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Abstract

This paper quantifies the information gained in integrating
local measurements using spectral graph partitioning. We
employ a large dataset of manually segmented images in
order to learn an optimal affinity function between nearby
pairs of pixels. Region cues are computed as the similar-
ity in brightness, color, and texture between image patches.
Boundary cues are incorporated by looking for the pres-
ence of an “intervening contour™, a large gradient along
a straight line connecting two pixels. We then use spectral
clustering to find an approximate minimizer of the normal-
ized cut, partitioning the image into coherent segments.

We evaluate the power of local measurements and global
segmentations in predicting the location of image bound-
aries by computing the precision and recall with respect to
the human groundtruth data. The results show that spectral
clustering is successful in suppressing noise and boosting
weak signals over a wide variety of natural images.

1. Introduction

Research on early vision problems such as edge detection
and image segmentation has traditionally been critiqued on
the grounds that quantitative measurements of performance
are rare. It is therefore difficult to evaluate the effect of dif-
ferent design choices and the superiority (or inferiority) of
various novel heuristics that have been proposed in the lit-
erature. Recently the availability of the Berkeley Segmen-
tation DataSet [13,4] has allowed the quantitative measure-
ment of performance on boundary finding [12] and the rel-
ative power of various pairwise similarity cues [6]. While
this is, of course, not the first example of quantitative mea-
surement in segmentation (see for example [1, 3, 9]) the
availability of this large data set containing a wide variety
of images and segmentations by multiple human observers
(11,0000 segmentations of 1000 images), allows one to
draw conclusions with greater statistical confidence”. For
example, understanding the relative importance of color and
texture in grouping, or the finding [6] that proximity pro-
vides no significant additional information about the correct
grouping once texture and color have been measured.

In recent years, a major trend in early vision has been the
development of approaches to segmentation based on pair-
wise clustering such as spectral partitioning [26, 27,17, 23,
24,16], deterministic annealing [18], or stochastic cluster-
ing [7,14]. Typically some global cost criterion is formu-
lated which is composed of pairwise similarities measured
between image pixels or regions. However, the most basic
question in this context is, Do these global formulations
help?”. The intuition is that local measurements are noisy
and integrating them globally might give much better re-
sults, but is this actually true? The purpose of this paper is
to use ground-truth human segmentations to provide some
answers to this question.

Here we have a fundamental challenge, global ap-
proaches typically output a “hard” partitioning of the im-
age into disjoint pieces while local measurements are usu-
ally some “soft” measurement of the edginess at a pixel
or the similarity of two pixels. Our solution is to work
in the framework of edge detection and project the much
more complicated structures that are segmentations down
into this space, finessing round peg into square hole.

A “soft” edge map can be evaluated by choosing a range
of thresholds and recording the trade-off between Preci-
sion, the probability that an above threshold pixel is on a
true boundary, and Recall the probability that a true bound-
ary pixel is detected. The resulting precision-recall curve
characterizes the performance of a detector independently
of parameterization and shows the regime in which a par-
ticular detector performs well relative to others. In the case
of a segmentation, we have only a single point but if the
boundaries given by successive segmentations in a sequence
{51, 52,...} are nested (e.g. S is astrict refinement of S;)
then the sequence index ¢ gives a discrete parameterization
and hence a curve of sorts.

In this paper we will focus on evaluating the benefit of
globalization in the normalized cut framework [26] using
multiple eigenvectors of the normalized Laplacian of the
affinity matrix in order to find partitions of the image. The
paper is organized as follows. In Section 2, we develop
the pairwise cues used for segmenting natural images. In
Section 3, we review spectral clustering and discuss how to
treat intermediate results as a soft boundary map. Finally,
in Section 4 and 5 we evaluate the performance gains in go-
ing from raw boundary cues to segmentations. Section 6
concludes.

2. Local to Global using Spectral Clus-
tering

Let the symmetric matrix W € R~ >*¥ denote the weighted
adjacency matrix for a graph G = (V, E) with vertices
V and edges E. For disjoint vertex sets A and B, de-
fine cut(A, B) = > icajep Wij- Let vol(A) of a ver-
tex set A be defined as vol(A) = > ;.4 > Wij. The k-
way normalized cut for a disjoint partition of the vertex set

V=ViuVouVsl...UV;isthen given by

cut(Vi, V)
KNCut(Vy, Va, Vs, ..., Vi) = ; ooV
Shi and Malik [26] showed that for bi-partitioning, an ap-
proximate solution may be obtained by scaling and thresh-
olding the eigenvector corresponding to the second smallest
eigenvalue of the normalized Laplacian £ = D~/?(D —
W)D~1/2 where D is the diagonal matrix with entries
D;; = >, Wij. Yuand Shi [22] and Bach and Jordan [2]
show that the trailing & eigenvectors of £ similarly provide
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Figure 1: This precision-recall curve shows the performance
of three different classifi ers on the task of predicting when a pair
of pixels lie in the same segment. Combining the intervening
contour cue (ic) and the region similarity cue (patches) results in
everywhere-better performance. Thisimplies there isindependent
information in each cue which the classifi er is able to exploit.

a relaxation of the k-way criterion. Each element of V' is
associated with an entry in each of the & eigenvectors giv-
ing an embedding of the graph in R* (if the columns of E
are the eigenvectors of £ then the rows of £ are the embed-
ding vectors). The hope is that the distances between these
embedded points provide a denoised version of their raw
affinities making them much easier to cluster. The question
of “how much easier” is exactly what we wish to quantify.

To apply this technique to real images requires develop-
ing a local model of similarity between pixels. We assume
that the entries in 1/;; should be a monotonic function of
the likelihood that two pixels like in the same segment .S;;.
We consider the functional form

where o is a free parameter set by cross-validation and S
is fit by our local probabilistic model S which we describe
next.

3. Optimizing Local Cues

For each pair of pixels, we would like to estimate the prob-
ability that they belong to the same segment. Based on the
work of [6], we use low-level measurements that describe
the local neighborhood around each pixel as well as the ex-
istence of contours in the image plane separating the two
pixels. Our novel contribution here is to adapt the support
of local measurements to the estimated boundary map.

The pairwise similarity between the i-th and j-th pixel
is given by a function whose arguments are the similarity
between the i-th and j-th local descriptors and the gradients
along the path from ¢ and j. Both the patch and gradient
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Figure 2: Clipping the support of apatch using the local bound-
ary estimate allows a signifi cant improvement over using isotropic
support. Thisis because patches no longer span locally detectable
boundaries and hence are less likely to be “poisoned” by texture
and color from more than one segment. Thisfi gure also documents
benefi t of color. Clipping grayscale patches actually allows them
perform better than unclipped color patches.

Clipping and color improve combined cues
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Figure 3: When the intervening contour cue (ic) isincluded, the
jump in performance from clipped to unclipped patches is signifi -
cantly less but still present.



cues have free parameters such as the the number of his-
togram bins, scale etc. We choose these parameters using
coordinate ascent to optimize performance of each cue in-
dividually on the test data. We now describe how the cues
are computed.

3.1. Gradient Features

Given a pair of pixels, consider the straight-line path con-
necting them in the image plane. If the pixels lie in different
segments, then we expect to find, somewhere along the line,
a photometric discontinuity or intervening contour [10]. If
no such discontinuity is encountered, then the similarity be-
tween the pixels should be large.

In order to compute the intervening contour cue, we re-
quire a boundary detector that works robustly on natural
images. For this we employ the gradient-based boundary
detector of [12] (available here [4]). The output of the de-
tector is a B, image that provides the posterior probability of
a boundary at each pixel for both color and grayscale im-
ages. The gradient features used by [12] to predict P,are
based on the histogram difference between the two halves
of a single disc, similar to [21,20]. The orientation of the
dividing diagonal sets the orientation of the gradient, and
the radius of the disc sets the scale. All of the parameters of
the gradients have been tuned by [12] on the same dataset to
optimally detect the boundaries marked by the human sub-
jects.

3.2. Patch Features

Given a pair of pixels, we also wish to measure the bright-
ness, color, and texture similarity between circular neigh-
borhoods of some radius centered at each pixel.

We model brightness and color distributions with his-
tograms constructed by binning kernel density estimates
of marginals in the 1976 CIE L*a*b* color space. His-
tograms are compared with the x2 histogram difference op-
erator [19]. The 2 histogram difference does not make use
of the ground distance between the bin centers. Because
the distance between points in CIELAB space is percep-
tually meaningful in a local neighborhood, binning a ker-
nel density estimate whose kernel bandwidth o matches the
scale of this neighborhood means that perceptually similar
colors will have similar histogram contributions. Beyond
this scale, where colors are incommensurate, x2 will regard
them as equally different.

For the patch-based texture feature, we compare the dis-
tributions of filter responses in the two discs. Our filter
bank contains elongated quadrature pair filters—Gaussian
second derivatives and their Hilbert transforms—at six ori-
entations, along with a center-surround filter. The empiri-
cal distribution of filter responses has been shown to be a
powerful feature for both texture synthesis [8] and texture
discrimination [18].

We compare filter distributions using the texton approach
developed in [11]. The joint distribution of filter responses
is estimated using adaptive bins, which are computed with
k-means. The texture descriptor for a pixel is therefore a &
bin histogram over the texton labels in a disc of radius r cen-
tered on the pixel. Here again, comparing histograms using
the 2 difference measure provided optimal performance on
the training data.

Patches computed in this way accurately capture surface
appearance as long as the patch center is far from any image
boundary. In order to prevent patch histograms from being
contaminated when they overlap two or more regions, we
consider adapting the patch support to respect image gra-
dients. Clipping patches is accomplished by weighting the
histogram contribution of each pixel in the circular window
with the intervening contour from the center point.

3.3. Evaluating Pairwise Features

We would like to fit pairwise similarities independently of
later processing. To this end, we formulate the problem of
optimizing the pixel similarity function as a classification
problem of discriminating same-segment pixel pairs from
different-segment pairs. Let S;; be the true same-segment
indicator so that S;;=1 when pixels  and j are in the same
segment, and S;; =0 when pixels ¢ and j are in different
segments.

To evaluate proposed pairwise similarities, we use hu-
man segmentations for 200 color images as a training set.
Each image has been segmented by at least 5 subjects, so
the groundtruth .S;; is defined by a set of human segmenta-
tions. We declare two pixels to lie in the same segment only
if all subjects declare them to lie in the same segment.

Given a classifier’s estimate .S;;, we compare with the
human segmentations using precision-recall. In this task,
precision measures the probability that two pixels declared
by the classifier to lie in the same segment were marked as
such by the humans, i.e. IP(S;;=1|5;;>t). Recall measures
the probability that a pair of pixels marked by the humans
as lying in the same segment where declared as such by the
classifier, i.e. IP(.S;;>t|5;;=1).

Figures 1,2,and 3 document the performance of our best
pairwise cues for classifying pixel pairs which are within a
distance of 20 pixels. In all cases, we fit a simple logistic
function to the data. Figure 1 shows that patch and interven-
ing contour cues in combination dominate each cue indi-
vidually, showing that each contains independent informa-
tion. Figure 2 shows that clipping patches greatly improves
patch performance. Figure 3 shows that the performance
gain from clipping when intervening contour is included is
less but still present.

4. Evaluating Eigenvectors

Once we have pairwise affinities, we can compute eigen-
vectors of the normalized Laplacian as described in Section



2. We would like to utilize the embedding given by these
eigenvectors to partition the image. Several techniques have
been proposed such as thresholding the second eigenvec-
tor [25], recursive bi-partitioning, or running k-means on
the embedded points [11, 16]. These proposed techniques
for rounding the eigenvectors to a discrete solution all rely
on points in different clusters being placed “far apart” by
the eigenvector embedding.

To evaluate the eigenvectors in a way that is independent
of losses or gains due to a particular rounding scheme, we
reshape the set of eigenvectors E into a vector-valued image
and measure the extent to which boundaries between human
marked segments correspond to high gradients. For each
pixel, we compute the direction in which the vector-valued
image given by the eigenvectors is changing most quickly.
The gradient magnitude in a direction 6 at a point (z, y)

M(l‘, Y, 9) = Z (Sln(e)azEz(x, y) + COS(Q)ayEi(xv y))2

)

is a quadratic function of the derivatives of each embedding
vector in the x and y directions. The 6 for which M is max-
imal can be found in closed form. Let g, = >, (&EEZ»)Q,
gy =, (0,E:)%, and g,y = . (0. E;) (9, E;). Then the
maximal magnitude is given by

M*(x,y) m@axM(x,y,H)
1

= 3 (g.x +gy + \/(gx —gy)? + 4g%y)

The direction is given (modulo 7) by

1 2G.
©* = —tan~? (79“1 )
2 9z — Gy

In order to evaluate how well this gradient image
M™(z,y) describes the image segments, we use the bound-
ary detection benchmark located here [4]. The bench-
mark first thins the detected boundaries for a given im-
age and then attempts to put them in 1-to-1 correspon-
dence with boundaries marked by human observers. The
aggregate goodness of this match can again be displayed
as a precision-recall curve. In this case, precision mea-
sures the probability that a pixel declared “on boundary”
for a given threshold ¢ is in fact on a true boundary, i.e.
P(B(z,y) = 1|M*(x,y) > t) where B is the indicator of
human marked boundaries. Recall measures the probability
that a true boundary pixel is detected, i.e. P(M*(z,y) >
t|B(z,y) = 1).

Figure 4 shows the effect of the number of eigenvectors
on performance. The result shows some trade-off between
decreased precision and increased recall which appears to
level off at 8 eigenvectors, after which more eigenvectors
only introduce noise. We choose nvec = 8 for the remain-
der of the paper.
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Figure 4: Increasing the number of embedding vectors used in-
creases the recall but eventually hurts the precision.
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Figure 5:
mance

Increasing the connectivity radius improves perfor-



Changing the non-linearity parameter
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Figure 6: Decreasing o parameter improves performance

Power of globalization
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Figure 7: The globalized boundaries present in the eigenvectors
provide higher precision than Pb in the high-precision / low-recall
regime. It's also interesting to note that the difference between
globalized color and grayscale is much less than between the raw
color and grayscale boundary detector. Humans are similarly able
to perform consistent segmentation with or without the benefi t of
color.

Figure 5 shows the effect of connectivity radius. Com-
putational constraints demand that we use only sparse con-
nections in the matrix 1. Some have argued that only very
local connections should be used since cues are unreliable,
however, this results in large homogeneous regions being
penalized. The result shows that increased connection den-
sity generally improves the contrast of boundaries in the
embedding but comes at the cost of computation time. We
choose dthresh = 20 for the remainder of the paper.

Figure 6 shows the effect of changing the o in equa-
tion 1. With some surprise, we were unable to find a local
minima. It appears that the smaller we make o the better
performance, up to the point where the eigensolver fails to
converge in some fixed number of iterations. \We choose
o = 0.1 for the remainder of the paper

Figure 7 shows the gain in performance over low level
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Figure 8: This fi gure shows the lack of useful "globalization”
we observed in aMRF model of pairwise segmentation. Here hid-
den variables took on a discrete set of values and pairwise poten-
tials between nearest neighbors ¢ and j were given by W;; us-
ing the intervening-contour cue. Generalized Belief Propagation
(asin[14]) yielded estimates of the pairwise correlations between
neighboring pixels which were interpreted as the probability of
non-boundary. We were unable to fi nd a temperature o at which
the pairwise marginals gave better estimates than the local bound-
ary detector. The blue curve, plotted for comparison, shows the
availability of useful information in the |eading eigenvectors using
the same nearest-neighbor graph and pair-wise affi nities.

cues as well as the gain in combining cues. The principle
conclusion is that in the low-recall, high-precision regime
there is a clear improvement as result of the globalization
provided by computing the eigenvectors of the normalized
Laplacian. In this regime, normalized cuts is successful in
suppressing high-contrast clutter which would mislead a lo-
cal operator. However, the precision-recall curve based on
eigenvectors crosses that curve given by the local bound-
ary operator (P, ) so that in the high-recall/low-precision the
performance of the local boundary detector is better. Intu-
itively this crossover can be explained by the bias that nor-
malized cuts has against very small regions. When these
exist in images, they will lead to edges which are more eas-
ily found by the local boundary detector.

A more subtle observation can also be made from these
graphs. The use of color significantly improves the perfor-
mance of a local boundary finder. However, when these
measurements are piped through the machinery of spectral
clustering this difference essentially disappears.

4.1. Comparison with Markov Random Fields

Shental et al recently proposed [14, 15] a probabilistic
model for pairwise clustering in which a discrete random
variable X; corresponding to the segment label of the ith
pixel is linked to neighboring pixels by image dependent
pairwise potential functions «;;(X;, X;). The probability



of a segmentation is then given by the MRF:

1
P(X) = 7 <H>w¢j(X¢,Xj)
ij

This model naturally accommodates the same pairwise
affinities we use for normalized cuts.  We set

1 Xi=X;
Vi (X0, X5) = { exp(=S; /o) Xi # Xj’

where the parameter o is commonly referred to as the tem-
perature. As proposed in [14], we use generalized be-
lief propagation to infer the marginal correlations between
neighboring nodes. These correlations are easily treated as
a soft boundary map which can then be compared to the
local boundary detector.

Figure 8 shows the resulting performance over a range
of temperatures . We find that the correlations estimated
by belief propagation are generally worse at predicting hu-
man marked boundaries than the low-level, “un-globalized”
measurements. Figure 8 shows that the eigensolver is able
to squeeze out additional information even when restricted
to nearest neighbor connections dthresh = 1.

5. Evaluating Segmentations

Now we turn to the task of using multiple eigenvectors to
partition an image into regions. Several techniques have
been proposed including thresholding the eigenvectors [25],
recursive bi-partitioning, or running k-means on the embed-
ded points [11, 16].

In this paper, we have evaluated a two stage strategy sim-
ilar to that of [11]. First, use k-means or some variant to
produce an oversegmentation (we call these segments su-
perpixels). Then contract the graph so that each node in the
contracted graph corresponds to a segment. Finally, recur-
sively partition the contracted graph.

The results of this procedure are evaluated in Figure 9 by
treating the segment boundaries as edges to be compared to
the human ground-truth boundaries. The cloud of points
on the graph show the precision and recall of the overseg-
mentation for each of 200 images. The desired property of
an oversegmentation is that it has high recall so that few
boundaries are missed.

Theoretical considerations [16, 22] suggest that the em-
bedded points should be projected down onto the sphere be-
fore clustering. We found that sphering had no significant
effect on performance for the task of oversegmentation.

11t is important to note that the S‘ij we learn treats the pixel pairs as
iid samples. This does not necessarily assign the maximal likelihood to
the human segmentations under the MRF model. Instead, the logistic pa-
rameters should be iteratively re-estimated with respect to the expectations
given by the MRF in order maximize the joint likelihood. This tuning may
give improvements over the performance we document here.

Pb vs Eigengradients vs Segmentation
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Figure 9: This fi gure shows that in passing from gradients of
eigenvectors to segmentations, we are able to maintain high preci-
sioninidentifying true boundaries. The cloud of points correspond
to the initial oversegmentations for the set of images. The red (o)
curve shows the results of recursively splitting the graph corre-
sponding to this oversegmentation. The black curve (+) shows the
results of the same procedure using weights which have been ex-
tended by setting undefi ned edges between a pair of superpixelsto
be the average of the defi ned weights.

5.1. Extending W

As mentioned earlier, computational constraints make it
necessary to artificially set the connection between faraway
pixels to 0 in order to introduce sparsity. It is well known
[5, 14] that this introduces artifacts into segmentations. In-
tuitively, the k-way normalized cut consists of terms which,
for local connection patterns, scales as the perimeter over
the area. In the spectral relaxation, this manifests itself
as eigenvectors which oscillate (like the modes of a drum
head).

We consider the following procedure for extending W;;
by filling in values for long range connections. For each pair
of pixels 7 and j which are not connected by an edge, we
add an edge whose weight is the mean of the assigned con-
nections between the superpixels containing ¢ and j respec-
tively. This is computationally feasible because all these
newly introduced edges are immediately collapsed into the
contracted edge.

Figure 9 shows the curves for recursively partitioning
both the contracted graph and the extend contracted graph.
They show that extending W improves performance in the
mid-recall/mid-precision regime.

The last two pages show our results on the first 120 im-
ages from the BSDS. Here the recursive partitioning was
terminated when no segment could be split with a normal-
ized cut score of less than 1.15



6. Conclusions

In this paper we have presented a quantitative evaluation of
the benefit of global information in the spectral partitioning
framework over a purely local approach to boundary detec-
tion. The advantage is small but significant. However, it
is primarily in the high-precision/ low-recall regime. In the
high-recall regime, local boundary detection is actually su-
perior, perhaps as a consequence of the bias in the normal-
ized cut criterion towards balanced segments. This suggests
research on multi-scale segmentation strategies as a way to
provide “the best of both worlds”.

The other major take-home lesson is that there do exist
segmentation strategies that make close to optimal use of
the embedding provided by the eigenvectors. This is impor-
tant because it opens up the possibility of high-level pro-
cessing techniques that require a disjoint partitioning of an
image into segments.
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