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1 Introduction

Convolutional sparse coding remedies the shortcomings of the traditional (patch-based) sparse coding by modeling shift invari-
ance directly. This yields more parsimonious coding schemes but increases complexity by coupling the coding problem for
neighboring image patches where they overlap. Here we describe an optimization approach which exploits the separability of
convolution across bands in the frequency domain in order to make dictionary learning efficient. Our presentation follows the
notation in the paper of [Bristow et al. IEEE CVPR 2013] but includes additional implementation details and corrects some
inaccuracies and typos. 1

2 Convolutional coding in the frequency domain

The objective for convolutional sparse coding is

arg min
d,z

1

2
‖x−

K∑
k=1

dk ∗ zk‖22 + β

K∑
k=1

‖zk‖1

s.t. ‖dk‖22 ≤ 1 ∀k = 1, . . . ,K,

(1)

where dk ∈ RM is the k-th filter, zk ∈ RD is the corresponding sparse feature map, and x ∈ RD−M+1 is an image. (Note that
M � D.) For simplicity, we discuss using 1-dimensional image signals, but this generalizes to 2-dimensional image signals
as well. It is well known that convolution corresponds to element-wise multiplication in the frequency domain, so it is more
efficient to rewrite this objective in the frequency domain. Unfortunately this cannot be done due to the `1 penalty term, which
is not rotation invariant. One way to work around this problem is by introducing two auxiliary variables s and t so that we can
optimize part of the problem in the frequency domain and another part in the spatial domain. The objective can be rewritten as

arg min
d̂,s,ẑ,t

1

2D
‖x̂−

K∑
k=1

d̂k � ẑk‖22 + β

K∑
k=1

‖tk‖1

s.t. ‖sk‖22 ≤ 1 ∀k = 1, . . . ,K

sk = F−1d̂k ∀k = 1, . . . ,K

tk = F−1ẑk ∀k = 1, . . . ,K

sk = Csk ∀k = 1, . . . ,K,

(2)

where x̂, d̂k, ẑk ∈ CD, sk, tk ∈ RD, and F−1 is the inverse discrete Fourier transform matrix. The original variables d and
z are moved to the frequency domain, and are now denoted as d̂ and ẑ, while the auxiliary variables s and t take their place
in the spatial domain and constraints are added to couple them together. The careful observer may also noticed that although
originally dk was M dimensional, sk is now D dimensional. The mapping matrix C zeros out any entries of sk which are
outside the desired spatial support so the final constraint assures the learned dictionary elements have small spatial extent.

Notation: F is the discrete Fourier transform matrix and F−1 is the inverse DFT matrix defined as F−1 = 1
DF†. Since the

transform matrix F is orthogonal, the squared `2-norm in the spatial and frequency domains are equivalent up to a scale factor
(i.e., D‖s‖2 = ‖ŝ‖2). The matrix C is the mapping matrix that truncates a vector RD → RM and pads the truncation with
zeros back to RD. This is can be defined as the product of two matrices C = PT, where P is our padding matrix (a D ×M
identity matrix) and T is our truncation matrix (a M × D identity matrix). For the vectors d, s, z, and t where the subscript
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is dropped, we refer to a super vector with K components stacked together (e.g. s = [sT1 , . . . , s
T
K ]T ). The same applies for the

vectors in the frequency domain, ŝ = [(Fs1)†, . . . , (FsK)†]†.

3 Optimization by ADMM

To solve this problem with variables in both the frequency and spatial domains, the Alternating Direction Method of Multipliers
(ADMM) approach is used. We begin by writing the augmented Lagrangian that incorporates the equality constraints coupling
the auxiliary variables s, t to the original variables d, z.

L(d̂, s, ẑ, t,λs,λt) =
1

2D
‖x̂−

K∑
k=1

d̂k � ẑk‖22 + β

K∑
k=1

‖tk‖1

+

K∑
k=1

µs

2
‖F−1d̂k − sk‖22 +

K∑
k=1

λTsk(F−1d̂k − sk)

+

K∑
k=1

µt

2
‖F−1ẑk − tk‖22 +

K∑
k=1

λTtk(F−1ẑk − tk)

s.t. ‖sk‖22 ≤ 1 ∀k = 1, . . . ,K

sk = Csk ∀k = 1, . . . ,K,

(3)

where λsk, µs, λtk, and µt are the Lagrange multipliers associated with s and t respectively.

Subproblem z:

ẑ∗ = arg min
ẑ
L(ẑ; d̂, s, t,λs,λt)

= arg min
ẑ

1

2D
‖x̂−

K∑
k=1

d̂k � ẑk‖22 +

K∑
k=1

µt

2
‖F−1ẑk − tk‖22 +

K∑
k=1

λTtk(F−1ẑk − tk)

= arg min
ẑ

1

2D
‖x̂− D̂ẑ‖22 +

µt

2D
‖ẑ− t̂‖22 +

1

D
λ̂
†
t(ẑ− t̂)

= (D̂†D̂ + µtI)−1(D̂†x̂ + µtt̂− λ̂t),

(4)

where D̂ = [diag(d̂1), . . . , diag(d̂K)] is D ×KD. Although the matrix D̂†D̂ is quite large, KD ×KD, it is sparse banded
and has an efficient variable reordering such that ẑ∗ can be found by solving D independent K ×K linear systems.

Subproblem t:

t∗k = arg min
tk
L(tk; d̂k, sk, ẑk,λsk,λtk)

= arg min
tk

β‖tk‖1 +
µt

2
‖F−1ẑk − tk‖22 + λTtk(F−1ẑk − tk)

= arg min
tk

β‖tk‖1 +
µt

2
‖zk − tk‖22 + λTtk(zk − tk)

(5)

Given zk and λtk in the spatial domain, it turns out that each coefficient in tk is independent of all other coefficients,

t∗ki = arg min
tki

µt

2
(zki − tki)2 + λtki(zki − tki) + β|tki|. (6)

Which can be efficiently compute in closed form using the shrinkage (soft-thresholding) function,

t∗ki = sign
(
zki +

λtki
µt

)
·max

{∣∣zki +
λtki
µt

∣∣− β

µt
, 0

}
. (7)
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Subproblem d:

d̂∗ = arg min
d̂
L(d̂; s, ẑ, t,λs,λt)

= arg min
d̂

1

2D
‖x̂−

K∑
k=1

d̂k � ẑk‖22 +

K∑
k=1

µs

2
‖F−1d̂k − sk‖22 +

K∑
k=1

λTsk(F−1d̂k − sk)

= arg min
d̂

1

2D
‖x̂− Ẑd̂‖22 +

µs

2D
‖d̂− ŝ‖22 +

1

D
λ̂
†
s(d̂− ŝ)

= (Ẑ†Ẑ + µsI)−1(Ẑ†x̂ + µsŝ− λ̂s)

(8)

where Ẑ = [diag(ẑ1), . . . , diag(ẑK)] is D ×KD. Like subproblem z, there is an efficient variable reordering such that d̂∗ can
be found by solving D independent K ×K linear systems.

Subproblem s:

s∗k = arg min
sk
L(sk; d̂k, ẑk, tk,λsk,λtk)

= arg min
sk

µs

2
‖F−1d̂k − sk‖22 + λTsk(F−1d̂k − sk)

= arg min
sk

µs

2
‖dk − sk‖22 + λTsk(dk − sk)

s.t. ‖sk‖22 ≤ 1

sk = Csk

(9)

An equivalent formulation is to drop the spatial support constraint on s and instead preserve only the M coefficients of dk and
λsk associated with the small spatial support.

s∗k = arg min
sk

µs

2
‖Cdk − sk‖22 + (Cλsk)T (Cdk − sk)

s.t. ‖sk‖22 ≤ 1.
(10)

The coefficients of sk outside the spatial support (where Cdk is 0) are automatically driven to 0 by the `2 norm (see appendix
for details).

We can solve the unconstrained version of this problem by pulling the linear term into the quadratic, completing the square

s̃∗k = arg min
sk

µs

2
‖Cdk − sk‖22 + (Cλsk)T (Cdk − sk)

= arg min
sk

µs

2
‖d̄k − sk‖22 + λ̄

T
sk(d̄k − sk) where d̄k = Cdk, λ̄sk = Cλsk

= arg min
sk

µs

2
‖sk −

(
d̄k +

1

µs
λ̄sk

)
‖22 −

µs

2
‖d̄k +

1

µs
λ̄sk‖22 +

µs

2
d̄k

T
d̄k + λ̄

T
skd̄k

= arg min
sk

µs

2
‖sk −

(
d̄k +

1

µs
λ̄sk

)
‖22

The optimal solution to the unconstrained problem (denoted by s̃k) is thus given in closed form by

s̃k = Cdk +
1

µs
Cλsk, (11)

Since this objective is isotropic, we can simply enforce the norm constraint by projecting the unconstrained solution back on to
the constraint set:

s∗k =

{
‖s̃k‖−12 s̃k if ‖s̃k‖22 ≥ 1

s̃k otherwise
. (12)

Lagrange Multiplier Update:

λ(i+1)
s = λ(i)

s + µs(d
(i+1) − s(i+1)) (13)

λ
(i+1)
t = λ

(i)
t + µt(z

(i+1) − t(i+1)) (14)
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Penalty Update:

µ(i+1) =

{
τµ(i) if µ(i) < µmax

µ(i) otherwise
(15)

Algorithm 1 Convolutional Sparse Coding using Fourier Subproblems and ADMM

1: Initialize s(0), z(0), t(0),λ(0)
s ,λ

(0)
t , µ

(0)
s , µ

(0)
t

2: Perform FFT s(0), z(0), t(0),λ(0)
s ,λ

(0)
t → ŝ(0), ẑ(0), t̂(0), λ̂

(0)

s , λ̂
(0)

t
3: i = 0
4: repeat
5: dictionary update:
6: Solve for d̂(i+1) given ŝ(i), ẑ(i), λ̂

(i)

s using Eq. 8
7: Perform inverse FFT d̂(i+1) → d(i+1)

8: Solve for s̃(i+1) given d(i+1) using Eq. 11
9: Solve for s(i+1) by projecting s̃(i+1) using Eq. 12

10: code update:
11: Solve for ẑ(i+1) given t̂(i), λ̂

(i)

t , d̂(i+1) using Eq. 4
12: Perform inverse FFT ẑ(i+1) → z(i+1)

13: Solve for t(i+1) given z(i+1),λ
(i)
t using Eq. 5

14: Update Lagrange multiplier vectors using Eq. 13 and Eq. 14
15: Update penalties using Eq. 15
16: Perform FFT s, t,λs,λt → ŝ, t̂, λ̂s, λ̂t

17: i = i+ 1
18: until d̂, s, ẑ, t has converged

4 Effect of ADMM parameters on optimization

This section aims to provide some intuition regarding the hyper-parameters of FCSC optimization, specifically we want to
understand how the hyper-parameters interact with one another in terms of the convergence rate and the objective value. In all
our experiments, we use images that are contrast normalized. The convergence criteria is that we’ve reach a feasible solution
(i.e., s = F−1d̂ and t = F−1ẑ).

The FCSC algorithm has three hyper-parameters, µs, µt, and β. µs can be thought of as the parameter that control the
convergence rate of the dictionary learning, as it is the step-size at which we move towards a feasible solution. Likewise,
µt is the same for the coding. The hyper-parameter β in our original objective controls the sparsity of the codes found.

(a) (b) (c)

Figure 1: (a) Example A. odoratum grass pollen grain image (SEM, 6000x). (b) Visualization of sparse coding of pollen
texture. Pseudo-color indicates dictionary element with the largest magnitude coefficient (c) Corresponding dictionary learned
from images of pollen texture using convolutional sparse coding with β = 1
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4.1 Effect of step-size parameters on coding

First we look at the coding hyper-parameters; using a pre-trained dictionary, we vary β and µt. Since β controls the sparsity
of the codes, we expect (and the results show) that as it increases the reconstruction error would also increase. Perhaps not
surprisingly, the same behavior is observed w.r.t. the objective value. As β increases the codes become more sparse to the point
where they’re all zeros. At that point the objective value is just the reconstruction error with a vector of zeros. We see that
both the reconstruction error and the objective value at convergence increase slowly as µt increases. In another experiments
(not shown) we have seen the objective value be roughly the same for all values of µt and β = 0, when a minimum number of
iterations is enforced (in those experiments it was 10). These iterations are necessary to overcome the “memory” of the initial
value of t in the ADMM iteration.

In terms of the convergence rate, for all values of β we generally see that the number of iterations required before convergence
decreases as µt increases. This is also to be expected as we previously described µt as the step-size towards a feasible solution.
Ignoring β = 0, we generally observe that the number of iterations goes down as β increases for any particular value of µt.
This is a bit surprising, but can possibly be explained by considering how sparsity is induced. We know that the shrinkage
function is used to solve the t-subproblem, and that at each iteration the codes are shrunk by β

µt
towards zero. If β is large

enough, then µt does not grow enough at the early iterations such that additional coefficients of z are not zeroed out. This in
turn magnifies the coefficients of λt to make z more like t, thus leading to faster convergence.

4.2 Effect of step-size and sparsity parameters on dictionary learning

In the second experiment, we fix the step-size µs and simultaneously learn the dictionary and the codes. Here the results are
quite different from before. We see that µt must be strictly greater than β for FCSC to learn anything meaningful. When
β = 1 both the reconstruction error and the objective value are largely unchanged w.r.t. µt. Finally in terms of convergence, we
continue to observe that as µt increases the number of iterations to convergence decreases for all values of β, consistent with
our first experiment.

4.3 Effect of step-size on runtime and accuracy

In the third experiment, we fix the β hyper-parameter equal to 1 and look at how µs and µt interact. With β fixed, we see that
the objective values increase as µt and µs increase in the domain µs > 2000 and µt > 5. This seems to be a result of the
optimization enforcing constraints “too quickly”. For small values of µt and µs (not shown) we also see erratic behavior. If
we ignore the region where µt is less than 5, we see that both the objective and the reconstruction error are smooth w.r.t. the
hyper-parameters. This is quite nice, as we can choose a computational trade-off between lowering the objective value and the
number of iterations to convergence.

We may also ask whether the optimization produces qualitatively “good” filters. A good learned filter shouldn’t resemble
the initialization and in general we expect to see Gabor-like oriented edge filters. After examining some learned filters that
were subjectively good/bad, we defined goodness as having a standard deviation greater than 0.7. Much higher than the flat
initialization which has a standard deviation of 0.01 and other bad looking filters that had standard deviation less than 0.6 in
the cases we examined. While not a perfect measure by any means, we can see in the next set of figures that the reconstruction
error is indeed correlated with the goodness measure.
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Figure 2: Effect of µt, β on coding with fixed dictionary.
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Figure 3: Effect of µt, β on joint coding and dictionary learning (µs = 515).

Appendix A - Least-squares filters with constrained spatial support

To see why Eq. 10 is equivalent to the previous argmin (Eq. 9), consider the following problem

s∗ = arg min
s
‖d− s‖22 + λT (d− s)

s.t. s = Cs

s∗ =

[
s∗1
s∗0

]
= arg min

s1,s0
‖d1 − s1‖22 + ‖d0 − s0‖22 + λT1 (d1 − s1) + λT0 (d0 − s0)

s.t. s0 = 0,

where we split each vector into two sub-vectors: the part that corresponds to small spatial support (denoted with 1) and the part
that does not (denoted with 0). By splitting s into s1 and s0, we can think about each as separate problems as there are no terms
that contain both.

s∗1 = arg min
s1
‖d1 − s1‖22 + λT1 (d1 − s1)

= arg min
s1
‖Td− s1‖22 + TλT (Td− s1)

s∗0 = arg min
s0
‖d0 − s0‖22 + λT0 (d0 − s0)

s.t. s0 = 0

= arg min
s0
‖s0‖22

So the s1 problem amounts to an unconstrained linear least squares; the s0 problem can be transformed into an equivalent
unconstrained problem with a trivial solution when certain conditions hold. These conditions are that d0 and λ0 are null
vectors. The matrix C does exactly this, as it preserves the coefficients of any vector corresponding to the small spatial support
and zeros out the rest.
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Figure 4: Joint effect of µt, µs on solution quality and run time (β = 1)
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Appendix B - Implementation details

During our discussion of subproblems z and d, we mentioned an efficient variable reordering to find the optimal solution by
solving D independent K ×K linear systems. First we define the following matrices

Ẑ = [ẑ1, . . . , ẑK ]
†
, T̂ =

[
t̂1, . . . , t̂K

]†
, D̂ =

[
d̂1, . . . , d̂K

]†
, Ŝ = [ŝ1, . . . , ŝK ]

†

Λ̂t =
[
λ̂t1, . . . , λ̂tK

]†
, Λ̂s =

[
λ̂s1, . . . , λ̂sK

]†
D̂x =

[
d̂1 � x̂, . . . , d̂K � x̂

]†
, Ẑx = [ẑ1 � x̂, . . . , ẑK � x̂]

†

and denote Ẑi, T̂i, D̂i, Ŝi, Λ̂ti, Λ̂si, D̂xi, and Ẑxi to be the i-th column of their respective matrices.2 We can then solve the
subproblem z with

Ẑ∗i = (D̂iD̂
†
i + µtI)−1(D̂xi + µtT̂i + Λ̂ti),

and subproblem d with

D̂∗i = (ẐiẐ
†
i + µsI)−1(Ẑxi + µsŜi + Λ̂si).

In Eq. 8, we solved for d̂k which the inverse Fourier transform needs to be applied to get dk. However, since only a sub-vector
of dk is needed computing the inverse of the entire vector is wasteful. If we look at the definition of C, we see that we can
define a new matrix Φ = TF−1 that will invert just the part of the vector we need. And the smaller M is with respect to D,
the greater the savings we gain. We can redefine Eq. 11 and Eq. 12 as

s̃k = Φd̂k +
1

µs
Φλ̂sk. (16)

s∗k = P

{
‖s̃k‖−12 s̃k if ‖s̃k‖22 ≥ 1

s̃k otherwise
(17)

Our entire discussion thus far has revolved around a single image, to handle multiple images is quite straightforward and only
requires us to change Eq. 8,

d̂∗ = (

N∑
x=1

Ẑ†xẐx + µsI)−1(

N∑
x=1

Ẑ†xx̂x + µsŝ− λ̂s). (18)

2Note that T̂ is unrelated to th truncation matrix T
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