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Abstract

The presence of occluders significantly impacts perfor-
mance of systems for object recognition. However, occlu-
sion is typically treated as an unstructured source of noise
and explicit models for occluders have lagged behind those
for object appearance and shape. In this paper we describe
a hierarchical deformable part model for face detection and
keypoint localization that explicitly models occlusions of
parts. The proposed model structure makes it possible to
augment positive training data with large numbers of syn-
thetically occluded instances. This allows us to easily in-
corporate the statistics of occlusion patterns in a discrimi-
natively trained model. We test the model on several bench-
marks for keypoint localization including challenging sets
featuring significant occlusion. We find that the addition
of an explicit model of occlusion yields a system that out-
performs existing approaches in keypoint localization accu-
racy.

1. Introduction

Accurate localization of detailed facial features provides
an important building block for many applications includ-
ing identification [3] and analysis of facial expressions [17].
Significant progress has been made in this task, aided in part
by the fact that faces have less intra-category shape varia-
tion and limited articulation compared to other object cate-
gories of interest. However, feature point localization tends
to break down when applied to faces in real scenes where
other objects in the scene (hair, sunglasses, other people)
are likely to occlude parts of the face. Fig. 1(a) depicts the
output of a deformable template model [28] where the pres-
ence of occluders distorts the final alignment of the model.
In this paper we propose a model that explicitly models oc-
cluded features in order to produce superior localization re-
sults (Fig. 1(b)).

A standard approach to handling occlusion in part-based
models is to compete part feature scores against a generic

(a) (b)
Figure 1. (a) A standard deformable part model [28] is distorted
by the presence of occluders, disrupting localization even for parts
that are far from the site of occlusion. (b) The output of our hier-
archical part model explicitly models likely patterns of occlusion
and improves localization as well as predicting which keypoints
are occluded.

background model or fixed threshold. However, setting
such thresholds is fraught with difficulty since it is difficult
to distinguish between parts that are present but simply hard
to detect (e.g., due to unusual lighting) and those which are
genuinely hidden behind another object.

We believe that treating occlusions as an unstructured
source of noise ignores a key aspect of the problem, namely
that occlusions are induced by other objects and surfaces in
the scene and hence should exhibit occlusion coherence.
For example, it would seem very unlikely that every-other
keypoint along an object’s contours should be occluded. Yet
many occlusion models make strong independence assump-
tions about occlusion that make it difficult to distinguish a
priori likely from unlikely patterns. Furthermore, an oc-
cluder should not be inferred simply by the lack of evidence
for object features, but rather by positive evidence for the
occluding object that explains away the lack of object fea-
tures.
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The contribution of this paper is an efficient hierarchical
deformable model that encodes these principles for model-
ing occlusion and achieves state-of-the-art performance on
benchmarks for occluded face localization. The model de-
scribes the face by an arrangement of parts, each of which is
in turn composed of local keypoint features. This two-layer
model provides a compact, discriminative representation for
the appearance and deformations of parts and the correla-
tion between shapes of neighboring parts. In addition to
representing the face shape, each part has an associated oc-
clusion state chosen from a small set of possible occlusion
patterns, enforcing coherence across neighboring keypoints
and providing a sparse representation of the occluder shape
where it intersects the part.

Specifying training data from which to learn feasible
occlusion poses difficulties of its own. Practically speak-
ing, existing datasets have focused primarily on fully visi-
ble faces. Moreover, it seems unlikely that any reasonable
sized set of training images would serve to densely probe
the space of possible occlusions. Beyond certain weak con-
textual constraints, the location and identity of the occluder
itself are arbitrary and largely independent of the occluded
object. To overcome this difficulty of training data, we
propose a unique approach for generating synthetically oc-
cluded positive training examples. By exploiting the struc-
tural assumptions built into our model, we are able to in-
clude such examples as “virtual training data” without ex-
plicitly synthesizing new images.

2. Related Work
Landmark Localization: There is a huge literature on

model alignment for facial landmark estimation. Classic
approaches to 2D alignment include Deformable Templates
[26], Active Appearance Models (AAMs) [6, 18, 19] and
elastic graph matching [24]. Alignment with full 3D mod-
els provides even richer information [14, 3] at the cost of
additional computation. One key difficulty in most of these
approaches is the need to resort to iterative and local search
techniques for optimizing model alignment. This typically
results in high computational cost and the constant specter
of local minima undermining system performance.

A more recent family of approaches makes use of con-
strained local models that detect candidate local features
and then enforce constraints between parts [2]. Training
regressors that learn to predict keypoint locations from ap-
pearance and other detector responses has also shown good
performance [22, 9, 4, 5, 8]. A key advantage is that such
regression models can be trained layer-wise in a discrimi-
native fashion and thus sidestep the optimization problems
of global model alignment as well as providing fast, feed-
forward performance at test time.

Our model is most closely related to the recent work of
[28] which applies discriminatively trained deformable part

models (DPM) [10] to face analysis. This offers an inter-
mediate between the extremes of model alignment and key-
point regression, by utilizing mixtures of simplified shape
models that make efficient global optimization of part place-
ments feasible while exploiting discriminative training cri-
teria. Similar to [25], we use local part and keypoint mix-
tures to encode richer multi-modal distributions. The key
difference in our model is the addition of hierarchical struc-
ture and occlusion to the model. We introduce intermediate
part nodes that do not have an associated “root template”
but instead serve to encode an intermediate representation
of occlusion and shape state. The notion of hierarchical part
models has been explored (e.g., [27, 12]) as a tool for com-
positional representations and parameter sharing. Interme-
diate state represented in such models can often be formally
encoded in a non-hierarchical model with expanded state
space. However, in our experiments the particular choice of
model structure proves essential to efficient representation
and inference.

Occlusion Modeling: Modeling part-level occlusion is
a natural fit for recognition systems with an explicit repre-
sentation of parts. Work on generative constellation mod-
els [23, 11] learned parameters of a full joint distribution
over the probability of part occlusion and relied on brute
force enumeration for inference, a strategy that doesn’t
scale to large numbers of keypoints. More commonly, part
occlusions are treated independently which makes compu-
tation and representation more efficient. For example, the
supervised detection model of [1] adds independent binary
variables indicating occlusion of a part and learns a cor-
responding extra template. [12] imposes more structured
distribution on the possible occlusion patterns by specify-
ing grammar that generates a person detector as a variable
length vertical chain of parts terminated by an occluder. Our
approach provides a stronger model than full independence
and has an advantage over the grammar approach that the
occlusion patterns are not specified structurally but instead
learned from data and encoded in the model weights.

Regression-based approaches have also incorporated oc-
clusion. For example, the face model of [21] uses a robust
m-estimator which serves to truncate part responses that fall
below a certain threshold. We compare our results to the
recent work of [4] which uses occlusion annotations when
training a cascade of regressors where each layer predicts
both part locations and occlusion states.

3. Hierarchical Part Model
Fig. 2 shows the model structure. The model has two

layers with the face consisting of a collection of parts (nose,
eyes, lips) each of which is in turn composed of a num-
ber of keypoints capturing the local edge features making
up that part. All keypoints are connected to the part node
with a star topology while the parts form a tree. In addition



Figure 2. Our model consists of a tree of parts (black circles) each of which is connected to a set of keypoints (green or red) in a star
topology. The examples here show templates corresponding to different choices of part shape and occlusion patterns. Red indicate
occluded keypoints. Shape parameters are independent of occlusion state. Keypoint appearance is modeled with a small HOG template
(2nd row) and occluded keypoints are constrained to have an appearance template fixed to 0. Note how the model produces a wide range
of plausible shape configurations and occlusion patterns.

to location, each part takes one of a discrete set of shape
states (corresponding to, e.g., different facial expressions)
and occlusion states (corresponding to different patterns of
occlusion). The grouping of facial features into parts was
specified by hand while the shape and occlusion patterns
are learned automatically from training data. This model,
which we term a hierarchical part model (HPM) is simi-
lar to the DPM [10] and the flexible part model of [28]. It
differs in the addition of part nodes that don’t include any
“root filter” and the use of mixtures to model occlusion pat-
terns. In this section we introduce some formal notation to
describe the model and some important algorithmic details
for making the message passing used during inference ef-
ficient. In the following section we describe the details of
training the model.

Model Structure: Let l, s, o denote the hypothesized lo-
cations, shape and occlusion of the face parts and keypoints.
We define a tree structured scoring function by:

S(l, s, o) =
∑
i

φi(li, si, oi) (1)

+
∑
i

∑
j∈child(i)

ψij(si, sj , li, lj) + bij(si, sj , oi, oj)

where the potential φ encodes local appearance at location
li, and ψ is a quadratic shape/deformation penalty, and b is
a co-occurrence bias.

The first (unary) term scores the appearance evidence.
We linearly parameterize the unary appearance term with
weights wi where

φi(li, si, oi) = wsii · φ(li, oi)

Appearance templates are only associated with the leaves
(keypoints) in the model so the unary term only sums over

those leaf nodes. The occlusion variables oi for the key-
points are binary, corresponding to either occluded or visi-
ble. If the ith keypoint is unoccluded, the appearance fea-
ture φ is given by a HOG [7] feature extracted at location li,
otherwise the feature is set to 0. This is natural on theoreti-
cal grounds since the appearance of the occluder is arbitrary
and hence indistinguishable from background. Empirically
we find that unconstrained occluder templates learned with
sufficiently varied data do in fact have very small norms,
further justifying this choice.

The second (pairwise) term in Eq. 1 scores the place-
ment part j based on its location relative to its parent i. We
parameterize this linearly

ψij(si, sj , li, lj) = w
si,sj
ij · ψ(li − lj)

where the feature ψ includes the x and y displacements and
their cross-terms, allowing the weightswij to encode a stan-
dard quadratic “spring”. We assume that the shape of the
parts is independent of any occluder so the spring weights
do not depend on the occlusion states. The pairwise pa-
rameter bij encodes a bias of particular occlusion patterns
and shapes to co-occur. Each keypoint has two occlusion
states and as many shape mixtures as its parent part, but the
bias parameters learned between the part and its constituent
keypoints are constrained to enforce a hard, 1-1 mapping
between the mixture states of keypoints and parts.

Message Passing: The model above can be made for-
mally equivalent to the FMP model used in [25] by intro-
ducing local mixture variables that live in the cross-product
space of oi and si. However, this reduction fails to exploit
the structure of occlusion model. This is particularly impor-
tant due to the large size of the model. Naive inference is
quite slow due to the large number of keypoints and parts
(N=78), and huge state space for each node which includes
location, occlusion pattern and shape mixtures. Consider



the message passed from one part to another where each
part has L possible locations, S shape mixtures and O oc-
clusion patterns. In general this requires minimizing over
functions of size (LSO)2 or L(SO)2 when using the dis-
tance transform. In the models we test, SO = 27 which
poses a substantial computation and memory cost, particu-
larly for high-resolution images where L is large.

While the factorization of shape and occlusion doesn’t
change the asymptotic complexity, we can reduce the run-
time in practice by exploiting distributivity of the distance
transform over max to share computations.

Standard message passing requires that we compute:

µj→i(li, si, oi) = max
sj ,lj ,oj

[
ψij(li, lj , si, sj)

+
∑

k∈child(j)

µk→j(lj , sj , oj) + bij(si, sj , oi, oj)

]

We can move the maximization over occlusion patterns of
part j inward, carrying out the computation in two steps:

νij(lj , si, sj , oi) =

max
oj

 ∑
k∈child(j)

µk→j(lj , sj , oj) + bij(si, sj , oi, oj)


µj→i(li, si, oi) = max

sj ,lj
[ψij(si, sj , li, lj) + νij(lj , si, sj , oi)]

The second equation requires computing a distance trans-
form for each value of si, sj and oi but is independent of
oj .

We also note that the keypoint occlusion and shape vari-
ables are determined completely by the parent part state
which further simplifies the messages from keypoints to
parts.

µk→j(lj , sj , oj) =

{
0 if k occluded in oj
maxlk ψjk(lj , lk, sj) + φk(lk, sj)

Since the score is known for an occluded keypoint in ad-
vance, it is not necessary to compute distance transforms for
those components. In our models, this reduces the memory
and inference time by roughly a factor of 2. This savings
becomes increasingly significant as the number of occlu-
sion mixtures grows.

4. Model Training and Inference
The potentials in our shape model are linearly param-

eterized, allowing efficient training using a standard SVM
objective [10]. Face viewpoint, keypoint locations, shape
and occlusion mixtures are completely specified by pre-
clustering the training data so parameter learning is fully su-
pervised. In this section we describe how these supervised

Figure 3. Virtual positive examples are generated synthetically by
sampling random coherent occlusions from a given fully visible
training example.

labels are derived and how we synthesize “virtual” positive
training examples that include additional occlusion.

Viewpoint Mixtures: Viewpoint and scale are the
largest sources of variability affecting the keypoint config-
urations. To cluster viewpoints in training data, we made
use of the MultiPIE dataset which provides ground-truth
viewpoint annotations. We perform Procrustes alignment
between each training example and examples in the Mul-
tiPIE database and then transfer the viewpoint label from
MultiPIE to the training example. This alignment also pro-
vides a standard scale normalization and removes in-plane
rotations from the training set. In our experiments we used
only three viewpoint clusters: center (+/-7.5 degrees), left,
and right-facing (7.5-22.5 degrees).

Part Shape and Occlusion Mixtures: For each part and
each viewpoint, we cluster the set of keypoint configura-
tions in the training data in order to come up with a small
number of shape mixtures for that part. The part shapes
in the final model are represented by displacements relative
to a parent node so we subtract off the centroid of the part
keypoints from each training example prior to clustering.
The vectors containing the coordinates of the centered key-
points are clustered using k-means. We imagine it would be
efficient to allocate more mixtures to parts and viewpoints
that show greater variation in shape, but in the final model
tested here we use fixed allocation of k = 3 shape mixtures
per part per viewpoint. Fig. 4 shows example clusterings of
part shapes for the center view.

Synthetic Occlusion Patterns: In the model each key-
point is fully occluded or fully visible. The occlusion state
of a part describes the occlusion of all its constituent key-
points. If there are N keypoints then there are 2N possible
occlusion patterns. However, many of these occlusions are
quite unlikely (e.g. every other keypoint occluded) since
occlusion is typically generated by an occluder object with
a regular, compact shape.



To model spatial coherence among the keypoint occlu-
sions, we synthetically generate “valid” occlusions patterns
by first sampling mean part and keypoint locations from the
model and then randomly sampling a quarter-plane shaped
occluder and setting as occluded those keypoints that fall
behind the occluder. Let a, b be uniformly sampled from a
tight box surrounding the face. A keypoint i with location
li = (x, y) is occluded if (±x ≶ a) ∩ (±y ≶ b) where the
quadrant is chosen at random. While our occluder is some-
what “boring”, it is straightforward to incorporate more in-
teresting shapes, e.g., by sampling from a database of seg-
mented objects. Fig. 3 shows example occlusions generated
for a training example.

In our experiments we generate 4 synthetically occluded
examples for each original training example. For each part
in the model we cluster the set of resulting binary vectors
in order to generate a list of valid part occlusion patterns.
The occlusion state for each keypoint in a training example
is then set to be consistent with the assigned part occlu-
sion pattern. In our experiments we utilized only k = 3
occlusion mixtures per part, typically corresponding to un-
occluded and two half occluded states whose structure de-
pended on the part shape and location within the face.

In-plane Rotation: In our experiments, we observed
that part models with standard quadratic spring costs are
surprisingly sensitive to in-plane rotation. Models that per-
formed well on images with controlled acquisition (such as
MultiPIE) fared poorly “in the wild” when faces were tilted.
The alignment procedure above removes scale and in-plane
rotations from the set of training examples. At test time
detection, we perform an explicit search over scale and in
plane rotations (+/-30 degrees).

Landmark Prediction: To benchmark keypoint local-
ization in datasets which used different landmark points,
we used linear regression to learn a mapping from the set
of locations returned by our hierarchical part model. In
our experiments, this prediction was important to accurately
benchmarking localization performance. Using a heuristic
approach of simply taking the closest keypoint reported (or
the mean of the eye keypoints in the case of the LFPW29
eye center keypoint) performed significantly worse, in some
cases doubling failure rates.

Let li ∈ R2N be the vector of keypoint locations re-
turned when running the model on a training example i and
l̂ ∈ R2M a vector of ground-truth keypoint location for that
image. We train a linear regressor

min
β

∑
i

‖l̂i − βT li‖2 + λ‖β‖2

where β ∈ R2N×2M is the matrix of learned coefficients
and λ is a regularization parameter. To prevent overfitting,
we restrict βpq to be zero unless the keypoint p belongs to
the same part as q.

Figure 4. Example shape clusters for face parts (nose, upper lip,
lower lip). Co-occurrence biases for combinations of part shapes
are learned automatically from training data. Different colored
points correspond to location of each keypoint relative to the part
(centroid).

To predict keypoint occlusion, we carried out a simi-
lar mapping procedure using regularized logistic regression.
However, we found that in practice a much simpler rule of
specifying a correspondence between the two sets of key-
points based on their distance and transferring the occlu-
sion flag from the model to benchmark keypoints achieved
the same accuracy.

5. Experimental Evaluation

We evaluate performance of our method and related
baselines on three benchmark datasets for localization: La-
beled Face Parts in the Wild (LFPW) [15], a subset of
the HELEN dataset [16] which contained occlusions, and
the more difficult Caltech Occluded Faces in the Wild
(COFW) [4] dataset. The latter two datasets were selected
to highlight the performance of our model in the presence of
occlusion and a wider variety of poses. The authors of [4]
estimate that LFPW only contains 2% occluded keypoints
compared to 23% for COFW.

Evaluation: There is a variety of keypoint annotation
conventions across these different datasets. LFPW and
COFW contain a set of 29 landmarks while HELEN in-
cludes a much denser set of 194 landmarks. The 300 Faces
in-the-wild Challenge (300-W) [20] has also produced sev-
eral unified benchmarks in which the LFPW and HELEN
datasets have been re-annotated with a set of 68 standard
keypoints. For the purposes of benchmarking, and to allow
easy comparison to previously reported work, we utilize the
29 keypoints for the LFPW and COFW datasets and the 68
keypoints for HELEN.

To evaluate keypoint localization independent of detec-
tion accuracy, we assume that detection has already been
performed and run the algorithm on cropped versions of the
test images. We evaluate localization for the highest scoring
detection that overlaps the ground-truth face bounding box
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Figure 5. Cumulative error distribution curves for landmark localization show the proportion of test images that have average localization
error below a given threshold on LFPW, an occlusion rich subset of HELEN and on COFW. We compare the hierarchical part model (HPM)
with and without occlusion mixtures to a baseline tree-structured DPM [28] and robust pose regression (RCPR) [4] trained on different
training sets (in parentheses). Models tested on Occluded HELEN were all trained on LFPW68. The legend reports the failure rate % at a
localization threshold of 0.1 and the average error (in brackets). The HPM shows good localization, especially in the presence of occlusion
and robust cross-dataset generalization.

by at least 80%.
We report the average keypoint localization error across

the entire test set as well as the proportion of “failures”, test
images that had average keypoint localization above a given
threshold. Distances used in both quantities are expressed
as a proportion of the inter-ocular (iod) distance specified by
the ground-truth. Computing the failure rate across a range
thresholds yields a cumulative error distribution curve (Fig.
5). When a single summary number is required we report
the failure rate at a standard threshold of 0.1 iod.

Training: To train our model, we used a set of 682 near-
frontal training images taken from LFPW using the 68 key-
point annotations provided by 300-W. From each training
image we generate 4 synthetically occluded “virtual pos-
itives” yielding a final training set of 3410 positives. As
mentioned previously, since we explicitly search over in-
plane rotations and scales, standardize the pose of each
training image prior to learning the model. To evaluate
cross-dataset generalization, we also trained a version of
our model on a portion the HELEN dataset consisting of
1758 frontal images annotated with 68 keypoints. To fit lin-
ear regression coefficients for mapping from the HPM and
DPM predicted keypoint locations we ran the model on the
COFW training data set which has 29 keypoint annotations.

For comparison, we trained baseline models including
a version of our model without occlusion mixtures (HPM-
occ) and the non-hierarchical part model (DPM) described
by [28]. 1 We also evaluate the robust pose regression
(RCPR) described in [4] and their implementation of ex-
plicit shape regression [5] using both pre-trained models

1The original DPM model of [28] was trained on the very constrained
MultiPIE dataset [13]. Retraining the model and performing a simi-
lar search over in-plane rotations yielded significantly better performance
which we report here. (c.f. [4])

provided by the authors and models retrained to predict 68
keypoints.

5.1. Localization
Fig. 6 depicts selected results of running our detector on

images from the HELEN and COFW test datasets. While
the possible occlusion patterns are quite limited (3 occlu-
sions per part shape), the final predicted occlusions (marked
in red) are quite satisfying in highlighting the support of the
occluder for many instances.

LFPW: Labeled Face Parts in the Wild (LFPW) [15], a
commonly used dataset for evaluating landmark estimation
consisting of 300 test images annotated with a standard set
of 29 keypoints. The original LFPW test set is no longer
completely available due to broken links, but we were able
to download 194 of the test images. Fig. 5(a) shows the
localization error distribution.

The HPM model achieves an average localization error
of 0.0507 with a failure rate of 1.58%. By comparison, the
DPM [28] has a higher average error 0.0558. Since there
is very little occlusion in this dataset, we attribute the im-
proved performance to the ability of the HPM to better cap-
ture the shape of facial features. This is verified by the sim-
ilar performance of HPM-occ. While the tree structure used
in [28] is optimal in the sense of Chow-Liu, the addition of
extra nodes and mixture components representing part-level
deformations yields a clear benefit in modeling shape.

The robust pose regression model of [4] performs ex-
ceedingly well on LFPW, particularly at high localization
accuracy. However, we note that the training set used is
slightly different (the RCPR model provided by the au-
thors was trained directly with 29 keypoint annotations and
boosts the training data to 2000 examples by introducing
perturbed versions). Interestingly, RCPR trained on the



COFW dataset performs much worse, suggesting some de-
gree of overfitting.

Occluded HELEN: We evaluated on a subset of the HE-
LEN dataset [16] consisting of 126 images which were se-
lected on the basis having some significant amount of oc-
clusion. HELEN generally includes more difficult images
than LFPW and our selected subset was harder still. These
test images contain 68 keypoint annotations so we evaluated
only models trained on LFPW68. We did not test HPM
(HELEN68) on this dataset as there was overlap between
training and testing images. Fig. 5(b) shows the error dis-
tribution. The HPM achieves an average error of 0.0875,
beating out the DPM baseline and pose regression. For very
small localization error thresholds (< 0.08) RCPR achieves
a lower failure rate.

COFW: Finally, we tested on the 507 image test set from
Caltech Occluded Faces in the Wild (COFW) [4] which
contains internet photos depicting a wide variety of more
difficult poses and includes a significant amount of occlu-
sion. Since COFW training only contains 29 keypoints, we
could not train the HPM model and instead evaluate models
trained on LFPW68 and HELEN68. Fig. 5(c) shows results
on COFW where HPM achieves a significantly lower aver-
age error than RCPR.

Occlusion Prediction: Since the COFW contains occlu-
sion annotations, we can also evaluate prediction accuracy
of occlusion on a per-keypoint basis. Our model outputs
a hard decision on the occlusion state, so we can’t easily
generate a precision-recall curve. However, at the trained
operating point, our model yields a precision of 80.8 and
a recall of 37.0. This appears to be within 1% of the best
precision-recall curves reported for RCPR in [4].

5.2. Detection
Pose regression requires good initialization provided by

a face detector to accurately locate keypoints. In contrast,
part-based models have the elegant advantage of performing
detection and localization simultaneously. We evaluated the
detection accuracy of the HPM model on the AFW dataset
introduced in [28]. Since our model trained on LFPW68
only contains near-frontal views, we evaluated on near-
frontal test images (+/-22.5 degrees). The model achieved
an average precision of AP=0.997, indistinguishable from
the DPM model performance with the same training and
test split. HPM-occ performed slightly worse at AP=0.986.

Since there is relatively little occlusion in AFW, we also
assembled a preliminary dataset for occluded face detec-
tion consisting of 61 images from Flickr containing 766 la-
beled faces. Of the faces in these images, 430 include some
amount of occlusion. On these occluded faces we see a
substantial boost in detection performance. HPM achieved
AP=0.682, while HPM-occ and DPM had average preci-
sions of 0.654 and 0.641 respectively. Fig. 6 shows example
detection results.

6. Discussion
Our experimental results demonstrate that adding coher-

ent occlusion and hierarchical structure allows for substan-
tial gains in performance for keypoint localization and de-
tection in part models. Our final HPM outperforms previ-
ously published results on the challenging COFW dataset
in terms of keypoint localization accuracy and shows robust
generalization across different training and test sets.

In comparing pose regression and part-based models,
there seem to be several interesting tradeoffs. In our exper-
iments, we see a general trend in which error distribution
curves for pose regression and part models cross, suggest-
ing that RCPR yields very accurate localization for a subset
of images relative to the HPM but fails for some other pro-
portion even at very large error thresholds. The run-time
of our model implementation built on dynamic program-
ming lags significantly behind those of regression-based,
feed-forward approaches. Our model takes∼30s to run on a
typical COFW image, roughly 100x slower than RCPR. On
the other hand, pose regression depends critically on hav-
ing good initialization while the part model approach can
be used for both simultaneous detection and localization.

Finally, we note that there are many avenues for future
work. Performance depends on the graphical independence
structure of the model which should ideally be learned from
data. While our model implicitly represents the pattern of
part occlusions, it does not integrate local image evidence
for the occluder itself. A natural extension would be to
add local filters which detect the presence of an occluding
contour between the occluded and non-occluded keypoints.
Such filters could be shared across parts to avoid increasing
too much the overall computation cost while moving closer
to our goal of explaining away missing object parts using
positive evidence of coherent occlusion.
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