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Abstract

We describe a technique for inferring the typical movement of nuclei in Drosophila blastoderm using nuclear positions
extracted from a large number of images of fixed embryos. Embryos are sorted into temporal cohorts and each cohort
is represented by the average blastoderm shape and average density of nuclei along the blastoderm surface. To find cell
movements, we formulate a cost function that measures how well a given placement of a set of “synthetic nuclei” respects the
measured average density for the cohort. This function is optimized for each cohort in turn, initialized with the results of the
previous time step. The result is a synthetic time series of changing nuclear locations which recapitulates average nuclear
density and blastoderm shape seen under the microscope.

1 Introduction

Establishing a suitable coordinate system for analyzing morphology and spatial gene expression is a general problem in
developmental biology because cells move. At times, these dynamics are obvious to the human eye, such as the rapid
movements visible during gastrulation. To discern more subtle movements, developmental biologists typically track the
locations of cells over time using live cell imaging. Identifying corresponding cells in successive frames of a live video is
fairly straightforward, but this approach is often limitedby poor signal to noise and high light attenuation along the optical
axis of the microscope.

Imaging fixed material can overcome these limitations as it is generally possible to achieve higher quality fluorescent
staining and, by manipulating the embedding media, to increase transparency of the tissue. However, estimating motions
from fixed material poses it’s own difficulties as it requiressome notion of correspondence between cells in different animals.
For tissues with fairly homogeneous structure, such as the Drosophila blastoderm, it is quite difficult (using morphology
alone) to find corresponding cells across samples at the accuracy necessary to measure small motions.

In this report, we describe a computational approach to predicting nuclear/cellular movements which relies on having
a large number of images of fixed material in order to estimatethe average positions of all cells in the embryo or tissue
under study.1 The difficulties of correspondence are sidestepped by usingaverage cell densities computed over hundreds
of embryos. We suggest that when it is possible to obtain suchdata for cohorts at different time points, the strategy we
have employed based on fixed material provides a powerful alternative to live cell analysis for estimating typical nuclear/cell
movements.

2 Nuclear movement in Drosophila blastoderm

We employed a dataset of 1282 Drosophila embryos which were stained to fluorescently label nuclear DNA and imaged
via two photon laser-scanning microscopy. The collection of embryos, spanning developmental stage 5, were grouped into
6 tightly spaced temporal cohorts based on visual examination of the extent of cell membrane invagination. The∼ 6000
nuclei visible in each volumetric image were localized and segmented using the techniques described in [1]. The result of
this analysis is a list of estimated nuclear locations in 3D for each embryo which we refer to as a pointcloud.

1The biological implications of the movements we model in Drosophila are described elsewhere [2]
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Figure 1: Blastoderm shape and nuclear den-
sity undergo subtle but significant changes over
the course stage 5.

Although the nuclei in stage 5 blastoderm form a monolayer along the
egg surface, we observed that the density of nuclear packingvaries across
this surface in a complex but consistent pattern which seemsto foretell the
much larger displacements that occur during gastrulation.In addition, the
density patterns we observed change over the course of cellularization, with
density increasing dorsally and decreasing ventrally and anteriorly (indi-
cated by the colormap in Figure 1). Since nuclei do not divideduring this
time period one may conclude that these changes in density are due to move-
ments of the nuclei.

From a collection of pointclouds, we would like to generate asynthetic
time series that describes an average number of nuclei undergoing typical
movements in wild-type embryos. The motion at a given time can be de-
composed into two components. The first is a sliding motion ofnuclei tan-
gent to the blastoderm surface. The second is an inwards motion of nuclei
which changes the overall blastoderm “shape”. Our approachto recovering
movements has a similar decomposition: we first set the shapeof the blas-
toderm surface at a given time point and then place nuclei on this surface so
as to replicate the observed density pattern.

3 Parametrizing blastoderm surface shape

We coarsely align the embryos in a given cohort by a translating each embryo to place the center of mass at the origin and
rotating to align the principal axis along the x coordinate.Embryos are also rotated around the central axis so that the dorsal
mid-line (identified by eye) lies in the x-z plane.

We parametrize the surface of the blastoderm in spherical coordinates:

x = rt(φ, θ) sin φ cos θ

y = rt(φ, θ) sin φ sin θ

z = rt(φ, θ) cos φ

Herert is the the average distance to the blastoderm surface for a given temporal cohortt which is computed by interpolating
the pointcloud data to a fixed grid and averaging.

This parametrization serves to decouple the problems of surface shape and nuclear density. Given the(φ, θ) coordinate
for each synthetic nucleus we simply plug it into our estimate ofrt, yielding 3D coordinates which automatically satisfy the
shape constraint.

4 Inferring cell locations from density

Let Yt
i = (φt

i, θ
t
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Figure 2: Two different flows which yield essentially identical final density patterns. The left column shows a slow, smooth motionand
the resulting final density. The right shows the results of optimizing the un-regularized cost function with an extreme initialization of the
motion and the resulting density pattern.

We find a set of nuclear locations that (locally) minimizeC using conjugate gradient [3]. We initialize the optimization
with a uniform triangular grid of 6078 points. Optimizationtypically converges within a few hundred line searches. Minimiz-
ers are clearly not unique since any permutation of the nuclei yields the same density pattern. However, this isn’t a problem
as the the nuclei are all identical for the purposes of this initialization step.

Given a placement of nuclei at timestept− 1 we would like to move these nuclei to new locations at timet which respect
the updated density and shape. This is accomplished by localminimization starting from the initial condition{Y t−1} given
by the previous time step.

As stated, this problem also does not have a unique solution since there are many possible motions which yield the
same final pattern of density. Figure 2 shows an example of twosuch motions. To make the problem well formed, we add a
regularization term to the cost function. This is also desirable from a biological perspective as the nuclear motions weobserve
in living embryos are slow and smooth. To enforce regularityin the resulting field of displacement vectors,Y t − Y t−1, we
augment the cost function with two additional terms:

C({Yt
i}) =

1

2

∑

j

∥

∥

∥

∥

∥

Dt(Zj) −
∑

i

Kσ(‖Zj − Y
t
i‖)

∥

∥

∥

∥

∥

2

+
α

2

∑

i6=j

∥

∥

∥

∥

∥

(Yt
i − Y

t−1

i ) − (Yt
j − Y

t−1

j )

‖Yt−1

i − Y
t−1

j ‖

∥

∥

∥

∥

∥

2

+
β

2

∑

i

‖Yt
i −Y

t−1

i ‖2

The first regularization term, weighted byα, is a smoothness term which asks that neighboring cells (forwhich the denom-
inator is small) have similar displacement vectors (numerator is small). This has a local smoothing affect as cells which are
far away (large denominator) contribute very little to the penalty. The second term, weighted byβ, enforces that the total
motion be small.

In practice, we find that the results are quite robust to choice of the parametersα, β. For small time increments using
the solution from the previous time step as initialization,the regularization terms are not even necessary. Since conjugate
gradient performs a local search, starting from zero displacement assures the total displacement is small while the repulsion
inherent in the density computation tends to yield smooth displacements. Qualitatively different solutions (as in Figure 2)
only appear with very large perturbations of the initial conditions.

5 Using multiple coordinate charts

We have specified the quality of a proposed nuclear placementas a function of the nuclear coordinates in a spherical
parametrization of the blastoderm surface. This has the short coming that near the poles, the density of nuclei in this co-
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Figure 3: Covering the embryo with three different spherical charts.The orientations are chosen so that the coordinate system singularities
do not overlap. The locations are chosen so that every part ofthe surface is nicely covered by some chart (i.e. chart 2 captures the middle
80% of the blastoderm while 1 and 3 capture the anterior and posterior poles respectively)

ordinate system goes to zero, as the ”lines of longitude” converge to a point. This could be solved by a spatially varyingσ
parameter in order to give a smooth estimate of the density. However, the poles still pose the additional difficulties of how to
specify the appropriate boundary conditions in estimatingthe densities and modeling the possibility of nuclei movingover
the poles.

We overcome this problem by covering the blastoderm with three different spherical coordinate systems whose singulari-
ties occur at different locations on the surface (shown in Figure 3). For any point on the blastoderm surface, we can always
choose a coordinate system to represent it which has no singularities nearby.

Let T k be the transformation which takes coordinates for point on the surface of the blastoderm in coordinate systemk to
our standard coordinate system. LetDk be the desired average density measured in thekth coordinate system. We augment
our original cost function to be blend of cost functions fromeach coordinate system:
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For clarity, we’ve dropped the time index and regularization terms. wk,j is a weight which specifies the extent to which
thekth coordinate system should be used to represent thejth density measurement. In the vicinity of a coordinate system
singularity we’d like this weight to be0. In particular we letw be a smooth function of theφ coordinate ofZk. For the
standard coordinate system,w is a product of logistic functions centered atφ = π/10 andφ = 9π/10, covering the central
80% of the blastoderm. We use two additional spherical charts tocover the remaining10% of each pole weighted by a single
logistic function. Figure 4 shows the coordinate charts with their weightings.

Gradients of eachCk have the same form as those of the original cost function withthe addition of appropriate spatial
weighting. In order to minimizeC, however, it is necessary to transform gradients computed in different coordinate charts
back into the standard coordinate chart. In particular, thepartial derivatives with respect to the standard coordinates are
linearly related by the chain rule:
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For completeness, we give details of transforming gradientvectors from one coordinate system to another. To deal with the
offsets between the centers of the three spherical coordinate systems, it is convenient to implement transforms by expanding
the Jacobian in terms of intermediate Euclidean coordinates:
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Figure 4: Each column corresponds to a coordinate chart in Figure 3. The top row shows the weightingw1,2,3 used by the chart. The
middle row shows the densityD1,2,3 of nuclei in the chart. Note the drop in the average density onthe left and right edges of each chart
(φ = 0, π). The bottom row shows the synthesized nuclear locationsT1,2,3(Y ) which produce matching density maps.
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Recall our parametric description of the embryo surface at time t in terms of spherical coordinates.

x = r(φ, θ) sin φ cos θ

y = r(φ, θ) sin φ sin θ

z = r(φ, θ) cos φ

Taking derivatives allows us to fill in the matrix, lifting tangent vectors in the spherical chart to the Euclidean embedding
space:

∂x

∂φ
=

∂r(φ, θ)

∂φ
sin φ cos θ + r(φ, θ) cos φ cos θ

∂y

∂φ
=

∂r(φ, θ)

∂φ
sin φ sin θ + r(φ, θ) cos φ sin θ

∂z

∂φ
=

∂r(φ, θ)

∂φ
cosφ − r(φ, θ) sin φ

∂x

∂θ
=

∂r(φ, θ)

∂θ
sin φ cos θ − r(φ, θ) sin φ sin θ

∂y

∂θ
=

∂r(φ, θ)

∂θ
sin φ sin θ + r(φ, θ) sin φ cos θ

∂z

∂θ
=

∂r(φ, θ)

∂θ
cosφ

This can then be inverted to yield the mapping from Euclideanback to spherical:
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6 Conclusion

Figures 5 and 6 summarize the results of our modeling effort.The synthetic nuclear density maps produced by this procedure
agreed closely with maps measured from actual embryos at thesame stages of development. Although density alone is a
fairly weak constraint, the models requirement of a small, smooth movement resulted in a solution that was quite robust to
perturbations of the constraints and initial conditions. Figure 6 shows the map of predicted nuclear movements betweenthe
early and late synthetic embryos. Qualitatively, the predicted movements matched those observed in the live data (see [2]),
showing larger movements at the poles and dorsally than ventrally. Quantitatively, the movements were of a similar order as
those we observed in living embryos.

Our work establishes a new strategy for measuring temporal changes in the locations of cells and gene expression patterns
that uses fixed cell material and computational modeling. Italso provides a coordinate framework for the blastoderm embryo
which we hope will allow increasingly accurate spatio-temporal modeling of both morphogenesis and the transcriptional
network that controls it.
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Figure 5: Nuclear density on the surface of the blastoderm displayed in cylindrical projection (anterior to the left). Left panelshows the
average of densities measured in six temporal cohorts spanning the course of stage 5. Right panel shows the corresponding density pattern
for the synthetic embryo undergoing estimated ”typical” nuclear movements.
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Figure 6: Predicted nuclear motions based on average shape and density changes.
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