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Abstract

Learning models for detecting and classifying object cate-
gories is a challenging problem in machine vision. While
discriminative approaches to learning and classification
have, in principle, superior performance, generative ap-
proaches provide many useful features, one of which is
the ability to naturally establish explicit correspondence
between model components and scene features – this, in
turn, allows for the handling of missing data and unsu-
pervised learning in clutter. We explore a hybrid gen-
erative/discriminative approach using ‘Fisher kernels’ [1]
which retains most of the desirable properties of generative
methods, while increasing the classification performance
through a discriminative setting. Furthermore, we demon-
strate how this kernel framework can be used to combine
different types of features and models into a single classi-
fier. Our experiments, conducted on a number of popular
benchmarks, show strong performance improvements over
the corresponding generative approach and are competitive
with the best results reported in the literature.

1 Introduction

Automatically detecting and classifying objects and object
categories in images is currently one of the most interesting,
useful, and difficult challenges for machine vision. Much
progress has been made during the past decade: most signif-
icantly in our ability to formulate models that capture the vi-
sual and geometrical statistics of natural objects, algorithms
that can quickly match these models to images, and learning
techniques that can estimate these models from training im-
ages with minimal supervision [2, 3, 4, 5, 6, 7, 8]. However,
significant challenges remain before we can match human
ability

One may divide all learning/classification methods into
two broad categories. Cally the label of the class andx the
data associated with that class which we can measure:gen-
erative approaches will estimate the joint probability den-
sity functionp(x, y) (or, equivalently,p(x|y) andp(y)) and

Figure 1: Schematic comparison of the generative and hybrid
approaches to learning discussed in this paper.

will classify usingp(y|x) which is obtained using Bayes’
rule. Conversely,discriminative approaches will estimate
p(y|x) (or, equivalently, a classification functiony = f(x))
directly from the data.

The prevailing wisdom amongst machine learning re-
searchers is that the discriminative approach is superior:
why bother learning the details of the models of different
classes if one can learn directly a simpler criterion for dis-
crimination [9]? Indeed, it has been shown that the asymp-
totic (in the number of training examples) error of discrim-
inative methods is lower than for generative ones [10]. Yet,
amongst machine vision researchers generative models re-
main popular [3, 4, 5, 6, 11, 12].

Generative approaches have a number of attractive prop-
erties. First, visual object recognition should be robust to
occlusion and missing features. Generative methods pro-
vide an intuitive solution to both of these problems by al-
lowing one to establish ‘correspondence’ between parts of
the model and features in the image. This can be accom-
plished by marginalizingp(x|y) over the missing features
and multiplying by the probability of the given pattern of
occlusion one may calculate a new pdfp(x′|y) for the ob-
served featuresx′ and generate a new classifier [4]. Second,
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collecting training examples is expensive in vision. Ng and
Jordan [10] demonstrated both analytically and experimen-
tally that in a 2-class setting the generative approach often
has better performance for small numbers of training exam-
ples, despite the asymptotic performance being worse. Fur-
thermore, there is some evidence that prior knowledge can
be useful [14] within a generative object recognition set-
ting, and generative models tend to easily allow for the in-
corporation of prior information. In addition, we ultimately
envision systems which can learn thousands of categories;
in this regime it is unlikely that we will be able to learn
discriminative classifiers by considering simultaneously all
the training data. It is therefore highly desirable to design
classifiers that can learn one category at a time: this is easy
in the generative setting and difficult in the discriminative
setting. Lastly, very few discriminative approaches have
been demonstrated that can learn from examples that con-
tain clutter and occlusion, while this is possible with gener-
ative approaches that make explicit hypotheses on the loca-
tion and structure of the ‘signal’ in the training examples.

Is it possible to develop hybrid approaches with the flex-
ibility of generative learning and the performance of dis-
criminative methods? Jaakkola and Haussler have recently
shown that one can transform a generative approach into
a discriminative one by using ‘Fisher kernels’ [1]. In this
paper we show that one can calculate Fisher kernels that
are applicable to visual recognition of object categories
and explore experimentally their properties on a number
of popular and challenging data-sets. Several other kernel-
based approaches have been suggested for object recogni-
tion [15, 16, 17], including Vasconcelos et al. [17] who
exploit a similar paradigm, using a Kullback-Leibler based
kernel and test on the COIL data-set.

In section 2 we review the idea of Fisher kernels. In
section 3 we develop our generative model and show how
Fisher kernels can be applied to these. In section 4 we
present experiments. We conclude with a discussion in sec-
tion 5.

2 Kernel Methods

For supervised learning problems such as regression and
classification, kernel methods have proven to be a very suc-
cessful methodology. As argued in the introduction, our
interest is incombininggenerative models with these pow-
erful discriminative tools for the purpose of object recogni-
tion. Recognizing that this is a classification task in essence,
we have chosen to use support vector machines (SVM) [9]
as our kernel machine.

The SVM (like all kernel methods) process the data in
the form of a kernel matrix (or Gram matrix) which rep-
resents a symmetric and positive definiten × n matrix of
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Figure 2:Performance comparison of various kernels on several
data-sets. The parameters used to train and test these models are
described in the experimental section. The polynomial kernel was
of degree 2. The y-axis indicates the classification performance,
note that the scale starts at90%. These results were averaged over
5 experiments. 100 train/test examples used.

similarities between all data-items. A simple way to con-
struct a valid kernel matrix is by defining a set of features,
φ(xi), and to define the kernel matrix as,

K(xi, xj) = φT (xi)φ(xj) (1)

The generative model will have its impact on the classi-
fier through the definition of these features. In particular,
we will follow [1] in using “Fisher scores” as our features.
Given a generative probabilistic model they can be extracted
as follows,

φ(xi) =
∂

∂θ
log p(xi|θMLE) (2)

whereθMLE is the maximum likelihood estimate of the pa-
rametersθ. The value ofθMLE is determined by balancing
the Fisher scores,

∑

i

∂

∂θ
log p(xi|θMLE) =

∑

i

φ(xi) = 0 (3)

Hence, data-items compete to determine the MLE value of
the parameters. Two data-items that exert similar forces on
all parameters have their feature vectors aligned resulting in
a large positive entry in the kernel matrix.

Since it is not a priori evident that the data can be sepa-
rated using a hyperplane in this feature space it can be ben-
eficial to increase the flexibility of the separating surface
(making sure the the problem is properly regularized). This
is easily achieved by applying non-linear kernels such as
the RBF kernel or the polynomial kernel in this new feature
space, i.e.K(φ(xi),φ(xj)) with,

KRBF(xi, xj) = exp
(
− 1

2σ2
||φ(xi)− φ(xj)||2

)
(4)

KPOLp(xi, xj) = (R + φ(xi)T φ(xj))p (5)
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We mention that from a mathematical point of view it is
more elegant to define inner products relative to the inverse
Fisher information matrix [1], but we did not see significant
performance gains for these classification tasks using the
Fisher information matrix.

Given a kernel matrix and a set of labels{yi} for each
data-item, the SVM proceeds to learn a classifier of the
form,

y(x) = sign

(∑

i

αiyiK(xi, x)

)
(6)

where the coefficients{αi} are determined by solving a
constrained quadratic program which aims to maximize
the margin between the classes. In our experiments we
have used the LIBSVM package freely downloadable from
http://www.csie.ntu.edu.tw/∼cjlin/libsvm/.

Typically, there are a number of design parameters in the
problem. These are the free parameters in the definition of
the kernel (i.e.σ in the RBF kernel andR, p in the poly-
nomial kernel) and some regularization parameters in the
optimization procedure of the{αi}. For an SVM the regu-
larization parameter is a constantC determining the toler-
ance to misclassified data-items in the training set. Values
for all design parameters were obtained by cross-validation.

In Figure 2 we compare the performance of the vari-
ous kernels defined above on two data-sets. In general the
performances are similar, although the choice seems to be
somewhat dependent on the data-set used. We used RBF
kernels for all experiments unless otherwise noted.

2.1 Combining Kernels

There are several situations where we have access to multi-
ple generative models and therefore multiple Fisher scores.
For example we may train models with different interest
point detectors, varying numbers of parts, describing dif-
ferent aspects of the data (e.g. shape versus appearance)
and so on. The question naturally arises how to combine
this information into one kernel matrix. The simplest solu-
tion is to simply append the Fisher scores into one tall fea-
ture vector. Although this is certainly valid, it may not be
the optimal choice. For instance, appearance could provide
more valuable information for the classification task at hand
than shape (or vice versa). A more general approach would
be to weight the Fisher scores from the various components
differently which translates into linearly combining (with
positive coefficients) the corresponding Fisher kernels. De-
termining these weights is however non-trivial which is the
reason we have restricted ourselves to a simple sum of
Fisher kernels (with unit weights corresponding to append-
ing Fisher scores) in the experiments reported in sections
4.4 and 4.5.

Figure 3: Examples of scaled features found by the KB (left)
and multi-scale DoG (right) detectors on images from the ’per-
sons’ data-set. Approximately the top 50 most salient detections
are shown for both.

3 Generative Models

In this section we briefly describe the generative models
which will be used in conjunction with the discriminative
methods described above. In principle any differentiable
generative model can be used along with the Fisher Kernel.
We chose to experiment with a simplified probabilistic Con-
stellation model [4]. We do not explicitly model occlusion
or relative scale as done in [5]. Although it is potentially ad-
vantageous to include these terms, excluding them allows us
to use more features than would be possible in a full model.

3.1 Interest-Point Detection

The constellation model requires the detection of interest
points within an image. Numerous algorithms exist for ex-
tracting and representing these interest points. We chose
to experiment with several popular detectors: the entropy
based Kadir and Brady (KB) [18] detector, the multi-scale
Difference of Gaussian (DoG) detector [19], the multi-scale
hessian detector (mHes), and the multi-scale harris detec-
tor(mHar). Figure 3 shows typical interest points found
within images. All detectors indicate the saliency of in-
terest points, and only the most salient interest points are
used. The locations of the interest points were used to ex-
tract 11x11 normalized patches at the scale indicated by the
detectors. We typically reduce the dimensionality of the
patches to 20 by constructing a PCA basis using features
from only the training images and projecting onto that ba-
sis. KB was used in all experiments below unless specifi-
cally noted.

3.2 The Constellation Model

The constellation model is a generative framework which
constructs probabilistic models of object classes by repre-
senting the appearance and relative position of several ob-
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ject parts. Our goal is to find a set of model parametersθMLE

which maximizes the model. In our model,θ = {θa, θs}
represents the means and diagonal variance components of
both the appearance and shape models. Consider a set of
images belonging to a particular class ranging from1..N
and indexed byi. We have extracted both appearance,Ai,
and shape,Xi, information from each imageIi using the
feature detectors described above. We assume that the shape
and appearance models are independent of one another and
that the images are I.I.D. The log likelihood of the training
images given a particular parameter setθ is:

∑

i

log (p(Ii)) =
∑

i

log (p(Ai|θa) · p(Xi|θs)) (7)

Next we describe how we solve the correspondence prob-
lem, namely the mapping of interest points to model parts.
For eachIi we obtain a set ofF interest points and their
descriptors. We would like to assign a unique interest point
to every model componentMj . Since we do not a priori
know which interest point belongs to which model com-
ponent, we introduce a hypothesis variableh which maps
interest points to model parts. We order the interest points
in ascending order of x-position. We enforce that the po-
sitions of all interest points are relative to the left-most in-
terest point, thereby allowing for translational invariance.
Note that although we model only the diagonal components
of the Gaussian, the model parts are not independent as we
enforce that each part is mapped to a unique feature, implic-
itly introducing dependencies. The result is a total of

(
F
M

)
unique hypotheses, where eachh assigns a unique interest
point to each model part. We marginalize over the hypoth-
esis variable to obtain the following expression for the log
likelihood for a particular class:

∑

i

log (p(Ii)) =
∑

i

log

(∑

h

p(Ai, h|θa)p(Xi, h|θs)

)

(8)

3.3 Generative Model Optimization

We trained our generative models using the EM algo-
rithm [21]. The algorithm involves iteratively calculating
the expected values of the parameters of the model and then
maximizing the parameters. The algorithm was terminated
after 50 iterations or after the log likelihood stopped in-
creasing. We found empirically that the discriminative per-
formance of the kernel benefitted from keeping the models
relatively loose. A 3-part, 25 Feature model took on the or-
der of 20 min to optimize using a combination of optimized
Matlab and C (mex) code.

3.4 Fisher Scores for the Constellation Model

In order to train an SVM we require the computation of the
Fisher Score for a model. Recall that the Fisher Score is the
derivative of log likelihood of the parameters for the model.
It is not hard to show that one can compute these derivatives
using the following expressions1,

∂

∂θs
log (p(Ii|θ)) =

∑

h

p(h|Ii, θ)
∂

∂θs
log p(Xi, h|θs) (9)

∂

∂θa
log (p(Ii|θ)) =

∑

h

p(h|Ii, θ)
∂

∂θa
log p(Ai, h|θa)(10)

where both{θa, θs} consist of mean and variance parame-
ters of Gaussian appearance and shape models. Despite
a potentially variable number of detections in each image
Ii its Fisher score has a fixed length. This is because the
hypothesish maps features to a pre-specified number of
parts and hence there is a fixed number of parameters in
the model.

Most of the execution time of the algorithm occurs dur-
ing the computation of the Fisher kernels as well as the
training of the generative models ( 20 min for 200 images in
a 3-part, 25 Feature model). The SVM training, even with
extensive cross-validation, is quite short in comparison due
to the relatively small number of training images – on the
order of 5 minutes for a set of200 training images.

4 Experiments

We have performed numerous experiments to determine the
efficacy of our technique which we list here: (1) Exper-
iments with the ‘Caltech-6’ (see, for instance, Fergus et
al. [5]). (2) Experiments with few training examples. (3)
Experiments training with one background set and testing
with another. (4) Experiments using combinations of ker-
nels. (5) Experiments on the Caltech 101 Object Category
data-set used by [13, 14]

Some details of the SVM training. Fisher scores were
normalized to be within the range [-1,1]. We performed 10x
cross-validation to obtain estimates for the optimal values
of C. When the RBF kernel was utilized we performed an
addition cross-validation to find the optimal value ofσ. We
varied the cross-validation search space for both parameters
on a log base 2 scale from -7,9 in steps of 1 and for C and
-8,0 in steps of 2 forσ.

1Note that these derivatives are readily available from the EM algorithm
at convergence.
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Figure 4:Localization of objects within images using the gener-
ative constellation model. Each unique colored circle represents
a different part of the model. This is a 4-part model. The posi-
tions of the circles represent the hypothesis,h, with the highest
likelihood.

Category Perf Shape App ML Prev

Faces 91 77.7 88.9 83 91.7 [5]
Motorbikes 95.1 74.5 91.2 74.2 90.5 [5]
Airplanes 93.8 95.3 84.2 72.4 90.8 [5]
Leopards 93 71.8 91.3 68.1 91 [5]

Table 1:Performance comparison for Caltech Data-sets. We used
100 training and test images for each class (note that [5] uses far
more training images). The background class was the same used
by [5]. All scores quoted are the total number correct for both the
target class and the background over the total number of examples
from both classes. The second column shows the performance of
the discriminative algorithm. The third and fourth columns show
performance using only the Shape and Appearance Fisher Scores.
The Fifth column is the performance using a likelihood ratio on
the underlying generative models. The final column shows previ-
ous performances on the same data-sets. The underlying genera-
tive model contained 3 parts and used a maximum of 30 detected
interest points per image. Results were averaged over 5 experi-
ments.

True Class⇒ Motor Leopards Faces Airplanes

Motorcycles 96.7 7.3 1.3 .3
Leopards 1.3 90.7 .7 0
Faces 1.3 0 97 .3
Airplanes .7 2 1 99.3

Table 2: Confusion table for 4 Caltech data-sets. The main di-
agonal contains the percent correct for each category. Perfect per-
formance would be indicated by 100s along the main diagonal.
The classes used in the confusion table are the same used in the
generative approach of [5] which achieved performances of 92.5,
90.0, 96.4, and 90.2 across the main diagonal. Using only Fisher
scores from the shape and appearance results in 72.6 and 94.8 per-
formance along the main diagonal respectively. 100 training and
testing images used. Averaged over 3 experiments.

4.1 Caltech Data-Sets

Table 1 illustrates the performance on the Caltech data-
sets2. All images were normalized to be the same size. The
images contain objects in standardized poses and the cate-
gories are visually quite different. In these experiments a
single generative model was created of the foreground class
from which Fisher scores were extracted for both the fore-
ground and background classes for training. The SVM was
trained with the fisher scores from the foreground and back-
ground class. Testing was performed using an independent
set of images from the foreground and background class by
extracting their Fisher scores from the foreground genera-
tive model and classifying them using the SVM. We will
refer to these experiments as ‘class vs. background’ ex-
periments henceforth as they involve discrimination tasks
between one foreground class and one background class.

There are several interesting points of note: (1) We no-
tice high performance with all classification tasks exhibiting
performances above 90%. This high performance is in part
due to the stereotyped nature of the image sets which con-
tain very little variation in pose, lighting, and occlusions.
Furthermore, the foreground and background classes are vi-
sually very dissimilar (see Figures 4 and 6). One caveat
to the discriminative approach is that the classifier explic-
itly utilizes statistical information of the background class.
If the background training set is not sufficiently represen-
tative of the general class of background images this may
lead to overfitting and poor generalization performance. We
address this point below in section 4.3. (2) The underly-
ing generative model was relatively weak and hence per-
formed poorly (see the ML column in Table 1). (3) Ex-
periments conducted using only the Shape and Appearance
Fisher Scores mostly indicate that the combination of the
two is more powerful than either in isolation. Furthermore,
these results suggest that the importance of the shape and
appearance varies between different classification tasks.

It is not clear how to use the discriminative classifiers in
Figure 1 to localize the objects within an image. However, a
similar generative approach has been shown to localize ob-
jects [5] and we show examples using our generative models
in Figure 4.

In addition to class vs. background experiments, we con-
ducted classification experiments using multiple object cat-
egories. First a generative model was constructed for all
classes of interest. Fisher Scores for both train and test im-
ages were obtained. Only the train images were used to
create both the SVM classifier and the generative distrib-
ution. Since an SVM is inherently a two-class classifier
we train the multi-class SVM classifier in a ‘one-vs-one’
manner. For each pair of classes a distinct classifier was

2The data-sets, including the background data-set used here, can
be found at: http://www.vision.caltech.edu/html-files/archive.html. The
Leopards data-set is from the Corel Data-Base
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Figure 5:Performance using small numbers of training examples.
The x-axis is the number of training examples used for both the
foreground and background classes. The y-axis represents the per-
formance. Each unique line represents a different experiment: the
black line illustrates the performance of the 4-class experiments,
the other lines are for the ‘class vs. background’ experiments. The
variances are represented by the straight perpendicular lines. Note
the relatively high initial variances, and the good performance of
most models after only 10 training examples (85%+). An RBF
kernel was used to train the SVM.

trained. A test image was assigned to the category contain-
ing the largest number of votes among the trained classi-
fiers. All other parameters for training were kept the same
as above. Table 2 illustrates a confusion table for 4 Caltech
Data-Sets. The discriminative method again outperforms
its generative counterpart [5] despite using a much simpler
underlying generative model.

4.2 Training with Few Examples

Large numbers of training images are difficult to obtain. For
this reason it is useful to explore the performance of recog-
nition algorithms using only small numbers of training im-
ages. We constructed a (loose) generative model for the
foreground classes using few training examples. Training
and testing then proceeded in the same manner as described
above. Figure 5 illustrates results on several data-sets. The
algorithm seems to performs well in the presence of limited
training data.

4.3 Background Classes

Discriminative training for object detection, as employed
by [6, 20, 22] among others, implicitly allows the learning
algorithm to access the statistics of background data-sets.
This differs from generative approaches such as [4] which
only minimally utilize the information from the background
class during classification. Discriminative algorithms there-
fore run the risk of over-committing to the statistics of the
particular background training images, and hence not gen-
eralizing well to arbitrary background images.

We performed several experiments to determine how

Trained BG⇒ Caltech1 Caltech2 Graz

Caltech1 93 86.5 82
Caltech2 83 90.5 78
Graz 83.5 88 91

Caltech1 92 82 83.5
Caltech2 83 92.5 87
Graz 85 85 91.5

Table 3: Generalization of different background statistics: Top,
Airplane vs. BG experiments. Bottom, Leopards vs. BG experi-
ments. The top row indicates the background data-set trained with.
The rows indicate the test set used. The columns indicate the per-
formance of the algorithms. The bold scores indicate the perfor-
mance on the test examples from the same background class which
was trained on, these tend to be the highest performing test sets.
We trained and tested with 100 images for each foreground and
background category. Results were averaged over 2 experiments.
The mHar detector was used.

well different sets of background images generalized to new
sets of background images. We considered 3 standard sets
of background images: (1) the Caltech background data-
set used in [5] (Caltech1), (2) the Caltech background data-
set used [14] (Caltech2), (3) the Graz data-set used in [20]
(Graz). Images from all three sets are shown in Figure 6.
We performed experiments by first generating a model for
one foreground class. This generative model was then used
to create Fisher scores for the foreground class and a par-
ticular background class and an SVM classifier was trained
using these scores. Wetestedthe classifier on images from
all three background classes.

Results for these experiments are summarized in Table 3.
This table illustrates that the statistics of a particular back-
ground data-set can influence the ability of the classifier to
generalize to new sets. These results should be seen as a
caveat to using discriminative learning for detection tasks:
the statistics of the background images play a crucial role in
generalization, especially when relatively few background
examples are used.

4.4 Combining Models

We tested the performance of combining multiple kernels
using the more challenging Graz data-sets3, in particular
the ‘persons’ and ‘bikes’ sets (Figure 7 shows examples
from these sets). It is imperative to have large numbers of
features when learning on these sets due to the large vari-
ability of the objects within the images. We first experi-
mented with combining multiple generative models, with
each model containing a different number of parts (2 and 3
parts). Both models were trained on the same data. Fisher

3These can be obtained from http://www.emt.tugraz.at/∼pinz/data/
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Figure 6: Examples of background images from (top) Caltech
1, (middle) Caltech 2, (bottom) Graz. There are noticeable differ-
ences in the image statistics from the different background classes.

Figure 7:Example images from the Graz persons (top) and bikes
(bottom) data-sets. Note the large variations in pose, lighting, oc-
clusion, and scale.

scores were extracted from the foreground generative mod-
els on a training set of data for both the foreground and
background classes on both 2 and 3 part models and com-
bined into one large vector for SVM training. Test scores
were extracted in the same way. Table 4 illustrates results
combining simple 2 and 3-part constellation models. The
performance training an SVM classifier on Fisher scores for
each individual model was less than the combined perfor-
mance. We anticipate using more features would result in
higher performance on the Graz sets and this is an active
research area.

In addition we combined models trained using different
interest point detectors. Each generative model was trained
using different interest points detected on the same set of
images. Table 5 shows the results on the same data-sets.
There are many more possible combinations of models to
explore, and combining models using different kernels is an
exciting avenue of future research.

Gen. Model⇒ Comb 2-Part 3-Part Prev

persons 78.5 75.2 76.4 80.8 [20]
bikes 75.3 74.5 74.9 86.5 [20]

Table 4: Effects of combining multiple generative models using
the Fisher kernel. Results shown for the Graz ’persons’ and ’bikes’
sets. 200 images used for training. Note that the combined models
outperform individual models. The 2-part and 3-part models used
a maximum of 100 and 30 interest points respectively.

Gen. Model⇒ Comb KB DoG Prev

persons 73.1 65.3 77.5 80.8 [20]
bikes 79.0 73.3 76.5 86.5 [20]

Table 5: Effects of combining generative models trained using
different feature detectors. We used a polynomial degree 2 kernel
for experiments.

4.5 Caltech 101

The Caltech 1014 consists of 101 object categories with
varying numbers of examples in each category (from about
30-1000). The challenge of this data-set is to learn rep-
resentations for many different object classes using a lim-
ited number of training examples. However, the depicted
objects are mostly well behaved, generally exhibiting rel-
atively small variations in pose, little background clutter,
and favorable lighting conditions. Our approach seems well
suited for this data-set due both to its strong performance
using small numbers of training examples, and the ability to
combine different types of information using models from
different interest point detectors. In our experiments we cre-
ated underlying generative models from the categories ‘Air-
planes’ and ‘Faces’. We used this to generate Fisher scores
for all classes. The SVM was trained using these Fisher
scores in a ‘one vs one’ methodology as described above.
For each class we used 20 examples for training and a max-
imum of 50 for testing. Images were normalized to be the
same size for the mHar and mHes detectors.

A reasonable baseline performance was calculated
by [13], who found an average performance of17% using
texton histograms. Berg et al. achieve a performance of
45% [13]. The approach of Fei Fei et al. uses an underlying
generative model, similar to ours, contained 3 parts, which
did not explicitly model occlusion or scale. The algorithm
of Fei Fei et al. performs at about16% on this data-set.
Our discriminative (2-part) formulation combining models
using the KB, mHar, and mHes detectors results in a per-
formance of40.1% (classification performance was about
27.1%, 25%, and 29% for the KB, mHar, and mHes detec-
tors individually). A confusion table illustrating our results
is shown in Figure 8. We found slightly higher performance

4Available at http://www.vision.caltech.edu/html-files/archive.html
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Confusion Table: 101 Categories

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 8: Confusion table for 101 categories. Perfect perfor-
mance would be indicated by a diagonal line with no-off diago-
nal colorations. Color-bar shown on right. Performance here was
40.1%. The category labels are the same is in [14]. An RBF kernel
was used for training.

using 2-part 100 interest point models compared to 3-part
30 interest point models. 30 PCA coefficients were used.
We speculate that the lower performance relative to Berg et
al. is, in part, due to the small number of parts and interest
points used in our models.

5 Discussion

In this paper we have successfully combined generative
models with Fisher kernels to realize performance gains on
standard object recognition data-sets. We stress that the for-
mulation can be used with any underlying generative model.
Future research includes more rigorous methods for com-
bining kernels and extensions to richer generative models
which allow for both more parts and interest point detec-
tions.
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