

Although the ecological statistics of natural images indicate
that regions tend to be convex [9], the presence of an inter-
vening contour does not necessarily indicate that two pixels
belong in different segments. Concavities introduce inter-
vening contours between same-segment pixel pairs. In this
section, we analyze the frequency with which this happens.

Given the union of bound-
rewes | ary maps for all human seg-
mentations of an image, we
measure the probability that
same-segment pairs have no
intervening boundary contour.
The figure at left shows this
probability as a function of
pixel separation, along with the number of same-segment
pairs at each distance. If the regions were convex, then the
curve would be fixed at one. Straight-line intervening con-
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Figure 5: Each panel shows two pixels, marked with squares, that
all humans declared to be in the same segment. The intensity at
each point represents the empirical probability that a one-hop path
through that point does not intersect a boundary contour. The left
column is conditioned on there being an unobstructed straight-line
(SL) path between the pixels, while the right column shows the
probabilities when the SL path is obstructed. The top row shows
data gathered from pixel pairs with small separation; the bottom
row for pairs with large separation. See Section 4.2 for further
discussion.

tour is a good approximation to the same-segment indicator
for small distances: 49% of same-segment pairs are in the
>75% correct range.

When straight-line intervening contour fails for a same-
segment pair, there exist more complex paths connecting the
pixels. Consider the set of paths that consist of two straight-
line segments, which we call one-hop paths. The situations
where one-hop paths succeed but straight-line paths fail can
give us intuition about how much can be gained by examin-
ing paths more complex than straight line paths.

Figure 5 shows the empirical spatial distribution of one-
hop paths between same-segment pixel pairs, using the
union of human segmentations. The probability of a one-
hop path existing is conditioned on (left) there being a
straight-line path with no intervening contour and (right)
on there being no straight-line path. If the human subjects’
regions were completely convex, then the right column im-
ages would be zero. Instead, we see that when straight-
line intervening contour fails, there is a small but significant
probability that a more complex one-hop path will succeed,
and the probability of such a path is larger for smaller scales.
There is clearly some benefit from the more complex paths
due to concavities in the regions. However, the degree to
which an algorithm could take advantage of the more pow-
erful one-hop version of intervening contour depends on the
frequency with which the one-hop paths find holes in the es-
timated boundary map. In any case, the figure makes clear
that the simple straight-line path is a good first-order ap-
proximation to the connectivity of same-segment pairs.

Since the straight-line version of intervening contour
will underestimate connectivity in concave regions, it may
have a tendency toward over-segmentation. Figure 6 shows
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Figure 6: The potential over-segmentation caused by the inter-
vening contour approach agrees with the refinement of objects by
human observers. The distribution of precision and recall at left
is generated in an identical manner as the left panel of Figure 3.
However, we add the constraint that the same-segment pairs from
the left-out human must not have an intervening boundary contour.
The recall naturally decreases from adding a constraint to the “sig-
nal”. However from the marginal distributions shown at right, we
see that precision increases with the added constraint. Because the
union segmentation is, on average, a refinement of the left-out seg-
mentation, intervening contour tends to break non-convex regions
in a manner similar to the human subjects.

the effect on precision and recall for the human data when
we add the constraint that same-segment pairs have no in-
tervening boundary contour. As in Figure 3, we are compar-
ing a left-out human to the union of the remaining humans.
On average, the union segmentation will be more detailed
than the left-out human. The figure shows a increase in me-
dian precision from 66% to 75%, indicating that intervening
contour tends to break up non-convex segments in a manner
similar to the human subjects. This lends confidence to an
approach to perceptual organization of first finding convex
object pieces through low-level processes, and then group-
ing the object pieces with into whole objects using higher-
level cues.

4.3. Performance of Patches

Each of the brightness, color, and texture patch features has
several parameters that require tuning. We optimized each
patch feature independently via coordinate ascent to max-
imize performance on the training data. Figure 7 shows
the result of the coordinate ascent experiments, where no
change in any single parameter further improves perfor-
mance.

For brightness and color, a radius of 5.76 pixels was op-
timal, though performance is similar for larger and smaller
discs. In contrast, the texture disc radius has greater impact
on performance, and the optimal radius is much larger at
16.1 pixels. The brightness and color patches also have pa-
rameters related to the binned kernel density estimates. The
binning parameters for brightness are important for perfor-
mance, while the color binning parameters are less critical.
A larger ¢ indicates that small differences in the cue are less
perceptually significant—or at least less useful for this task.

Apart from the disc radius, the texture patch cue has

additional parameters related to the texton computation.
The top right table in Figure 7 shows the optimization
over the number of textons, with 512 being optimal. In
general, we found that the number of textons should be
approximately half the number of pixels in the disc. In
addition, we find agreement oot Featires
with [20, 16] that the filter

bank should contain a sin- Kk&%“

gle scale, and that the scale  o=f\ ™ -
should be as small as possible. \\x\\\
The graph at right shows Sl

Precision
°

the performance of classifiers \\\:\4%
trained on each patch fea- °=

ture individually, along with a R e
classifier that uses all three. It  — = = = —
is clear that each patch feature -

contains independent information, and that texture is the
most powerful cue. The performance of a classifier that uses
distance as its only cue is shown for comparison.

4.4. Performance of Gradients

The gradient cues are based on P, images, which give the

posterior probability of a boundary at each image location.
The B, function can incorporate any or all of the brightness,
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color, and texture cues, though consider for the moment the
& Functions version that uses all three.
: Which intervening contour
function should we use? The
}% upper figure at left shows the
) \ "\ performance of various func-
tions including the mean,
N ) and the range of L?(T") func-
P M \)\\: | tions from sum to max. The
Hen ety L% version is clearly the
. best approach. Both the
mean and the sum perform
significantly worse. The re-
sults are the same no matter
which cues the B,function
uses. Note that the max does
not include any encoding of

distance.

The lower figure at left
=™ compares the two ways in
= which we can combine the

’ * contour cues. We can ei-
ther compute the intervening

contour feature for brightness (ICb), color (ICc), and tex-
ture (ICt) separately and then combine with a classifier
(ICb+ICc+ICt), or we can use the P, function that combines
the three channels into a single boundary map for the inter-
vening contour feature (ICbct). We achieve better perfor-
mance by computing separate contour cues.



Patch Radius Number of Textons

Brightness  Color Texture Num|| F Ml
Radius|| F | MI F | MI F | MI 32 |1{0.48] .081
0.010 ||0.46].069][0.491.093][ - | - 64 [|0.50| .093
0.014 ||0.46|.071]/0.50|.006| - | - 128 ||0.52| 0.10
0.020 ||0.46|.074||0.50|.007|| - | - 256 ||0.53] 0.11
0.028 ||0.46|.073|/0.50|.097|0.50 |.097 512 |os5| 012
0.040 ||0.46|.071(/0.49|.095|0.53|0.11 1024/l052| 0.10
0.056 ||0.45|.067|[0.48|.091||0.55|0.12 2048ll0.52| 0.10
0080 - | - | - | - ||o53]o11
o112l - | - | - | - ||o50|.089

Texton Filter Bank

Kernel Density Estimate Scale F M
Brightness Color 0.007 0.55]0.12
Sigma|Bins|| F | MI| F | Ml 0010 10.55/0.11
0.025 | 100 |[0.40|.041 | 0.48 |.085 0014 )0.53)0.11
0.05 | 50 ||0.41|.047|| 0.50 |.094 0020 1)0.51).092
0.1 | 25 ||0.44|.059]| 0.50 |.097 0.028 ||0.47|.072
02 | 12 |[0.46|.070||0.491|.094 0.007-0.0141/0.550.12
04 | 6 ||0.46|.073]|| 0.49 |.087 0.010-0.020/0.530.11
08 | 3 ||0.45/|.062| 0.48 |.083 0.014-0.028||0.51|.091

Figure 7: The parameters of the patches were optimized on the
250-image training set so that no change in any single parameter
improves performance. The optimal patch sizes and filter scales
are in units of the image diagonal, which is 288 pixels for our
240x160 images. The accessible ranges of the L*a*b* color axes
were scaled to [0, 1], which is the scale for the o parameter. The
Gaussian kernel was sampled at 21 points from [—20,20]. We
must reduce the number of bins as o increases to keep the number
of samples per bin constant. In the lower right table, the multi-
scale texton filter bank contains three half-octave scales covering
the range shown. See Section 4.3.

4.5. Cue Combination

We now have 7 prospective cues for our model of the pixel
affinity, though we expect some to be redundant. The cues
are brightness, color, and texture patches, intervening con-
tour from the same three channels, and the distance be-
tween the two pixels in the image plane. We first evalu-
ate the power of the distance cue in Figure 8. Whether
we use a patch-only model, a contour-only model, or a
patch+contour model, the result is always the same. Dis-
tance does not add any information not already provided by
similarity cues.

We expect that the superiority of patch versus contour
cues to differ depending on the feature channel. Smooth
shading and foreshortening effects may favor brightness and
texture gradients, while it is well known that color patches
are a stable cue. Figure 9 shows the patch-only, contour-
only, and patch+contour models for each of the brightness,
color, and texture channels. As expected, the brightness
patch proves to be far weaker than the brightness contour
cue, with only marginal benefit from combining the two.
Neither patches nor contours seem to dominate the color or
texture channels. However, both texture cues appear quite
powerful with independent information.

In order to determine the most fruitful combination of
cues, we executed both top-down and bottom-up feature
pruning experiments. Figure 10 shows the result. In both
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Figure 8: In this figure, we investigate the utility of the distance
between two pixels as a cue for grouping. The Gestalt school iden-
tified proximity as a grouping cue, however, in all cases the classi-
fier performance is the same whether or not distance is used. The
right panel shows the same experiment with the test and training
sets swapped. We performed all our experiments with swapped
sets. Results were always consistent, with the F-measure and mu-
tual information accurate to within two decimal places.

Figure 9: The three plots show classifiers that use either bright-
ness (left), color (middle), or texture (right). Each plot shows
the performance of a classifier using the patch cue, the gradient
cue, and both together. The brightness patch appears an especially
weak cue, which can be expected from the frequency of shading
gradients in images. Both texture patches and texture gradients
are powerful cues, and their combination is everywhere superior
to using one alone.

cases, the model that maximizes performance using the
fewest cues is the 4-cue model containing the brightness
contour cue, the color patch cue, and both texture cues. All
three feature channels are represented, with particular em-
phasis on texture. From the bottom-up pruning, it is clear
that the texture cues are the most powerful along with color
patches. It is interesting to see that at all stages in the
pruning experiments, the model contains a balance between
patch and contour cues, as well as a balance between the
three channels.

4.6. Choice of Classifier

We find agreement with [20] that the choice of classifier
is not important. Performance was always nearly identi-
cal whether we used a non-parametric density estimation
method, or parametric models based on logistic regression,
including simple logistic regression, logistic regression with
quadratic features, or hierarchical mixtures of experts. To a
first order approximation, a linear combination of features is
sufficient. We favor the logistic with quadratic terms since it
yields a slight improvement over the linear logistic function
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Figure 10: Feature pruning. In the left panel, we start with no
features and add one feature at a time to the model in order to
maximize performance in a greedy manner. In the right panel, we
start with all six features, and greedily remove the worst feature,
one feature at a time. In both cases, the model of choice uses
the brightness contour, color patch, and both texture cues. The
brightness patch and color contour are weak cues, while the color
patch and both texture cues are powerful.

with little added computational cost.

5. Summary and Conclusions

We have shown how to combine patch and contour informa-
tion into a model of pixel affinity for the purpose of image
segmentation. For both patches and contours, we formu-
late brightness, color, and texture cues based on histogram
differences. Contour cues are constructed in the interven-
ing contour framework, which is justified by the ecological
statistics of human segmentations. The six cues are care-
fully optimized with respect to a large dataset of manually
segmented natural images, and then combined with a clas-
sifier trained on the groundtruth data. The modeled pixel
affinity compares favorably to the human data using both
precision/recall and mutual information measures.

References

[1] I. Abdou and W. Pratt.
enhancement/thresholding edge detectors.
67(5):753-763, May 1979.

[2] K.Bowyer, C. Kranenburg, and S. Dougherty. Edge detector evalua-
tion using empirical ROC curves. 1999.

[3] E. Brunswik and J. Kamiya. Ecological validity of proximity and
other Gestalt factors. Am. J. Psych., pages 20-32, 1953.

[4] J. Canny. A computational approach to edge detection. |EEE PAMI,
8:679-698, 1986.

[5] Berkeley Segmentation Dataset, 2002.
http://www.cs.berkeley.edu/projects/vision/bsds.

[6] J.Elder and S. Zucker. Computing contour closures. In ECCV, 1996.

[7] P. Felzenszwalb and D. Huttenlocher. Image segmentation using lo-
cal variation. 1998.

[8] I. Fogel and D. Sagi. Gabor filters as texture discriminator. Bio.
Cybernetics, 61:103-113, 1989.

[9] C. Fowlkes, D. Martin, and J. Malik. Understanding Gestalt cues and
ecological statistics using a database of human segmented images.
POCV Workshop, ICCV, 2001.

[10] Y. Gdalyahu, D. Weinshall, and M. Werman. Stochastic image seg-
mentation by typical cuts. In CVPR, 1999.

[11] S. Geman and D. Geman. Stochastic relaxation, Gibbs distribution,
and the Bayesian retoration of images. |EEE PAMI, 6:721-41, Nov.
1984.

Quantitative design and evaluation of
Proc. of the IEEE,

[12]
[13]

[14]
[15]
[16]
[17]
(18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
(28]

[29]
[30]

(31]

[32]
[33]
(34]
[35]
(36]
[37]
(38]
[39]
[40]
[41]
[42]
[43]

[44]

D. Heeger and J. Bergen. Pyramid-based texture analysis/synthesis.
In SGGRAPH, 1995.

I. Jermyn and H. Ishikawa. Globally optimal regions and boundaries
as minimum ratio weight cycles. |EEE PAMI, 23(10):1075-1088,
2001.

M. Landy and H. Kojima. Ideal cue combination for localizing
texture-defined edges. J. Opt. Soc. Am. A, 18(9):2307-2320, 2001.
T. Leung and J. Malik. Contour continuity in region-based image
segmentation. In ECCV, 1998.

E. Levina. Satistical Issuesin Texture Analysis. PhD thesis, Univer-
sity of California, Berkeley, 2002.

J. Malik, S. Belongie, T. Leung, and J. Shi. Contour and texture
analysis for image segmentation. 1JCV, 43(1):7-27, June 2001.

J. Malik and P. Perona. Preattentive texture discrimination with early
vision mechanisms. J. Opt. Soc. Am,, 7(2):923-932, May 1990.

R. Malladi, J. Sethian, and B. Vemuri. Shape modelling with front
propogation: A level set approach. |EEE PAMI, 17(2):158-175,
1995.

D. Martin, C. Fowlkes, and J. Malik. Learning to detect natural image
boundaries using brightness and texture. 2002.

D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human
segmented natural images and its application to evaluating segmen-
tation algorithms and measuring ecological statistics. In ICCV, 2001.
M. Meild and J. Shi. Learning segmentation by random walks. In
NIPS, 2001.

Jean-Michel Morel and Sergio Solimini. Variational Methods in Im-
age Segmentation. Birkhduser, 1995.

M. Morrone and D. Burr. Feature detection in human vision: a phase
dependent energy model. Proc. R. Soc. Lond. B, 235:221-2245,

D. Mumford and J. Shah. Optimal approximations by piecewise
smooth functions, and associated variational problems. Comm. in
Pure and Applied Math., pages 577-684, 1989.

W. Niblack et al. The QBIC project: Querying image by content
using color, texture, and shape. SPIE v. 1908, 1993.

S. Palmer. Vision Science. MIT Press, 1999.

P. Parent and S. Zucker. Trace inference, curvature consistency, and
curve detection. |EEE PAMI, 11(8):823-839, Aug. 1989.

P. Perona and W. Freeman. A factorization approach to grouping. In
ECCV, 1998.

P. Perona and J. Malik. Detecting and localizing edges composed of
steps, peaks and roofs. In ICCV, 1990.

J. Puzicha, T. Hofmann, and J. Buhmann. Non-parametric similarity
measures for unsupervised texture segmentation and image retrieval.
1997.

J. Puzicha, Y. Rubner, C. Tomasi, and J. Buhmann. Empirical evalu-
ation of dissimilarity measures for color and texture. In ICCV, 1999.
C. Van Rijsbergen. Information Retrieval, 2nd ed. Dept. of Comp.
Sci., Univ. of Glasgow, 1979.

J. Rivest and P. Cavanagh. Localizing contours defined by more than
one attribute. Vision Research, 36(1):53-66, 1996.

Y. Rubner and C. Tomasi. Coalescing texture descriptors. ARPA
Image Understanding Workshop, 1996.

M. Ruzon and C. Tomasi. Color edge detection with the compass
operator. In CVPR, 1999.

S. Sarkar and K. Boyer. Quantitative measures of change based on
feature organization: Eigenvalues and eigenvectors. In CVPR, 1996.
G. Scott and H. Longuet-Higgins. Feature grouping by ’relocalisa-
tion’ of eigenvectors of the proximity matrix. In BMVC, 1990.

J. Shi and J. Malik. Normalized cuts and image segmentation. In
CVPR, 1997.

Z. Tuand S. Zhu. Image segmentation by data-driven markov chain
monte carlo. |EEE PAMI, 24(5):657-673, May 2002.

Y. Weiss. Segmentation using eigenvectors: a unifying view. ICCV,
1999.

L. Williams and D. Jacobs. Stochastic completion fields: a neural
model of illusory contour shape and salience. In ICCV, 1995.

S. Wolfson and M. Landy. Examining edge- and region-based texture
analysis mechanisms. Vision Research, 38(3):439-446, 1998.

Z. Wu and R. Leahy. An optimal graph theoretic approach to data
clustering: theory and its application to image segmentation. |EEE
PAMI, 11:1101-13, Nov. 1993.



