Hybrid Generative-Discriminative Visual
Categorization.

Alex D. Holub!, Max Welling?, Pietro Perona'

1Computaltion and Neural Systems 2 Department of Computer Science
California Institute of Technology, MC 136-93 University of California Irvine
Pasadena, CA 91125 Irvine, CA 92697-3425

holub@vision.caltech.edu welling@ics.uci.edu

Abstract

Learning models for detecting and classifying object categories is a challeng-
ing problem in machine vision. While discriminative approaches to learning and
classification have, in principle, superior performance, generative approaches
provide many useful features, one of which is the ability to naturally establish
explicit correspondence between model components and scene features — this, in
turn, allows for the handling of missing data and unsupervised learning in clut-
ter. We explore a hybrid generative/discriminative approach, using ‘Fisher Ker-
nels’ [12], which retains most of the desirable properties of generative methods,
while increasing the classification performance through a discriminative setting.
Our experiments, conducted on a number of popular benchmarks, show strong
performance improvements over the corresponding generative approach. In ad-
dition, we demonstrate how this hybrid learning paradigm can be extended to
address several outstanding challenges within computer vision including how to
combine multiple object models and learning with unlabelled data.

1 Introduction

Detecting and classifying objects and object categories in images is currently one
of the most interesting, useful, and difficult challenges for machine vision. Much
progress has been made during the past decade in formulating models that capture
the visual and geometrical statistics of natural objects, in designing algorithms
that can quickly match these models to images, and in developing learning tech-
niques that can estimate these models from training images with limited supervi-
sion [1, 26, 30, 8, 16, 5, 24, 15, 11]. However, our best algorithms are not close to
matching human abilities. Machine vision systems are at least two orders of mag-
nitude worse than humans in several aspects including the number of categories
that can be learned and recognized, the classification error rates, the classification
speed, and the ease and flexibility with which new categories can be learned.

This work is motivated by the challenge of learning to recognize categories
that look similar to one another. A number of methods have shown good perfor-
mance on dissimilar categories (for example airplanes, automobiles, spotted cats,
faces and motorcycles as in [8, 5]). None of these methods has been shown to per-
form well on visual categories which look similar to one another such as bicycles
and motorcycles or male and female faces. For example, while the ‘constellation
model’ [8] has error rates of a few percent on dissimilar categories such as faces
vs. airplanes and cars vs. cats, it has error rates around 30% if it is asked to rec-
ognize faces of different people (see the x axis of the plots in Fig. 1). Why does
this discrepancy exist? As we shall see, one potential confound is the underlying
generative learning algorithm.

Learning and classification methods fall into two broad categories (see Fig-
ure 2). Let y be the label of the class and x the measured data associated with that
class. A generative approach will estimate the joint probability density function
p(z,y) (or, equivalently, p(z|y) and p(y)) and will classify using p(y|x) which
is obtained using Bayes’ rule. Conversely, discriminative approaches will esti-
mate p(y|z) (or, alternatively, a classification function y = f(z)) directly from
the data. It has been argued that the discriminative approach results in superior
performance, i.e. why bother learning the details for models of different classes
if we can directly learn a criteria for discriminating between the classes [27]? In-
deed, it was shown that the asymptotic (in the number of training examples) error
of discriminative methods is lower than for generative ones when using simple
learning models [17].

Yet, among machine vision researchers generative models remain popular [26,
30, 8, 5, 15, 20]. There are at least five good reasons why generative approaches

a
8

o
g

00

Hybrid Model (Combining Models)
°

R 60 . 70 . 80 920 1
Maximum Likelihood Performance

Performance Comparison

9
% Qe .
85 kg
80 .

75 e

s9jdwex3 Buluiesy g>

70 .

65
65 70 75 80 85 %0 95 100

Maximum Likelihood Performance

Hybrid Model (Prior Knowledge)

Figure 1: A pure generative Maximum Likelihood (ML) approach will not work well
when categories are similar in appearance (right column images of faces, each row shows
a different person), especially when few training examples are available (scatterplots on
the left, x axis). We apply discriminative techniques from Jaakkola et al. [12] to transform
generative approaches for visual recognition into discriminative classifiers which retain
some of the desirable properties of generative models and yield better performance. (Top)
ML in comparison to using combinations of hybrid models. See Section 6 below for
details. Category labels for these faces, from top to bottom: P1, P2, and P3. These new
face categories will be posted on the web. (Bottom) ML in comparison to hybrid models
in a semi-supervised learning paradigm in which few examples (in this case three training
examples) are present. See Section 5 below for details.

Train xtfst Test

o Class 1 l
2 % — p(xly,) ’p(y1lxtest)—L
© .]
qc, : i J ytest
) C s N .
© % p(xlyN) > p(lextest)
Train thest Test
: % |
© \
c
A EE - (Classifioh— Y
& |ClassN /
§ |y
[a]
Train Xiest Test
Class 1
o — p(xly,) 7
S : : Fisher | [gym =@
J? Class N . chores assitie Yiest
% p(x|yn)

Figure 2: Schematic comparison of the generative (top), discriminative (middle), and
hybrid (bottom) approaches to learning discussed in this paper. While generative models
are a natural choice for visual recognition, discriminative models have been shown to
give better performance in different domains. The hybrid model captures many desirable

properties of both.

are an attractive choice for visual recognition. First, generative models naturally
incorporate information about occlusion and missing features. This is because
generative methods allow one to establish explicit ‘correspondence’ between parts
of the model and features in the image. For every such mapping, the parts in the
model corresponding to the missing features can simply be marginalized out of the
probabilistic model, leaving us with a lower dimensional model over the observed
parts [30]. Second, collecting training examples is expensive in vision and train-
ing sets come at a premium. Ng and Jordan [17] demonstrated both analytically
and experimentally that in a 2-class setting the generative approach often has bet-
ter performance for small numbers of training examples, despite the asymptotic
performance being worse. Third, it has been shown that prior knowledge can be
useful when few training examples are available, and that prior information may
be easily incorporated in a generative model [6]. Fourth, we ultimately envision
systems which can learn thousands of categories; in this regime it is unlikely that
we will be able to learn discriminative classifiers by considering simultaneously
all the training data. It is therefore highly desirable to design classifiers that can
learn one category at a time: this is easy in the generative setting and difficult in
the discriminative setting where training data for all categories must be available at
once for a decision boundary to be calculated. Fifth, it is unclear, in general, what
features to use when training a discriminative classifier on object categories. Con-
sider that many popular algorithms for object recognition rely on feature detectors
to find ‘interesting’ regions within an image. Each image thus is represented as an
unordered set of feature detections of variable length. How can these unordered
lists be used by a discriminative classifier?

Is it possible to get the best of both worlds and develop approaches with the
flexibility of generative learning and the performance of discriminative methods?
Jaakkola and Haussler have shown that a generative model can be used in a dis-
criminative context by extracting Fisher Scores from the generative model and
converting them into a ‘Fisher Kernel’ [12] (see Figure 2). A kernel represents
the data as a matrix of pairwise similarities which may be used for classifica-
tion by a kernel method, such as the support vector machine (SVM). The field of
kernel methods is well developed [27, 23, 21] and represents the state-of-the-art
in discriminative learning. Here, we explore how to apply these ideas to visual
recognition.

We calculate Fisher Kernels that are applicable to visual recognition of object
categories and explore experimentally the properties of such ‘hybrid models’ on
a number of popular and challenging data-sets. Other kernel-based approaches
have been suggested for object recognition, including Vasconcelos et al. [28] who

5

exploit a similar paradigm, using a Kullback-Leibler based kernel and test on
the COIL data-set. Wallraven et al. [29] utilize a clever kernel which implicitly
compares detected features in different images, but apply their method to different
sets of images than those used in this paper.

In Section 2 we briefly review one class of generative models, commonly
called the ‘Constellation Model’, which will be used in the rest of the paper.
In Section 3 we show how to transform a generative Constellation Model into
a discriminative setting by utilizing the idea of Fisher Kernels. In Section 4 we
compare the performance of hybrid and generative constellation models. In Sec-
tion 5 we explore how these hybrid models can be extended and effectively used
in circumstances where we have a mixture of labelled and unlabelled data, i.e.
‘semi-supervised’ learning. Finally, in Section 6 and 7 we show how the hybrid
framework can be used to optimally combine several generative models (for exam-
ple generative models based on different feature detectors and different numbers
of parts) into a single classifier. Section 8 discusses the main results and observa-
tions of this work.

2 Generative Models

In this section we briefly review a class of generative models which will be used
in conjunction with the discriminative methods described in the next section. In
principle any generative model that is differentiable with respect to its parameters
can be used. We chose to experiment with the ‘Constellation Model” which was
first proposed by Burl et al. [1]. Weber et al. [30] showed that this model may
be learned from cluttered images in a weakly supervised setting in which only a
class label is associated with each image using maximum likelihood. Fergus et
al. [8] extended the model by making it scale-invariant and incorporating general
purpose feature detectors. We use a simplified version of Fergus’ constellation
model in which we do not explicitly model occlusion or relative scale.

2.1 The Constellation Model

The constellation model is a generative framework which constructs probabilis-
tic models of object classes by representing the appearance and relative position
of several object parts [1, 30, 8]. Given a suitable training set composed of im-
ages containing examples of objects belonging to a given category, such models
are trained by finding a set of model parameters OM'F which maximizes the log-

likelihood of the model [30, 8]. Both appearance and shape are modelled as jointly
Gaussian and 6 = {0,, 0} represent the mean and diagonal variance parameters
of the shape (,) and appearance models (¢,). To remove dependence on loca-
tion, the x-y coordinates of the parts are measured relative to a reference part,
e.g. the left-most part. In our implementation, as suggested by Fergus et al. [8],
appearance is represented by the first 20 PCA components of normalized 11 x 11
pixel patches which were cut out around feature detections in training images at
the scale indicated by the detectors (see next subsection). The number of interest
point detections considered in an image is a design parameter.

For each training image /; we obtain a set of F' interest points and their ap-
pearance descriptors. We would like to establish correspondence, i.e. assign a
unique interest point to every model part, or component, //;. Burl et al [1] showed
that since we do not a priori know which interest point belongs to which model
component, we need to introduce a ‘hidden’ hypothesis variable A which maps
interest points to model parts. We order the interest points in ascending order of
x-position. Note that although we model only the diagonal components of the
Gaussian, the model parts are not independent as we enforce that each part is
mapped to a unique feature, implicitly introducing dependencies. The result is
a total of (AZ) hypotheses, where each h assigns a unique interest point to each
model part. We marginalize over the hypothesis variable to obtain the following
expression for the log likelihood for a particular class:

Zlog (p(1;)) = Zlog (mei,hwa)p(xi, h|es>> (1)

where {X;} are the relative coordinates of the object and represent the shape in-
formation while {A;} are the PCA components described above and represent the
appearance information. We assume that the shape and appearance models are in-
dependent of one another given a hypothesis / and that the images are I.I.D. This
step is key to maximum-likelihood model learning, and to classification, once a
model is available (see details in [1, 30, 8]). We note that exploring all possible
hypotheses carries a combinatorial computational cost which severely limits the
number of parts and interest points which can be used in the model.

For clarity we consider the makeup of a typical set of parameters 6. Consider
one part of a 3-part model. A single part consists of parameters specifying its
shape and appearance, 0, and 6, respectively. The shape of the part is specified
by a two dimensional mean and two dimensional variance (we consider diagonal
covariance matrices in our model) indicating the mean and variance of the position

7

Figure 3: Examples of scaled features found by the KB (left) and multi-scale DoG (right)
detectors on images from the ’persons’ data-set located at http://www.emt.tugraz.at/
opelt/. Approximately the top 50 most salient detections are shown for both.

of the part. Each part thus has a four dimensional parameter array specifying its
location. Now consider the appearance parameters of a part. The appearance
of a part is specified by the mean and variance of the PCA components for that
particular part. A 20 dimensional PCA representation thus consists of a total of
40 parameters, 20 for the mean and 20 for the variance of the part.

2.2 Interest-Point Detection

The constellation model requires the detection of interest points within an image.
Numerous algorithms exist for extracting and representing these interest points.
We considered several popular interest point detectors: the entropy based Kadir
and Brady (KB) [14] detector, the multi-scale Difference of Gaussian (DoG) de-
tector [3], the multi-scale hessian detector (mHes), and the multi-scale Harris de-
tector(mHar). Figure 3 shows typical interest points found within images. All
detectors indicate the saliency of interest points, and only the most salient interest
points are used. The KB interest point detector was used in all experiments below
unless otherwise specifically noted.

2.3 Generative Model Learning

We train our generative constellation models using the EM algorithm [4] as com-
puted explicitly for the constellation model by Weber et al. [30]. The algorithm
involves iteratively calculating the expected values of the unobserved variables of

the model and then maximizing the parameters. The algorithm was terminated
after 50 iterations or after the log likelihood stopped increasing. A typical 3-part
model optimized on 100 images with 25 detections in each image took on the or-
der of 20 minutes to optimize using a combination of C (mex) and Matlab code
on a 2Ghz machine.

3 Fisher Scores and Fisher Kernels

For supervised learning, such as regression and classification, kernel methods are
often the method of choice. As argued in the introduction, our interest is in com-
bining generative models with a discriminative step for the purpose of visual ob-
ject recognition. We chose support vector machines (SVM) [27] as our kernel
machine. The SVM (like all kernel methods) process the data in the form of a
kernel matrix (or Gram matrix), a symmetric and positive definite n X n matrix of
similarities between all samples. A simple way to construct a valid kernel matrix
is by defining a set of features, ¢(x;), and to define the kernel matrix as,

Kij = K(z;,3;) = @' (;)9(x;) 2)

The kernel represents the similarities between samples: relatively large kernel en-
tries correspond to two samples which are similar while small (possibly negative)
entries correspond to dissimilar samples. Kernels defined by inner products such
as the one in Equation 2 produce positive-definite kernel matrices [27].

The generative model will have its impact on the classifier through the defini-
tion of these features. We will follow [12] in using ‘Fisher Scores’ as our features.
Given a generative probabilistic model the ‘Fisher Scores’ ¢(z;) are defined as

0
$(z:) = 55 log p(:|6™) (3)
where O™F is the maximum likelihood estimate of the parameters . By defini-
tion, @™F is obtained by maximizing the likelihood. A necessary condition is that
the gradient of such likelihood (or log-likelihood) is zero, which is equivalent to
‘balancing’ the Fisher Scores,

0
56 log p(z;|0"F) = Z $(z;) =0 4)

Hence, samples “pull” on the parameter values through their Fisher Scores which
can be interpreted as “forces”. At the MLE all forces balance. Two data-items that

9

exert similar ‘forces’ on all parameters have their feature vectors aligned resulting
in a larger positive entry in the kernel matrix.

Since it is not a priori evident that the data can be separated using a hyperplane
in this feature space, it can be beneficial to increase the flexibility of the separating
surface (making sure that the problem is properly regularized) as shown in [27].
This is achieved by applying non-linear kernels such as the RBF kernel or the
polynomial kernel in this new feature space, i.e. K(¢(x;), ¢(x;)) with,

(i) = exp (~5151160) — 900, ®)
Krov, (zi, ;) = (R + ¢(x:)" ¢(x5))" (6)

Where o represents the variance of the RBF kernel and p represents the degree of
the polynomial kernel being used.

To remove scale differences between the features we normalized the features
before we computed their inner product,

_ QS(L (xz)

Why do we bother going through a two-stage process where we first train
generative models for each object category and then train another classifier based
on a kernel derived from those models, where we could also classify using log-
likelihood ratios? The intuitive answer to this question is that a classifier is trained
to find an optimal decision boundary, i.e. it focusses its attention to what is rel-
evant to the task. Here, the samples which are close to the decision boundary
carry much more information than the ones away from the boundary. In contrast,
classifying according to likelihood ratios simply derives the decision boundary as
a by-product from fitting models for every category. The objective of this fitting
procedure is to maximize the probability of all samples for every category and
not deriving a good decision boundary for the classification task at hand. This
intuition has been made more precise in numerous papers. Most relevant to Fisher
Kernels is the theorem in [12] stating that asymptotically (in the large data-limit)
a classifier based on the Fisher Kernel can be shown to be at least as good (and
typically better) as the corresponding naive Bayesian procedure (i.e. likelihood
ratios or maximizing p(y|x)). Similar results have been obtained in e.g. [17] and
[25]. It should be mentioned that for small numbers of samples the naive Bayesian
procedure may act as a regularizer and avoids the kind of over-fitting that can be
observed in discriminative approaches.

qba (xz) (7)

10

Given a kernel matrix and a set of labels {y;} for each sample, the SVM pro-
ceeds to learn a classifier of the form,

x) = sign (Z oy K (, 33)) 8)

where the coefficients {«;} are determined by solving a constrained quadratic
program which aims to maximize the margin between the classes. For details we
refer to [23] and [21]. In our experiments we used the LIBSVM package (available
at hitp://www.csie.ntu.edu.tw/™ cjlin/libsvm/).

There are a number of design parameters: the free parameters in the definition
of the kernel (i.e. o in the RBF kernel and R, p in the polynomial kernel) and
some regularization parameters in the optimization procedure of the {«;}. For an
SVM the regularization parameter is a constant C' determining the tolerance to
misclassified samples in the training set. Values for all design parameters were
obtained by cross-validation or by learning them on a bound of the leave-one-out
error (see Section 6).

In Figure 4 we compare the performance of the various kernels defined above
on two data-sets. The performance is similar, with some variability between data
sets. We used linear and RBF kernels in the following experiments as there was
no appreciable difference in the performance of the various kernels and because
these kernels are popular within the machine learning community.

3.1 Fisher Scores for the Constellation Model

In order to train an SVM we require the computation of the Fisher Score for a
model. Recall that the Fisher Score is the derivative of log likelihood of the pa-
rameters for the model, i.e.:

5, 108 (P(L:10)) Zp WL, 0) - 1ogp<Xz,h|9))
0
30, 108 (p(116)) Zp Bl 0) = 1ogp<Az,h|9> (10)

where both {,, 0} consist of mean and variance parameters of Gaussian appear-
ance and shape models. Despite a potentially variable number of detections in
each image I; its Fisher Score has a fixed length. This is because the hypothesis h

11

Comparison of Different Kernels

T
96 |- | I Linear 4
N Poly
I RBF

Performance

Airplane Faces Motor Leopards

Figure 4: Performance comparison of various kernels on several data-sets. The param-
eters used to train and test these models are described in the experimental section. The
polynomial kernel was of degree 2. The y-axis indicates the classification performance,
note that the scale starts at 90%. These results were averaged over 5 experiments. 100
train/test examples used. First bar in each set: Linear kernel. Second bar: Polynomial
kernel. Third bar: RBF kernel.

maps features to a pre-specified number of parts and hence there is a fixed number
of parameters in the model.

Most of the execution time of the algorithm is spent during the computation of
the Fisher Kernels as well as the training of the generative models. In comparison,
the SVM training, even with extensive cross-validation, is quite short due to the
relatively small number of training images.

4 Comparing Generative and Hybrid Approaches

Our first set of experiments was designed to compare the performance of our hy-
brid method with generative models on a commonly used benchmark of 4 object
categories with diverse appearances from one another. We chose the same cate-
gories used by [8] in order to directly compare with their results (their results were
obtained using a more sophisticated generative Constellation Model than the one
we used).

Some details of the SVM training: Fisher Scores were normalized to be within
the range [-1,1]. We performed 10x cross-validation to obtain estimates for the
optimal values of C'. For the RBF kernel, which contains the additional hyper-
parameter o, we found the optimal values of C' and o by performing an exhaustive

12

Figure 5: Localization of objects within images using the generative constellation model.
Each unique colored circle represents a different part of the model. This is a 4-part model.
The positions of the circles represent the hypothesis, i, with the highest likelihood. The
generative framework approximately localizes the position of each object. We note that
the images shown here do not exhibit excessive amounts of clutter.

search over the parameters. We varied the cross-validation search space for both
parameters on a log base 2 scale, C' € 2I77% and ¢ € 2[73%. We chose this range
because the best results were typically within these parameter settings.

4.1 Experiments on Caltech Data-Sets

Table 1 illustrates the performance on these data-sets!. Images were normalized
to have the same number of pixels in the x-dimension in order to prevent the algo-
rithm from learning meaningful information from the absolute size of the images.
We did not crop the images. We recognize that although these data-sets are used
extensively by the vision community, they exhibit some deficiencies. In partic-
ular the object of interest is usually in the center of the image and the objects
are mostly in standardized poses and good lighting conditions. In these experi-
ments a single generative model was created of the foreground class from which
Fisher Scores were extracted for both the foreground and background classes for
training. The SVM was trained with the Fisher Scores from the foreground and
background class. Testing was performed using an independent set of images

'The data-sets, including the background data-set used here, can be found at:
http://www.vision.caltech.edu/html-files/archive.html. The Leopards data-set is from the Corel
Data-Base

13

Category \ Hybrid \ Shape \ App \ ML \ Prev ‘
Faces 91 77.7 88.9 | 83 89.4 [7]
Motorcycles | 95.1 74.5 91.2 | 742 | 96.7 [7]
Airplanes 93.8 953 [842|724 |92.217]
Leopards 93 71.8 | 91.3 | 68.1 | 88 [7]

Table 1: Performance comparison for some Caltech data-sets in a 2-alternative task
whether the test image either contains an object from a given class, or contains no ob-
ject (background class). We used 100 training and test images for each class although
performance did not increase significantly when more training images were used. The
background class was the same used by [7]. All scores quoted are the total number cor-
rect for both the target class and the background over the total number of examples from
both classes. The second column shows the performance of our hybrid discriminative
algorithm. The third and fourth columns show performance using only the Shape and
Appearance Fisher Scores respectively. The Fifth column is the performance using a like-
lihood ratio on the underlying generative models. The final column shows previous per-
formances on the same data-sets [7]. Our underlying generative model contained 3 parts
and used a maximum of 30 detected interest points per image. Results were averaged over
5 experiments. In comparing with [7] note that in that study approximately twice as many
training images were used, as well as a more sophisticated generative constellation model
(6 parts, scale-invariance, occlusion modelling), hence the higher performance of [7] with
respect to our baseline generative constellation model (ML). On the other hand, our hybrid
method models relies on the background images for SVM training while the ML method
of [7] does not make explicit use of the background images. Test performance did not
vary significantly between different experiments.

14

True Class = \ Motor \ Leopards \ Faces \ Airplanes ‘

Motorcycles | 96.7 | 7.3 1.3 3
Leopards 1.3 90.7 7 0
Faces 1.3 0 97 3
Airplanes Vi 2 1 99.3

Table 2: Confusion table for 4 Caltech data-sets in a 4-way classification experiment.
The main diagonal contains the percent correct for each category. Perfect performance
would be indicated by 100s along the main diagonal. We use the same classes as used
in [8] which utilizes a purely generative constellation model and resulted in performances
of 92.5, 90.0, 96.4, and 90.2 across the main diagonal for a 4-way discrimination task for
an average performance of 92% while we achieve an average performance of 96%. When
performing classification using only the Shape and Appearance Fisher Scores we achieve
an average performance (average across the main diagonal of the confusion table) of 72.6
and 94.8. 100 training and testing images were used in our experiments. Averaged over 3
experiments. Test performance did not vary significantly between different experiments.

from the foreground and background class by extracting their Fisher Scores from
the foreground generative model and classifying them using the SVM. We refer
to these experiments as ‘class vs. background’ experiments, as they involve a
discrimination task between one foreground class and one background class.

In addition to class vs. background experiments, we conducted classification
experiments using multiple object categories. First a generative model was con-
structed for all classes of interest. Fisher Scores for both train and test images
were obtained by concatenating the Fisher Scores from each model. Only the
training images were used to create both the SVM classifier and the generative
distribution. Since an SVM is inherently a two-class classifier we train the multi-
class SVM classifier in a ‘one-vs-one’ manner. For each pair of classes a distinct
classifier was trained. A test image was assigned to the category containing the
largest number of votes among the trained classifiers. ‘One-vs-one’ classification
requires that w classifiers be created and used during classification. ‘One-
vs-one’ clearly introduces a large number of classifiers which must be evaluated
during run-time. However, we prefer it to a ‘one-vs-all’ strategy as ‘one-vs-all’
is not as amenable to unbalanced data-sets and the potential large computational
cost is not as evident for small numbers of training examples. All other parameters
for training were kept the same as above. Table 2 illustrates a confusion table for
4 Caltech Data-Sets. The discriminative method again outperforms its generative

15

counterpart [8] despite using a much simpler underlying generative model.

There are several interesting points of note. First, the hybrid method works
well even on dissimilar categories. In fact it performs significantly better than the
corresponding generative ML method and slightly better than a more sophisticated
ML method. Second: the classification results in Table 2 are comparable with the
best current results in the literature. It is fair to say that the Caltech-4 data-set is
easy (see Figures 5 and 6) and may not be the best data-set to use when comparing
algorithms. Further results on more challenging data-sets, among them the ‘Peo-
ple’ and ‘Bikes’ Graz data-sets?, were reported by us in [10] and the technique
performed well in these cases as well. Three, Experiments conducted using only
the Shape and Appearance Fisher Scores mostly indicate that the combination
of the two is more powerful than either in isolation. Interestingly, by compar-
ing the shape-only and appearance-only performance one can see that the relative
importance of these two terms varies with the category. In particular we notice
that the Leopard data-set, which exhibits stereotyped appearance information but
large articulations in shape, performs best when using only appearance informa-
tion while airplanes, which exhibits fairly uniform shape information, yields good
performance when using only shape information.

The hybrid approach uses an underlying generative constellation model to gen-
erate Fisher Scores which are in turn used for classification. This underlying
model can be used to localize objects within an image by selecting the hypothesis
with the highest likelihood (the same technique was demonstrated to localize ob-
jects by Fergus et. al in [8]). Figure 5 demonstrates the localization ability of our
implementation of the constellation model on several different categories.

4.2 Background Classes

In this section we explore the effect of a particular “background” training set on
learning. Consider the detection tasks described above (Figure 1) in which we
build a hybrid classifier which detects whether or not an object is present in an
image. In this setting, the algorithm must be trained using both a ‘positive’ or
foreground training set and a negative or ‘background’ training set. In principle
the background set should represent any images that does not contain the object
of interest. This set of images has a very broad statistical variation which may not
be well represented by a limited training set as used in our experiments. If the
statistics of the background data-set are not appropriately chosen, we run the risk

2 Available at http://www.emt.tugraz.at/ opelt/

16

of over-fitting to those background images used for training.

In order to further explore this potential confound, we performed experiments
using several common data-sets used as background images to determine how well
background data-sets generalized to one another. We considered 3 standard sets of
background images: (1) the Caltech background data-set used in [8] (Caltechl),
(2) the Caltech background data-set used [6] (Caltech2), (3) the Graz data-set used
in [18] (Graz). A random sample of images from the three sets is shown in Fig-
ure 6. We performed experiments by first generating a model for one foreground
class. This generative model was then used to create Fisher Scores for the fore-
ground class and a particular background class and an SVM classifier was trained
using these scores. We fested the classifier on images from all three background
classes.

Results for these experiments are summarized in Table 7. This table illustrates
that the statistics of a particular background data-set can influence the ability of
the classifier to generalize to new sets. These results should be seen as a caveat
when using discriminative learning for detection tasks as the statistics of the back-
ground images play a crucial role in generalization, especially when relatively few
background examples are used. Even if one has access to a large number of back-
ground images it is in principle, difficult, to obtain a set of images which model
the distribution of any arbitrary background. Furthermore, some discriminative
methods, such as SVMs, are not readily amenable to training with unbalanced
data-sets, making the choice of background images to use during training even
more problematic.

S Semi-Supervised Learning

In computer vision it is often easy to obtain unlabelled images while labelled im-
ages often require a significant investment of resources. In this section we explore
how to leverage unlabelled and labelled images within our hybrid generative-
discriminative framework described above. Using labelled and unlabelled data is
often referred to as semi-supervised learning in the machine learning community.
In particular we show how semi-supervised learning can be used to learn classi-
fiers with far fewer training examples than the corresponding supervised frame-
work. Figure 8 illustrates a schematic of the proposed semi-supervised learning
algorithm.

Many interesting methods have been proposed for semi-supervised learning
(see e.g. [22] for an approach relevant to Fisher Kernels). We decided to imple-

17

{
we didn't know

Q
. LM
1212 11

-

Figure 6: Examples of background images: (top) Caltech 1 is a collection of indoor
and outdoor digital photographs taken on the Caltech campus, (middle) Caltech 2 is a
collection of images obtained from the Google image search engine by typing ‘things’
as a search string, (bottom) Graz is a collection of outdoor and indoor images, some of
which focus on specific objects. There are noticeable differences in the image statistics
from the different background classes.

| Trained BG = | Caltechl | Caltech2 | Graz |

Caltechl 93 86.5 82
Caltech2 83 90.5 78
Graz 83.5 88 91
Caltechl 92 82 83.5
Caltech2 83 92.5 87
Graz 85 85 91.5

Figure 7: Generalization of different background statistics: Top, Airplane vs. BG exper-
iments. Bottom, Leopards vs. BG experiments. The top row indicates the background
data-set trained with. The rows indicate the test set used. The columns indicate the per-
formance of the algorithms. The bold scores indicate the performance on the test exam-
ples from the same background class whichgvas trained on, these tend to be the highest
performing test sets. We trained and tested with 100 images for each foreground and
background category. Results were averaged over 2 experiments. The mHar detector was
used.

Labeled Training Data “

Unlabeled Training Data
Class 1

-
C:/

Figure 8: Schematic overview of the semi-supervised learning algorithm employed.
Semi-supervised learning employs both labelled and unlabelled data. Note that only un-
labelled data is used to create the generative model but that Fisher Scores are extracted
from the generative model using labelled data.

Fisher
P(xly) Scores —>

Semi-Supervised Learning

ment a relatively simple idea that attempts to learn the kernel using the available
unlabelled data. In the context of Fisher Kernels this boils down to learning a prob-
abilistic model on the unlabelled data-set. We subsequently extract Fisher Scores
based on this model, but evaluate it on the labelled data. These Fisher Scores are
combined into a kernel matrix and provide input to the SVM. To see why this is
a sensible approach we consider the task of classifying images of faces of two
different people. The Fisher Scores represent the derivatives of the log-likelihood
and hence the tendency of a particular sample to change the model. If the un-
derlying model is one of a completely unrelated class of objects (say leopards),
then we expect any face image to roughly change the model in a similar fashion,
so the Fisher Scores for different faces are expected to be similar. If however,
the underlying model is an average face model, then we expect the changes to
the model for person A and person B to be different, resulting in different Fisher
Scores and hence small kernel entries. So clearly, a good kernel should be based
on a probabilistic model for the class of objects we are trying to classify.

In the following sections will investigate a number of issues: 1) does the
method we propose work at all, 2) what is the effect of using different sets of un-
labelled data, 3) how does the performance depend on the number of unlabelled
examples and 4) how does the performance depend on the number of labelled

19

(training) examples.

5.1 Caltech Faces-Easy Categories

We employ a similar experimental paradigm as described above in Section 4.
However, we consider situations when there is a wealth of unlabelled data avail-
able which will be used to construct the model from which we extract Fisher
Scores. In order to be clear on our terminology we refer to the ‘unlabelled train-
ing set’ as the set of unlabelled data used to generate the classifier and the ‘labelled
training set’ as the set of labelled data used to generate the classifier.

The Caltech Faces-Easy (see Figure 9) consists of about 400 images of human
faces. It is composed of 20 or more photographs of 19 individuals, while the
remaining 40 or so images contain fewer exemplars. Thus we can divide the
entire face category into smaller categories corresponding to individuals.

A linear kernel was used in all experiments below. Using an exponential kernel
is difficult due to the inability to accurately tune the scale parameter o: there are
not enough exemplars to perform cross-validation.

5.2 Results

We compared performance using various different sets of unlabelled training im-
ages to create the generative model, where each set of images was more or less
related to the set of labelled training images. We considered the following sets
of unlabelled training images: (1) Faces-Easy data-set. Note that our unlabelled
training set contained images from all individuals except those used for the la-
belled training set. (2) the Caltech 1 Background Images (see Figure 7 above),
(3) the Leopards data-set, (4) Images of printed pages from a copy of Homer’s
‘Odyssey’. Examples of the features found for classes (1) and (4) are shown in
Figure 9. A generative model trained on background will result in broad distribu-
tions, while generative models trained on specific classes will have a more distinct
distribution reflecting the statistics of the unlabelled training images.

First a model was trained using images from the unlabelled training data-sets.
Next, 2 individuals from the Faces-Easy set were selected at random to train the
classifier. Fisher Scores were extracted from the model. We did not include
any images used for training or testing in the unlabelled data-set. Median and
25th/75th quantiles were computed over 20 experiments by selecting to individu-
als at random.

20

Results are shown in Figure 10. Several interesting points can be made: (1)
The nature of the unlabelled training data-set is critical: using a data-set unrelated
to the classification problem at hand, e.g. the ‘The Odyssey’ or ‘Leopards’ data-
sets in the context of face classification, results in the worst performance. Using
a very general data-set, e.g. the Caltech 1 Background (BG1) data-set, results
in better performance than using an unrelated data-set. This may be due to the
broad distribution which results from training on the background data-set, which,
although not as beneficial as using the images from the same class, is better than
using a generative model from a completely different class. Finally, using a data-
set which describes the distribution of the images involved in the classification
problem well, e.g. using the remaining face images from “Easy-Faces” to classify
the faces of two held-out individuals, results in the best performance. (2) Dis-
crimination performance increases as we add more unlabelled training examples.
This is particularly true for the faces data-set, in which we notice a large increase
in performance from 10 to 100 prior examples. The same qualitative effect is
observed for the BG1 data-set. We observed that with few training examples the
BGI1 unlabelled images creates overfitted models with small variances, resulting
in comparable performance to using the ‘Odyssey’ or ‘Leopards’ data-sets. As
more training examples are added, the model becomes more general, and its util-
ity as a prior improves.

A reasonable measure for how appropriate a kernel is for a particular classifi-
cation task is the “kernel-alignment” proposed in [23],

T
Alyy")= I (11)
N\/tr(KTK)
where /V is the number of training cases and y is a vector of +1 and —1 indicating
the class of each data-case®. Figures 11 and 12 illustrate that training using more
suitable sets of unlabelled data results in more appropriate kernels.

6 Combining Multiple Generative Models

In the previous section we showed how to leverage unlabelled data within our
hybrid framework. In this section we show how the hybrid framework can be

3Why did we not choose the perfect kernel according to this metric, namely K = yy”’? The
reason is that this kernel would overfit on the training data and exhibit poor generalization per-
formance. The alignment measure is therefore only useful provided we do not overfit, which we
would not expect given the fact that we learn the kernel on a separate, unlabelled data-set.

21

Figure 9: Features detected by the Kadir and Brady detector on image of (Top) the
Odyssey text and (Bottom) the Faces-Easy data-set. Note that the Faces-Easy data-set is
equivalent to the Faces data-set used in the experiments above except that the Faces-Easy
data-set contains faces which are more cropped. Also note that the features found in the
two sets of images have drastically different appearance statistics.

22

Semi-Supervised Learning Increasing Unlabeled Examples
100 1007

—— Face

95| 95| ——BG
—— Leopards
— Odyssg
—ML

90t ol

851

80}
75
//
(s E—
60} Z// 60}

50t sol

|

80

B
70

Performance
Performance

LA\

45 L L L L L L L L Il 45 L L - L L L L
1 2 3 4 5 6 7 8 9 10 M 08 1 12 14 16 18 2
Number Training Examples Num. Unlabeled Examples (Log 10 Scale)

Figure 10: (Left) Performance on the 2-way faces classification problem as we vary the
number of labelled training examples per class. Number of unlabelled examples was fixed
at 100. (Right) Classification performance as a function of the number of unlabelled ex-
amples. 5 labelled training examples per class were used to train the SVM classifier. In
both plots we show the median and 25th/75th quantiles computed over 20 experiments.
Each line represents a different unlabelled data-set except for the cyan line which shows
the maximum likelihood performance on the labelled training set only (i.e. it did not use
any unlabelled data and classified by comparing the likelihood scores, the fluctuations
in this line are due to using randomized training/test sets). Note that the nature of the
unlabelled data-set has an important impact on the classification performance. Experi-
ments using 5 training examples on the left plot correspond to the experiments using 100
unlabelled examples on the right plot.

23

Unlabelled: Faces Unlabelled: Background
Performance = 0.91 Performance = 0.76
Alignment = 0.36 Alignment = 0.27

Face 2

Face 1

Unlabelled: Leopards Unlabelled: Odyssey
Performance = 0.67 Performance = 0.65
Alignment = 0.21 Alignment = 0.12

Face 2

Face 1

Face 1 Face 2 Face 1 Face 2

Figure 11: Kernel matrices computed using different sets of unlabelled training data.
Each model underlying a kernel was trained on 200 unlabelled data-cases. A kernel was
computed as ¢” (x;)¢(x;) with normalized Fisher Scores and averaged over 20 experi-
ments. Diagonal entries are zeroed out to improve resolution. When the Faces data-set
was used as an unlabelled set we can easily discern a block-structure where the images in
the same class are similar to each but dissimilar to the images of the other class (images
in the same class correspond to first 10 entries and second 10 entries respectively and
brighter colors indicate higher similarity between the data-points). Note that the block
structure is not evident when a a dissimilar set of unlabelled training examples is used,

i.e. the ‘Odyssey’ unlabelled data-set. Test performance and alignment values are also
indicated.

24

Faces Odyssey

10

J A 7 A

2t o o
AAA o 4° o
t“

DIM 2
o

o °f o

oA 9 8
A o -ar ()

_al

° 61 A Ao
-6 -8 L
—-10 -5 o 5 10 —20 —-15 —-10 -5 o 5 10

DIM 1 DIM 1

Figure 12: Visualization of Fisher Scores extracted from models created using different
sets of unlabelled training data. Each plot was the result of learning with a different set
of unlabelled training data, namely ‘Faces’ (Left) and ‘Odyssey’ (Right). The circle and
triangles are two different individuals for which Fisher Scores were extracted from the
generative model. Note that none of these images were in the set of unlabelled training
data used to create the ‘Faces’ generative model. Distances in feature space were com-
puted as d;; = ||¢(x;) — @(x;)||, where ¢ is the normalized Fisher Score. These were
input to the MDS procedure which embeds the data in a 2-D Euclidean space while min-
imizing distance distortion. One can clearly see that the model learned on the Faces data
(left) results in an embedding which is linearly separable (even in 2 dimensions), while
the embedding obtained from the Odyssey data-set (right) is not linearly separable (dif-
ferent classes are represented by circles and triangles). This indicates that using ‘Faces’
as an unlabelled training set will result in a more robust classifier.

25

used to combine multiple generative models into a single classifier. Why is this
useful? Consider that visual data is heterogeneous in nature. Different ‘front-
ends’ (feature detectors, feature descriptors) work best on different types of data.
For instance, the techniques used for optical character recognition (OCR) vary
greatly from those used to detect cars. Also, it is clear that some features should
be described with ‘brightness’ templates, others with ‘texture’ descriptors, still
others with parameterized edges or curves. It would be useful to remain initially
agnostic as to which front-end is most useful and allow the learning algorithm to
decide which to use.

In the previous section we learned the kernel on unlabelled training data under
the assumption that very few labelled training data were available. However, it is
also possible to tune the kernel based on the labelled training examples, provided
the labelled data-set is sufficiently large. In this setting, one has to be careful not
to “overfit” the kernel on the training examples and achieve poor generalization
performance. A standard approach to determine regularization and kernel parame-
ters is by cross-validation. Unfortunately, when the number of parameters is large
this method becomes infeasible. An alternative approach that has been proposed
in the literature is to optimize the kernel on approximations or bounds of the test-
error. The approach we will follow here was described in [2] (see also [19] and
[13]) which derive gradients for the span bound of the leave-one-out error. Other
authors, e.g. [9] offer an alternate solution to this problem.

Consider the choices we face when modelling a particular object category us-
ing the Constellation Model. Which front-end interest point detector should we
use? How many parts should the model contain? Should one model the geometry
and appearance of a part? Each of these choices leads to a different model and
hence to a different set of Fisher Scores. Instead of choosing a particular type
of model, one could argue to create multiple models, and incorporate informa-
tion from all these models into a single Fisher Score by concatenating the Fisher
Scores from each individual model. However, this is an unsatisfactory procedure
because we do not know how to weight the different contributions, which may
operate at different scales. Hence, a natural idea is to weight the Fisher Scores of
each component model. Taking this one step further, one could decide to attach
a different weight to each individual dimension of the entire feature vector, not
just to each individual component model. This choice of parametrization is prob-
lem dependent: too many parameters may still lead to overfitting and may be too
computationally expensive.

In this section we explore the potential of learning the weights for the vari-
ous contributions to the kernel. This has lead to interesting insights; for instance

26

Train

p'(xly,) Fi w; *Fy
Class 1 " - " Xiost
- : i : Test F
PX(x|y,) Fy Wi —L
7O @mener e
P (xlyn) Fi wy *Fy
Class N———— - — -
K Kap K
PX(xlyn) Fn wy*Fy
Generative Fisher Weighted
Models Scores Fisher
Models

Figure 13: Overview of proposed visual category recognition algorithm which automat-
ically weights the importance of different models.

that a certain type of detector is much better to build a face model than another
type of detector. In some sense, by learning the optimal combination of kernels
we are partially relieved from the task to pick the best components to model a
certain object class. Instead we let the data decide which components are most
important for the classification task. This information could subsequently be used
to remove irrelevant components, thus improving the computational efficiency of
the resulting classifier.

6.1 Leave-One-Out Span Bound

Our proposed method consists of three steps which are illustrated in Figure 13: 1)
Train an ensemble of generative models separately for each class, 2) extract Fisher
Scores to construct Fisher Kernels for all the models separately, 3) train an SVM
classifier and “learn the kernel” by weighting the different kernels. Finding the
weights is achieved by minimizing a bound on the leave-one-out error [2]. Next,
we will provide details for these steps.

The general form of the kernel that we consider is,

1
KRPH(I;, 1) = exp (—5 %wMH(ﬁM([i) - ¢M(IJ)HZ> (12)

where we have introduced separate weights wy, for each model. To tune the
weights wy, and the regularization constant C' in the SVM, we adopt the method

27

proposed in [2]. In this method a smoothed version of the the “span-bound” of the
leave-one-out (LOO) error* is minimized,

1
[(Ksy + Diag(n/a)) " |un

—n/an

(13)
where o7 () = 1/(1 + e~*/H) is the sigmoid function, H is the temperature (set
to H = 100), n is a smoothing parameter (set to n = 0.1) and K gy the kernel eval-
uated at the support vectors. The parameters a are the dual weights in a 2-norm
soft margin SVM. The 2-norm SVM is convenient because the regularization pa-
rameter C' can be considered as a parameter of the kernel function, alongside the
weights wy,. (hence the notation 8 = ({wp}, C) in the following). We invite
the reader to explore [2] for more details and a more complete explanation of this
procedure.

The chief advantage of this smoothed span bound is that it can be efficiently
minimized using gradient descent. The gradients can be written as,

N
1
T(w,C) = NZUT(%S,%—U with 52 =
n=1

d7(8) 9T(8) dKgy OT(8) dex
d@ OKg, 00 o 00

(14)

While the first partial derivative is straightforward, the second requires some more
thought because the dual weights a are the solution of the 2-norm SVM. For more
details on how to compute it we refer to [2]. Discontinuities in this derivative are
expected when data-cases jump in or out of the support vector set. However, the
gradient descent with line search procedure works well in practice. Note that for
each gradient step we need to solve a QP for the SVM. However, this procedure
is much more efficient than cross-validation which would need to check a number
of grid-points exponential in the number of parameters, which is at least a dozen
in our experiments.

7 Experiments with Combinations of Kernels

We tested our system which weights different models on numerous object cate-
gories. Each image within a category is associated with a class label, however the
objects are not segmented within an image. We used some of the classes from
previous experiments and and collected an additional set of classes consisting of

4We show the case without bias term for simplicity, but bias was included in our experiments.

28

200 images of 3 different faces taken against varying backgrounds and lighting
conditions. Examples of the face images are shown in Figure 1. For the 2-part
models up to 100 detected interest points were used, and for the 4-part models up
to 20 interest points. Typically 100 training images and up to 250 testing images
were used.

Training a classifier proceeds as follows: First, learn a suite of generative
models for each class using the training data only. In case we classify against
background we only train models on the foreground class. Next, extract Fisher
Scores from all models and train weights w4 by minimizing the span bound. The
weighted scores are used to construct a single kernel K iz which is used to train
a 2-norm SVM, still only using training data. The kernel and dual weights o for
the support vectors are then used in the usual way to predict the class label of test
cases.

7.1 Feature Selection

The generative models contain numerous parameters from which Fisher Scores
are extracted and it is unclear, in general, which components of the model(s) are
important for classification tasks. Figure 14 illustrates the resulting weights after
minimizing the LOO bound. We observe that the relative weight of features vary
for each classification task, thereby giving us a deeper understanding of the im-
portance of these model components for a particular task. Table 3 illustrates the
effects on performance as subsets of ‘good’ and ‘bad’ features are removed. We
observe that the weights obtained from the LOO procedure are good indicators
of generalization ability of a particular feature. Parameter selection for the “un-
weighted” procedure was done using 10 fold cross validation (XVal) by varying
both C' and a single weight for all the models W in log steps from [—9 : 3 : 9].

7.2 Model Selection

We have argued above that selecting for individual features becomes computa-
tionally difficult and subject to over-fitting when the number of LOO optimized
parameters is too high. We address this issue by assuming each model has the
same weight for each of its extracted fisher scores (i.e. the weights are tied across
features within a model). We apply the LOO Span Bound described above to
appropriately weight the models for maximum generalization performance. We
generate separate models based on: (1) Shape and Appearance, (2) 2/4 model
parts, (3) 4 different interest point detectors. This results in 16 models for each

29

Leopards

04 Leopards

Weight Scale Index

Faces vs Background

0.45
Faces Background

o
=

P o

w %
= T=1 T

[

=

Scale
o X
Nooa

Weight

01

Weight Scale Index

Figure 14: Determining which model parameters are most useful for a particular classifi-
cation task. Higher weights indicate more important features. Fisher Scores are extracted
from a 3 part diagonal covariance model with 10 dimensional appearance model of the
foreground class using the KB detector. 100 training examples were used. Position is
conditioned on location of first model part so the shape model is only optimized over 2
parts. M/V indicates mean/variance, S/A indicates Shape/Appearance and 1/2/3 indicates
the part within a model. Each group has 2 or 10 bars corresponding the number of di-
mensions. E.g. “VA2” indicates a group of 10 variance parameters for the appearance
model of part 2. (Top) Leopards vs. Background classification task. Early coefficients in
the appearance model are the most useful dimensions for classification. (Bottom) Faces
vs. Background classification task. The Shape model appears to be more useful for clas-
sification. The consistent detection of facial features by the KB detector makes the shape
model relatively more important.

30

Unweighted | Weighted | 10% | 20% | —10% | Others
leopards vs. BG | 91.3 94.3 89 90 62 88 [7]
P1 vs. P3 86 89.8 82.2 | 81.1 | 67 -

Table 3: The effect of weighting and removing features on performance. Unweighted:
performance using XVal on a single weight for all dimensions and a slack parameter.
Weighted: performance after minimizing the LOO-span bound on the weights of each
model. 10%/20%: performance using only the top 10% and 20% of the relevant dimen-
sions. —10%: performance using the worst 10%. Others: the performance of previous
constellation model algorithms. Note that [8] uses 6-part models including occlusion and
typically 2 — 4 times more training examples.

Unweighted | Weighted | 1 2 —1 | Others
motorcycles vs. BG | 92.6 92.6 7721 89.6 | 72 96.7 [7]
leopards vs. BG 934 94.8 90.5 |1 93.7 | 69.1 | 88 [7]
airplanes vs. BG 89.8 91.4 80.6 | 87.2 | 65.4 | 93.3[7]
P2 vs. P3 83.3 92.4 92.7 193.0 | 679 | -

Table 4: The effect of weighting and removing models on performance. Un-
weighted/Weighted/Others: same as Table 3. 1/2: the performance using only the best
model/performance using the first and second best model. —1: performance using the
worst model. 100 training images were used.

class. Figure 16 shows the evolution of the weights and the corresponding change
in test error on a typical classification task.

Figure 15 illustrates that the LOO procedure selects different combinations of
models depending on the particular classification task at hand. These optimized
combinations of models yield an increase in classification performance over the
XVal procedure on the unweighted models (see Table 4 and Table 5).

In addition, we study the effect of training on a subset of the models based
on their optimized weights from the LOO procedure (see Figure 16 Left, and Ta-
ble 4). We notice that training the Xval procedure with only the best models results
in good performance, while training using only the models with poor weights re-
sults in low classification performance. This procedure can be used to select the
best models for a particular classification task, allowing for computational savings
during detection.

31

Weight Scale

Weight Scale

Airplanes K10° Leopards <10° Motorcycles

Weight Scale

Model Model Model

Plvs.P3 x10° Plvs. P2 X107 P2vs. P3

Weight Scale

Model

Figure 15: The effects of weighting models on different classification tasks. K/H/R/D
indicate KB/mHes/mHar/DoG detectors. 2/4 indicates Two/Four part models. S/A indi-
cates Shape/Appearance models. E.g. “K2A” corresponds to a 2-part appearance model
using the KB detector. Top Row. (Left) Airplanes vs. Background. (Center) Leopards vs.
Background. (Right) Motorcycles vs. Background. Different combinations of models are
selected for a particular classification task. Bottom Row. Performance on People Faces
classification tasks. Notice that models created using mHar seem to be the best predictors
of generalization ability. Performance using weighted models, from left to right, of 91.45,
92, and 92.42 respectively.

KB | mHar | mHes | DoG | Unweighted | Weighted
PlvsP2 | 76.6 | 82.8 | 72.3 | 61 88.2 92.8
PlvsP3 | 643 | 852 |73.6 | 69.1 | 89.7 93.6
P2vsP3 | 74.6 | 824 | 81.1 | 64.7 | 90.1 92.8

Table 5: Performance on discriminating between faces in the People Face data-set.
KB/mHar/mHes/DoG: performance using Appearance/Shape models created using only
the the given detector. Unweighted: performance using models of all detectors with a sin-
gle weight. Weighted: performance after LOO optimization of the weights for the models.
Notice the relatively poor performance using only the KB or mHes on these classification
tasks. 50 training images used, 2-part, 20 PCA coefficient models.

32

Percent Error

0351

0.3F

0251

0.2F

0151

0.1

0.05F

P2 vs. P3

Leopards P2vs. P3

—@— Best Models
=== Worst Models

Percent Error
Weight Scale

0

2

G s 10 I 14 1 0 50 100 . 150 200 250 0 200 400 600 800
Number Models Iteration Iteration

Figure 16: (Left) Performance on the Leopards vs. Background classification task as a
function of the number of models used. Circles indicates when the best models are used,
i.e. the index 2’ would indicate that the two best models were selected. Triangles indi-
cate that the worst models were used, i.e. index ‘2’ indicates that the worst two models
were used. Models were weighted equally during classification. Each point generated by
conducting Xval over the weights and slack parameter using only the specified models.
(Center) Typical example of test error change during the LOO procedure using initial-
ization parameters from Xval as a function of the number of iterations. (Right) Typical
evolution of model weights for a combination of 4 models as a function of the number of
iterations. Plot of weight scales where the weight scale is defined as as function of the
model weight w: 02 = 1/w,. Note that certain models become weighted more or less
heavily emphasized as we progress in optimization.

33

1000

1200

7.3 Integrating Unlabelled Data and Kernel-Combination — The
Caltech 101

We next performed an experiment using our hybrid model which integrated both
the use of unlabelled data in a semi-supervised learning paradigm as well as com-
bining multiple models into a single classifier.

The Caltech 101 object category data-set® consists of 101 object categories
with varying numbers of examples in each category (from about 30 to over 1000).
The challenge of this data-set is to learn representations for many different object
classes using a limited number of training examples. The variability of this data-
set is mostly evident between different categories of objects rather than within a
single category. Objects within a particular category are often somewhat homoge-
nous in both appearance and pose.

For our experiments we used the following experimental paradigm. First we
created a broad underlying generative model using 5 randomly selected training
images from all 101 classes. In the parlance of Section 5, this set of images corre-
sponds to our set of unlabelled trained examples. Generative models from this set
of unlabelled training examples were created using interest points detected from
three different detectors, KB, mHess, mHar. Fisher Scores were then extracted
from the generative models for all classes within the Caltech 101. Fisher Scores
from each generative model were concatenated to form a single long vector to be
used in the SVM classifier. To train our SVM classifier we used 15 training ex-
amples and up to 30 test examples. We used the same cross-validation procedure
to find the hyper-parameters as described in the multi-class experiments above.

Figure 17 illustrates our results. These results show that utilizing the hybrid
approach yields substantial improvements in classification performance over the
generative approach and that additional performance gains are realized when gen-
erative models created using different underlying feature detectors are combined
to form a single classifier. These experiments illustrate the utility in using a semi-
supervised approach as well as combining kernels in improving classification per-
formance.

8 Discussion and Conclusions

We have explored a method for obtaining discriminative classifiers from genera-
tive models of visual categories. It works in two steps: first train generative mod-

3 Available at http://www.vision.caltech.edu/html-files/archive.html

34

Caltech 101 Results

H Generative
L [THybrid
HE ult—Model Hybrid

357
.312 I -321
75/2 33/3 22/4
INnterest Points / Parts

Performance
O 0O 0O O ©

O F N @ d i

Figure 17: Performance on the Caltech 101 object category data-set when different num-
bers of parts and interest points are used. Each set of columns indicate a different number
of parts and interest points used, i.e. 33/3 indicates that a maximum of 33 interest points
were detected in each image and that a 3 part model was used. Performance is measured
by first calculating the percent of correctly classified points in each class and then taking
the average over all classes (this corresponds to the average of the main diagonal of the
confusion table). First column in each set: pure generative approach using interest points
from the KB interest point detector. l.e. a generative model is created for all 101 cate-
gories and test examples are assigned to the generative model with the highest posterior
probability. Second column: hybrid approach where Fisher Scores were extracted from
a generative model made using the KB interest point detector. See text for more details.
Third column: hybrid approach when three (KB, mHar, mHess) different interest point
detectors are used and a generative model is created for each detector. Fisher Scores are
concatenated into a single vector. Fei Fei et al. [6] managed 16% using a constellation
model with 3 parts and integrating prior information into their model. For a similar 3-part
constellation model with no prior information we achieve 14.3% using only the generative
models, 26.1% using our hybrid approach, and 35.7% using our multiple model hybrid
approach. 15 training examples were used for all experiments.

35

els, then from those generative models calculate Fisher Kernels and use them for
classification. This method achieves the best of both the generative and discrim-
inative worlds: for generative approaches it is robust to occlusion and clutter, it
may be trained from few examples, it benefits from prior knowledge. Additionally,
the generative part of the model may be trained incrementally. Its discriminative
nature results in superior classification performance.

Our experiments in Section 4 show that the performance of our hybrid ap-
proach is not inferior to that of a traditional generative constellation model. Rather,
performance is significantly better there and is in line with the current results in
the literature. The advantage of the hybrid approach is particularly evident when
the categories to be classified are very similar, such as the faces of different peo-
ple. In addition, we controlled for possible overfitting to background statistics and
found that this may be an issue.

Sections 5 show that our hybrid architecture lends itself readily to incorpo-
rating unlabelled examples. This is achieved by training generative models on
large sets of unlabelled pictures which may contain relevant information. This
process provides considerable performance improvement when learning specific
categories (faces in our experiments) with very few training examples. As one
would expect, we find that these results vary with the statistics of the images used
to construct the generative model. Figure 10 shows that learning the statistics un-
related categories such as Text or Leopards will not help in distinguishing between
Faces, while the most useful generative model has the same statistics as the Faces
data-set.

In Section 6 we show that multiple models may be readily combined within
our hybrid method. Our experiments in Section 7 suggest that the system is able
to determine automatically which models provide the most valuable information
for a given classification task. This indicates that a higher level of automation has
been achieved: we do not need to ask an expert vision engineer to craft the best
recognition strategy for a given task; rather, we can let our hybrid system self-tune
to use whatever information is most valuable. Finally, we illustrate that combining
both our semi-supervised learning approach and the ability to combine multiple
models yields strong performance on the Caltech 101 object category data-set
and that this performance is far superior to that of the corresponding generative
approach.

36

References

[1]

(2]

[10]

[11]

[12]

[13]

Michael Burl and Pietro Perona. Recognition of planar object classes. Computer
Vision and Pattern Recognition (CVPR), page 223, 1996.

O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple param-
eters for support vector machines. Machine Learning, 46:131-159, 2002.

J. L. Crowley. A representation for shape based on peaks and ridges in the difference
of low pass transform. Pattern Recognition and Machine Intelligence (PAMI), 1984.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. JRSSB, 39:1-38, 1977.

Gyuri Dorko and Cordelia Schmid. Object class recognition using discriminative
local features. Technical Report RR-5497, INRIA, 2005.

L. Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few
training examples. Computer Vision and Pattern Recognition (CVPR) Workshop on
GMBYV, 2004.

R. Fergus. Visual Object Recocogntion. Thesis, Department of Engineering Science,
University of Oxford, 2005.

R. Fergus, P. Perona, and A. Zisserman. Object class recognition by unsupervised
scale-invariant learning. In Computer Vision and Pattern Recognition (CVPR), vol-
ume 2, page 264, 2003.

C. Gold, A. Holub, and P. Sollich. Bayesian approach to feature selection and pa-
rameter tuning for support vector machine classifiers. Neural Networks, 2005.

A. Holub, M. Welling, and P. Perona. Combining generative models and fisher
kernels for object class recognition. International Conference on Computer Vision
(ICCV), 2005.

Alex Holub and Pietro Perona. A discriminative framework for modeling object
class. Computer Vision and Pattern Recognition (CVPR), 2005.

T. Jaakkola, M. Diekhans, and D. Haussler. Exploiting generative models in discrim-
inative classifiers. In Advances in Neural Information Processing Systems (NIPS),
volume 11, pages 487—493, 1999.

T. Jaakkola and D. Haussler. Probabilistic kernel regression models. In Proceedings
of the Seventh International Workshop on Artificial Intelligence and Statistics, 1999.

37

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Timor Kadir and Michael Brady. Saliency, scale and image description. [Interna-
tional Journal of Computer Vision (IJCV), 45(2):83-105, 2001.

B. Leibe and B Schiele. Scale-invariant object categorization using a scale-adaptive
mean-shift search. DAGM-Symposium, pages 145-153, 2004.

D. Lowe. Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision (IJCV), 60:91-110, 2004.

A. Ng and M. Jordan. On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes. In Advances in Neural Information Processing
Systems (NIPS), volume 12, 2002.

A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and boosting for
generic object detection and recognition. European Conference on Computer Vision
(ECCV), pages 71-84, 2004.

M. Opper and O. Winther. Gaussian processes and svm: Mean field and leave-one-
out. In Advances in Large Margin Classifiers, pages 311-326. MIT Press, 2000.

H. Schneiderman. Learning a restricted bayesian network for object detection. Com-
puter Vision and Pattern Recognition (CVPR), pages 639-646, 2004.

B. Schoelkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

M. Seeger. Covariance kernels from bayesian generative models. In Advances in
Neural Information Processing Systems (NIPS), volume 14, pages 905-912, 2002.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, 2004.

A. Torralba, K.P. Murphy, and W.T. Freeman. Sharing visual features for multiclass
and multiview object detection. Computer Vision and Pattern Recognition (CVPR),
2004.

Koji Tsuda, Shotaro Akaho, Motoaki Kawanabe, and Klaus-Robert Mller. Asymp-
totic properties of the fisher kernel. In citeseer.ist.psu.edu/tsudaO3asymptotic.html,
2003.

S. Ullman, M. Vidal-Naquet, and E. Sali. Visual features of intermediate complexity
and their use in classification. Nature Neuroscience, pages 682—687, 2002.

V. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

38

[28] N. Vasconcelos, P. Ho, and P. Moreno. The kullback-leibler kernel as a framework
for discriminant and localized representations for visual recognition. European Con-
ference on Computer Vision (ECCV), pages 430—441, 2004.

[29] C. Wallraven, B. Caputo, and A.B.A. Graf. Recognition with local features: the
kernel recipe. International Conference on Computer Vision (ICCV), pages 257-
264, 2003.

[30] M. Weber., M. Welling., and P. Perona. Towards automatic discovery of object
categories. Computer Vision and Pattern Recognition (CVPR), page 2101, 2000.

39

