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Abstract

Probabilistic modelling of text data in the bag-

of-words representation has been dominated by

directed graphical models such as pLSI, LDA,

NMF, and discrete PCA. Recently, state of the

art performance on visual object recognition has

also been reported using variants of these mod-

els. We introduce an alternative undirected

graphical model suitable for modelling count

data. This “Rate Adapting Poisson” (RAP)

model is shown to generate superior dimension-

ally reduced representations for subsequent re-

trieval or classification. Models are trained us-

ing contrastive divergence while inference of la-

tent topical representations is efficiently achieved

through a simple matrix multiplication.

1. Introduction and Context

The dominant paradigm for modelling histogram data is the

extraction of latent semantic structure, often referred to as

topics. Text data for example can be represented as word

counts for a given dictionary, a representation referred to

as bag of words. For image data there exists an analogue,

the so-called bag of features representation, which can be

thought of as count data of visual words. Latent variable

models determine a mapping from such count data to a

compressed latent representation. This representation can

subsequently be used to improve document retrieval and

classification performance.

The simplest models assign each document to a single clus-
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ter a priori. However, it has been recognized that dis-

tributed latent representations are superior. For instance,

a simple singular value decomposition of the count matrix,

known as “latent semantic indexing” (LSI), is quite suc-

cessful in extracting semantic structure (Deerwester et al.,

1990). A probabilistic extension of this idea was intro-

duced by Hofmann (1999) as “probabilistic latent semantic

indexing” (PLSI). By realizing that PLSI is not a proper

generative model at the level of documents, a further ex-

tension, latent Dirichlet allocation, was introduced by Blei

et al. (2003). As pointed out by Buntine and Jakulin

(2004), the basic architecture of LDA is known under var-

ious names such as add-mixtures, grade of memberships

model, multiple aspect model and multinomial PCA. These

authors also extend LDA to a still broader class of models

known as “discrete PCA”.

These models can be characterized along a number of di-

mensions. Firstly, they represent a subset of the of the class

of directed graphical models, or approximations thereof.

Directed models share certain properties, such as the phe-

nomenon of explaining away (given an observation on a

child node, its parents become dependent) and easy ances-

tral sampling. As shown in (Buntine, 2002; Girolami &

Kaban, 2003) the growth of the number of parameters with

the number of training documents for PLSI can be under-

stood as variational EM learning of an LDA model, where

for each training document the true posterior is replaced

with a point estimate. This insight also relates non-negative

matrix factorization (Lee & Seung, 1999) to the Gamma-

Poisson model (Buntine & Jakulin, 2004) in a similar man-

ner. More sophisticated approximations to the intractable

inference problem have also been studied in the literature: a

structured mean field approximation (Blei & Jordan, 2004),

expectation propagation (Minka & Lafferty, 2002) and a

collapsed Gibbs sampler (Griffiths & Steyvers, 2002).
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There is also another property to characterize these mod-

els. Models such as LDA, PLSI, Gamma-Poisson models

and NMF (in fact all discrete PCA models and their vari-

ational approximations) combine topics in the probability

domain. For instance, in LDA we generate a probability

vector θ with
∑

i θi = 1 from a Dirichlet distribution and

linearly combine these probabilities using a stochastic ma-

trix M . Each column of M represents a discrete distribu-

tion over words for topic j and a document is modelled as

Ndoc samples from the linear combination pi =
∑

j Mijθj .

However, we can also take linear combinations in the log-

probability domain. Exponential family PCA (EPCA) rep-

resents an example of this class of models. In fact we

can think of EPCA exactly as a variational approximation

(again using point estimates) of a model with conditional

distributions in the exponential family and a flat (constant)

prior. Special cases include PCA as the variational approx-

imation of factor analysis (or probabilistic PCA)(Roweis,

1997) and the sparse coding algorithm of Olshausen and

Field (1997) is a variational approximation of ICA.

Exponential family harmoniums introduced by Welling

et al. (2004) can be understood as undirected proba-

bilistic models which linearly combine topics in the log-

probability domain. The undirected semantics of this

model has interesting consequences. Most importantly,

the latent variables are conditionally independent given

the data, and vice versa. This is in stark contrast to the

marginal independence of the latent variables in directed

models. The implication is that the mapping from input

space to latent space is given by a single matrix multiplica-

tion, possibly followed by a componentwise nonlinearity.

For applications such as information retrieval and object

recognition where speed if of the essence, this is a very

useful property. We note that harmoniums also generate

distributed latent representations.

An interesting explanation for the improved retrieval and

classification results using harmoniums was given in Xing

et al. (2005). These authors observe that harmoniums

mix their topics using a very different mechanism than

LDA. This has important consequences in particular for

low count values. If a word appears only once in a doc-

ument, LDA assumes a priori that this word is generated

by a single topic, an assumption not made by harmoniums.

In some sense, the simpler inference in harmoniums is

traded-off against more difficult learning due to the pres-

ence of an intractable normalization constant which de-

pends on the parameters of the model. However, harmo-

niums are designed to take advantage of contrastive diver-

gence learning (Hinton, 2002) which has shown to be an

efficient algorithm that scales well to large problems.
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Figure 1. Markov random field representation of the RAP model.

Top-layer nodes represent binomial hidden variables h while

bottom-layer nodes represent Poisson visible variables x.

2. The Rate Adapting Poisson Model

The rate adapting Poisson (RAP) model follows the general

architecture of an exponential family harmonium (Welling

et al., 2004). The RAP model is different from the

“undirected probabilistic latent semantic indexing” (UP-

LSI) model presented in Welling et al. (2004) which uses

a multinomial conditional distribution over the observed

variables. This results in a large array W j
ia of coupling

parameters between topics and observed variables with a

separate entry for every count-level a. This fact renders

that model only practical for observations with very few

states (e.g. binary). The RAP model is more economical

in its use of parameters, coupling topics to counts using a

conditional Poisson distribution involving a single matrix

Wij . This change has made the experiments in section 3

and 4 possible.

2.1. RAP: Generative Model

A harmonium can be specified by writing down two con-

sistent conditional distributions in the exponential family.

For RAP, we use conditional Poisson distributions for the

observed count data and conditional binomial distributions

for the latent topic variables,

p(x|h) =
∏

i Poisxi
[log(λi) +

∑

j Wijhj ] (1)

p(h|x) =
∏

j Binhj
[σ(log(

pj

1−pj
) +

∑

i Wijxi); Mj ] (2)

where σ(x) = 1/(1+e−x) is the sigmoid function, λi is the

mean rate of the conditional Poisson distribution for word

i, pj is the “probability of success” and Mj the total num-

ber of “samples” for the conditional binomial distribution

for topic j, x is the count vector, h a discrete topic vector

and W the interaction between topics and counts. From

these equations it can be seen that the value of the variables

of the opposite layer shift the canonical parameters of the

variables in the layer under consideration. It is due to this

behavior that we named the model “rate adapting”. Note

also that all variables are conditionally independent given

values for the variables in the opposite layer.

These two conditional distributions are consistent with the

joint distribution over {x,h} defined through p(x,h) =
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Figure 2. Factor graph representation of the marginalized RAP

model. Square boxes indicate word and topic factors.

exp[f(x,h)]/Z with

f(x,h) =
∑

i

log(λi)xi − log(xi!)

+
∑

j

log(
pj

1− pj

)hj − log(hj !)− log((Mj − hj)!)

+
∑

ij

Wijxihj (3)

where we have not written any terms that do not explicitly

depend on a random variable. The two-layer undirected

architecture of this model is shown in figure 1.

Samples from the model can be obtained efficiently by

Gibbs sampling because all variables in a layer can be sam-

pled in parallel given the values for the variables of the op-

posite layer and vice versa.

To find the most likely variable assignments one can locate

modes of the distribution by iterating the equations,

xmode
i = bexp(log(λi) +

∑

j

Wijhj)c (4)

hmode
j = b(Mj + 1)σ(log(

pj

1− pj

) +
∑

i

Wijxi)c(5)

The RAP model can also be represented as a factor graph

(see figure 2) by marginalizing out the latent variables,

p(x) ∝ exp[
∑

i

(log(λi)xi − log(xi!))+

∑

j

Mj log(1 + exp(
∑

i

Wijxi − βj))] (6)

where we have abbreviated βj = − log[pj/(1 − pj)].
We can read out the word-factors from this expression as

Fi(xi) = λxi

i /xi! for each variable and the topic-factors

Fj(x) = exp(Mj log(1 + exp(
∑

i Wijxi − βj))) . Note

that the factors Fj(x) are functions of all the variables x

jointly. The nonlinearity for a topic-factor in the log do-

main is precisely given by the “hinge function” (see figure

3). Hence, a topic factor does not contribute to the proba-

bility distribution (i.e. Fj(x) = 1) if the input count vector

x is not well aligned with the topic vector wj = {Wi}j . A

threshold βj determines what it means to be “well aligned”:
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Figure 3. Hinge nonlinearity

if wT
j x � βj then the factor does not contribute. On the

other hand, if wT
j x� βj then the hinge function is linear,

and hence those factors modulate the log Poisson rate λi as

follows,

log(λi)← log(λi) +
∑

j

I(
∑

i

Wijxi > βj) MjWij (7)

where I(·) is the indicator function. Clearly, this is an ap-

proximation because there is in fact a soft transition be-

tween the two regimes of the hinge function1. However,

it clarifies the role of the weight matrix as a collection of

topic vectors that form a new low dimensional basis for the

latent representation. Count vectors get mapped into la-

tent topic space by computing its coordinates in this basis

as h̃ = Wx. The thresholds β then decide on the neces-

sary magnitude of these coordinates before they will have

an impact on the Poisson rates. We note that there are in

fact 2K (with K the total number of topics) different ways

to modulate the log Poisson rates because there are 2K sub-

sets of {1, ..., K}. Empirically we have found that the best

performance in terms of retrieval and classification is ob-

tained when the angle between latent coordinates is used as

a measure of similarity: K(xn,xm) = cos(h̃T
n h̃m). This

is not surprising as we expect that the length of a document

roughly scales the count vector linearly assuming its topical

content does not change.

2.2. RAP: Invariant Transformations

The marginal distribution p(x) in equation (6) is given as

a product of factors where each factor follows the general

form log(1 + ez). It is not hard to check that the follow-

ing identity holds, log(1 + ez) = z + log(1 + e−z) which

has the consequence that we can change parameters with-

out affecting the model. In other words, the parameters are

not identifiable in the current parameterization. If we de-

fine an arbitrary subset S of the integers {1, ..., K}, then

the following transformations, when executed jointly, do

1This approximation is expected to be accurate when all pa-
rameter values {W, β} are large.
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not change the RAP model,

log(λi)→ log(λi) +
∑

j∈S

MjWij (8)

Wij → −Wij βj → −βj j ∈ S. (9)

Fortunately, it is easy to fix the spurious degrees of freedom

by choosing for instance wT
j x > 0 ∀j or alternatively, fix-

ing the sign of βj , ∀j.

Going one step further, we can apply the transformation

only to half the hinge nonlinearity and obtain, log(1+ez) =
1

2
z+ 1

2
log(1+cosh(z))+ 1

2
log(2) where the constant term

is absorbed in the normalization and the linear term is ab-

sorbed in the variable factors Fi. The new topic factors,

F̃j =
√

1 + cosh(z), are now symmetric around z = 0
implying that large inner products w̃T

j x with either sign

(i.e. aligned or anti-aligned) result in a positive contribu-

tion of that factor to the probability of input x. We will

call this type of basis vectors {wj} “prototypes” in con-

trast to “constraints” which contribute positive probability

for an input x when it is approximately orthogonal to it:

wT
j x ≈ 0 (Welling et al., 2002).

2.3. RAP: Learning

Parameter learning for the RAP model is performed by

stochastic gradient ascent on the log-likelihood of the data.

For large redundant datasets it is more efficient to estimate

the required gradients on small batches rather than on the

entire dataset. This is true in particular in the initial phase

of learning where there is consensus among the data on how

to change the parameters. Towards convergence it is useful

to either increase the batch-size or decrease the stepsize in

order to reduce the variance of the stochastic optimization.

We have also included a momentum term to help speed up

convergence.

The derivatives of the log-likelihood of the RAP model are

easy to write down (but hard to calculate in practice due to

the intractable normalization constant),

δ log λi ∝ 〈xi〉p̃ − 〈xi〉pT
(10)

δβj ∝ −Mj [〈σ(wT
j x− βj)〉p̃ − 〈σ(wT

j x− βj)〉pT
]

δWij ∝Mj [〈xiσ(wT
j x− βj)〉p̃ − 〈xiσ(wT

j x− βj)〉pT
]

where p̃ denotes the empirical distribution2 and pT the

model distribution at the current values of the parame-

ters. Note that our estimate of the gradients of β and

W involves Rao-Blackwellisation over the latent variables.

Here we replace a sample average 1

N

∑N

n=1
f(hn) with

1

N

∑N

n=1
f(h)p(h|xn). This is guaranteed to reduce the

variance of our estimates (Casella & Robert, 1996).

2The average over the empirical distribution is simply given
by the sample average over the data-cases.

It is in particular the negative terms in these equations that

are hard to estimate. One approach is to run the Gibbs sam-

pler defined by equations (1) and (2). Note however that

at every iteration of learning we have to run this sampler

to equilibrium. Instead, we will follow the contrastive di-

vergence (CD) paradigm where for every data-case in the

batch we initialize a separate Gibbs sampler at that data-

case and run it for only a few steps. With p1 (i.e. T = 1 in

equation (10)) we will denote the Gibbs chain3 that sam-

ples: h0

n ∼ p(h|data-casen) → x1

n ∼ p(x|h0

n). CD-

learning simply boils down to obtaining samples from p1

through the above one-step Gibbs chain and computing

noisy estimates of the gradient through equation 10. The

averages in the first terms are again computed as sample

estimates of data-cases in the batch while the averages in

the second terms are computed as sample averages over the

samples from p1.

Although truncating the Markov chain will introduce a bias

in the estimates of the gradients, the final bias of the pa-

rameter estimates has been shown to be small empirically

for a number of applications (Carreira-Perpinan & Hinton,

2005). Moreover, the variance of the gradient estimates

and hence the variance of the final parameter estimates is

greatly reduced (albeit at the expense of introducing a bias).

Below a summary of the CD-learning algorithm as de-

scribed in the preceding text. We have also implemented

Algorithm 1 Contrastive Divergence Learning for RAP

Repeat until convergence:
1 For each data-case xn do:

1a Sample the hidden units given the data-case clamped to the
visible units from h

0
n ∼

Q

j
p(hjn|xn) using Eqn.(2).

1b Resample the data-case given the sampled values of the
hidden units from x

1
n ∼

Q

i
p(xin|h

0
n) given in Eqn.(1).

2 Compute the data averages and sample averages in
Eqn.(10) with T=1.

3 Perform gradient updates according to Eqn.(10) with T=1.

a mean field learning algorithm where Gibbs sampling up-

dates are replaced by mean field updates (Welling & Hin-

ton, 2001), but we found the results to be significantly in-

ferior to the sampling based algorithm.

3. Experiments: Document Retrieval

In this and the next section we describe how the latent

structure of the RAP model can be used for two different

tasks, namely document retrieval and object recognition4.

We compare its performance against two other latent vari-

3Note that sampling from the equilibrium distribution should
be denoted as p∞, i.e. T = ∞.

4Matlab code for training the RAP model and the prerpocessed
text data can be obtained from http://www.kyb.mpg.de/∼pgehler
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able models: PLSI and LSI. Performance of LDA has never

significantly surpassed PLSI (in fact we often found infe-

rior results) which is the reason we left them out.

In document retrieval the goal is to match a given query,

represented by a word count vector, with a subset of a

text corpus where the retrieved subset should resemble the

query as closely as possible. A latent variable model can

be turned into a document retrieval algorithm through the

following three steps: 1) estimate the parameters of the

model on a training corpus, 2) map all training and query

documents into the dimensionally reduced latent space, 3)

compute similarities between queries and training docu-

ments based on the latent representation, 4) retrieve the k
most similar training documents form the corpus for ev-

ery query. We have used the cosine similarity measure in

our experiments. One can also compute similarity in (tf-

idf reweighted) word space directly which we use in our

experiments as a baseline.

3.1. Text Corpora

In these experiments we used three well known datasets:

Reuters-21578, Ohsumed, and 20-Newsgroups5. We use

the BOW package and its front-end RAINBOW to pre-

process the data (McCallum, 1996). All documents were

stemmed with the Porter stemmer, a list of stop-words and

all words with less than three characters were removed.

Additionally, for the Reuters and Ohsumed datasets all

words were removed which occur only once in the train-

ing data or in only a single training document. For the

20-Newsgroups dataset the 10000 words with highest av-

erage mutual information with the class variable were ex-

tracted. This preprocessing left the Newsgroup dataset

with 10000 words, 18798 documents and 20 classes, and

the Reuters dataset with 12317 words, 15437 documents

and 91 classes (we also used another split of the data with

115 classes but found very similar results). The Ohsumed

dataset consists of 30689 words, 34389 documents and 23

classes where each data-point might belong to more than

one class. The corpus was split into a training set and a test

set whose items are used as query documents during the

performance evaluation. For the Reuters dataset the prede-

fined ModApte split of the data into 11413 train and 4024

test documents was used. Ohsumed is split in 33% test and

67% training data while in the newsgroup corpus we held

out 10% for testing purposes.

5These corpora are available from http://ai-
nlp.info.uniroma2.it/moschitti/corpora.htm. The original
sources and specifics concerning these sets can be found on this
site and are omitted here for brevity.
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Figure 4. RPC plot on a log-scale of the 20 Newsgroups dataset

for various models. As a baseline the retrieval results with tf-

idf reweighed word-counts are shown. Number of topics for each

model was chosen by optimizing 1-NN classification performance

on the test set corresponding to the average precision for retriev-

ing a single document (left most marker).

3.2. Results

Learning of the RAP model was done with a small learning

rate and a momentum term in 200k iterations using mini-

batches of 100 training samples per iteration. The latent

representation of any document x is then computed by a

matrix multiplication Wx. LSI is computed by perform-

ing a SVD decomposition on the tf-idf 6 reweighed word

counts. PLSI models are trained using the tempered version

of the EM algorithm (Hofmann, 1999). 10% of the training

data was held out for validation purposes and the temper-

ature parameter β is initialized at 1 and whenever the log-

likelihood on the validation data decreases β is decreased

about .025 until no more improvement was observed. The

latent representation is defined by the posterior distribution

over the topics z: P (z|d). For a query document q, P (z|q)
was computed using 25 iterations of the folding-in heuristic

(Hofmann, 1999). For comparison we also show the base-

line results which are obtained by computing the similarity

of tf-idf reweighed documents in word space. As perfor-

mance measure we use the recall precision curve (RPC)

where

Recall =
#(correctly retrieved documents)

#(relevant documents in the corpus)
(11)

Precision =
#(correctly retrieved documents)

#(retrieved documents)
. (12)

For a given test document, all training documents were

ranked in terms of their cosine similarity. Then recall

and precision values were computed for 1, 2, 4, 8, 16 . . . re-

6tf-idf(d, w) = n(d,w)
P

w′ n(d,w′)
log2

h

#docs in the corpus
#docs with word w

i

,

where n(d, w) are the occurrences of word w in document d
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Figure 5. Same as figure 4 for Ohsumed dataset.
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Figure 6. Same as Figure 4 for the Reuters dataset.

trieved documents. The RPC curves of all models are plot-

ted in Figures 4, 5 and 6, where the recall and precision

values are averaged over the entire test-set. In figure 7 we

show the “area under the RPC” (AUC) as a function of the

number of topics.

The leftmost point on an RPC, i.e. the average precision

for retrieving a single document, corresponds to the 1-NN

classification performance using the cosine distance. The

latent dimensionality of the models shown in the plots were

selected to be the best according to this measure, where we

scanned the number of topics from 25 to 250 at increments

of 25. The RAP model yields the best retrieval performance

on all datasets in terms of AUC, and scores only slightly

worse than LSI on Ohsumed in terms of 1-NN classification

performance. According to figure 7 the RAP model also

seems to suffer less from overfitting as the number of topics

increases.
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Figure 7. Area under the RPC as a function of the latent dimen-

sionality on the Reuters dataset.

4. Experiments: Object Recognition

Latent models have recently been applied to both ob-

ject (Fergus et al., 2005) and scene (Li & Perona, 2005)

recognition. In this section we compare the performance of

the RAP model in the visual object recognition domain. We

followed these steps in our visual experiments: (1) interest

point detection and extraction, (2) vocabulary generation,

(3) latent analysis, (4) kernel classification on latent repre-

sentations. We briefly describe these steps below.

Images were initially normalized to be the same size. In-

teresting regions of images (interest points) were detected

using three different feature detectors: multi-scale Harris,

multi-scale Hessian, and entropy-based (Kadir & Brady,

2001). Grey-scale patches were extracted from images

based on both the scale and location indicated by the differ-

ent interest point detectors. All patches from all detectors

were intensity normalized and resized to 13 × 13 and sub-

sequently converted into vectors. We performed K-means

clustering on the patches in order to discretize feature space

and create a visual vocabulary of words. The number of

clusters was left as a free parameter of the system and typ-

ically varied from 100− 300. Each image contains a set of

interest point detections. An interest point was assigned to

the visual cluster (word) closest in a Euclidean sense to that

feature. The cumulative counts over all clusters were used

as feature vectors to represent each image, such that each

image was represented by a vector of dimensionality equal

to the size of the visual vocabulary. Similar to the document

experiments described above, we are not utilizing any spa-

tial information between the extracted patches. We com-

pared the performance of three different latent algorithms

described above: LSI, PLSI and RAP. The latent represen-

tations for each image were used to train SVM classifiers

using the LIBSVM7 package with a linear kernel. Ten-

7Available at: www.csie.ntu.edu.tw/∼cjlin/libsvm/.
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Figure 8. Example images used for the object recognition experi-

ments. (Top Row) Example images from the Caltech4. Classes:

Airplanes, Motorcycles, Faces, Leopards. (Bottom Two Rows)

Example images of four random classes from the Caltech101.

Two images of each class shown to give an indication of the within

class variance. Classes: Budha, Chair, Watch, Brain. Note that the

Caltech101 includes the Caltech4 classes.

fold cross-validation was used to find the optimal values

of the SVM hyper-parameters. We used a one-vs-one train-

ing paradigm for the multi-class datasets. Feature dimen-

sions were normalized to zero variance and unit standard

deviation. We conducted experiments on both the Caltech4

and the challenging Caltech101 datasets (figure 8 illus-

trates representative examples of some categories). These

datasets can be found at: www.vision.caltech.edu/html-

files/archive.html. The Caltech4 contains a total of 4 ob-

ject categories and is regarded to be relatively easy to clas-

sify due to stereotyped poses and drastic visual dissimilar-

ity between classes. The Caltech101 contains a total of

101 object categories and is more challenging due to the

sheer number of object categories. 15 training images and

a maximum of 50 testing images were used for all experi-

ments. For the Caltech101, the class “Faces-Easy” was re-

moved. Performance results reported correspond to the av-

erage classification performance across all categories. Fig-

ures 9, 10 and 11 show comparisons between RAP and

LSI/PLSI. Error bars are not shown because the variation

from one split of the data to another was larger than the

variation between models. Instead we used the two-sided

paired sign test to determine whether the median difference

in performance is significantly different from zero at a level

of α = 0.05. We conclude that almost always RAP signifi-

cantly outperforms LSI and PLSI.

5. Discussion

The experiments provide clear evidence for the claim that

harmonium models, and in particular RAP, can be effi-

ciently and successfully trained on relatively large datasets.
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Figure 9. Caltech4 performance comparison. All experiments av-

eraged 35 times. Baseline (chance) performance is 25%. Plot-

ted is the test performance as a function of the number of latent

dimensions with 125 clusters and using a linear kernel. Perfor-

mance differences between RAP and PLSI/LSI were significant

for all numbers of latent dimensions (p < 0.05).

Relative to popular existing methods such as LSI and PLSI

the latent representations generated by RAP are superior

in two application domains: document retrieval and ob-

ject classification. Moreover, mapping test-data into latent

space is orders of magnitude faster for RAP (through a sim-

ple matrix multiplication) than for PLSI (through the itera-

tive “folding-in” heuristic).

A natural next step is to train hierarchical models. Depen-

dencies between topics are then modelled with a new layer

of “meta-topics”. Initial experiments in this direction have

not shown improved retrieval or classification performance.

However, recent work by (Hinton et al., 2006) indicates that

deep hierarchies can be a promising direction for improve-

ment.

The choice of a conditional Poisson distribution may not be

optimal due to the effect that words that have been used al-

ready become more likely to be used than others, i.e. their

frequency grows with document length. This calls for dis-

tributions with longer tails such as the negative-Binomial

distribution (Airoldi et al., 2005). The Poisson distribu-

tion in RAP can be easily interchanged with a negative-

Binomial incorporating this effect.

A Bayesian approach for harmonium models seems an im-

portant topic for future investigation.
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Figure 10. Same experiment as in figure 9 but plotting perfor-

mance as a function of the size of the vocabulary using 35 la-

tent dimensions. Performance differences between RAP and

PLSI/LSI were significant for vocabulary sizes (p < 0.05).
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Figure 11. Caltech101 performance comparisons using 250 clus-

ters. All experiments averaged 7 times. Baseline (chance) perfor-

mance is 1% for this task. Same plot as in figure 9. Performance

differences between RAP and PLSI were significant for 75 and

125 latent dimensions (p < 0.05).
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