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Abstract

This paper addresses the problem of building a spatio-
temporal model of the world from a stream of time-stamped
data. Unlike traditional models for simultaneous localiza-
tion and mapping (SLAM) and structure-from-motion (SfM)
which focus on recovering a single rigid 3D model, we
tackle the problem of mapping scenes in which dynamic
components appear, move and disappear independently of
each other over time. We introduce a simple generative
probabilistic model of 4D structure which specifies location,
spatial and temporal extent of rigid surface patches by lo-
cal Gaussian mixtures. We fit this model to a time-stamped
stream of input data using expectation-maximization to es-
timate the model structure parameters (mapping) and the
alignment of the input data to the model (localization).
By explicitly representing the temporal extent and observ-
ability of surfaces in a scene, our method yields superior
localization and reconstruction relative to baselines that
assume a static 3D scene. We carry out experiments on
both synthetic RGB-D data streams as well as challenging
real-world datasets, tracking scene dynamics in a human
workspace over the course of several weeks.

1. Introduction

A strategic question for scene understanding is how to
leverage large repositories of images, video and other sen-
sor data acquired over an extended period of time in order
to analyze the content of a particular image. For static rigid
scenes, a classic approach is to use visual SLAM, structure-
from-motion, and multi-view stereo techniques to build up
an explicit model of the scene geometry and appearance.
These methods are well developed and have been scaled up
to increasingly large problems in modeling outdoor and in-
door scenes (see e.g., [1, 32, 10, 20, 9, 3]).

Such a geometric approach to scene understanding can
make strong predictions about a novel test image includ-
ing the camera pose (via feature matching and camera lo-
calization) and the appearance of points or surface patches
projected into the image. However, reconstruction-based
analysis typically neglects dynamic objects that change over

Figure 1. Raw measurements (pointclouds) captured at different
times are aligned and probabilistically merged into a single 4D
model that describes the spatio-temporal geometry of the scene.
Model fitting reasons about occlusion, inferring complete surfaces
even when they may not have been occluded at some times. The
resulting integrated space-time map supports further analysis such
as change detection and segmentation of dynamic objects.

time and are treated as outliers with respect to the esti-
mation of a single rigid scene model. This problem be-
comes more acute as data is integrated over longer periods
of time, during which an increasing proportion of objects in
the scene may move non-rigidly. For example, people move
on the time-scale of seconds while furnishings may shift on
the time-scale of days and architecture and landscapes over
years.

In this paper, we investigate how the scope of such tech-
niques can be extended by registering observations to a 4D
reconstruction that explicitly represents geometric changes
over time. We focus specifically on space-time mapping
of indoor scenes where RGB-D sensors provide streams of
high-quality geometric data and odometry over short time
intervals and limited fields of view, but data acquired, e.g.
on different days, is inconsistent due to changes in the
scene. The key inferential challenge is thus distinguish-
ing sensor noise and reconstruction errors from genuine
changes in the scene geometry.

We describe a simple generative probabilistic model for
4D structure in which surface patches, specified by a spa-
tial location, orientation and temporal extent, generate point
and normal observations over time. These observations are
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only recorded by the sensor if they fall within the spatio-
temporal field of view of a measurement and are not oc-
cluded by other surfaces patches which exist at that same
time. We assume the scene is static and rigid for the dura-
tion of each measurement and leave the problem of spatio-
temporal grouping of surface patches into object tracks
across time points as a post-process. Fitting the model to
a time-stamped stream of measurements yields an estimate
of the 4D scene structure as well as the location of the cam-
era at each measurement time point. We term this problem
Space-Time SLAM since it generalizes the standard offline
RGB-D SLAM problem with a 4th temporal dimension1.

The chief merits of this approach are in (1) providing ro-
bust pose estimation in the presence of changing scenes and
(2) producing scene reconstructions that more accurately re-
flect the scene geometry at any given time point. In par-
ticular, by reasoning about occlusion, the model is capable
of inferring amodal completion of surfaces which may be
hidden by an object during some times but later revealed
when the object moves. We quantify these benefits rela-
tive to baselines that lack an explicit temporal model using
a synthetic dataset where ground-truth geometry and pose
are known. We also perform comparisons using challeng-
ing data collected from several indoor workspaces over the
course of several weeks. Finally, we demonstrate the utility
of the recovered 4D model in segmenting dynamic objects
by simply clustering surface patches based on their tempo-
ral extent.

2. Related work
RGB-D SLAM Mapping from images has a long history
in the robotics and computer vision literature with many re-
cent developments motivated by emerging applications in
3D modeling, augmented reality and autonomous vehicles.
Large-scale structure from motion (e.g., [1, 32, 9]) when
combined with mult-view stereo (e.g., [10]) can yield rich
geometric models but dense correspondence is often diffi-
cult to establish from monocular imagery, particularly for
untextured surfaces common in indoor scenes.

The availability of cheap RGB-D sensors has enabled
rapid progress indoor mapping, where active stereo or ToF
provides very dense 3D structure and allows correspon-
dence and pose estimation to be carried out by rigidly align-
ing scene fragments, e.g., using iterative closest point (ICP),
rather than sparse matching and projective structure estima-
tion techniques used in monocular SLAM. Initial work by
Henry et al. [15] demonstrated the value of RGB-D data
in ICP-based pose estimation while the KinectFusion sys-
tem of Richard et al. [29] demonstrated impressive online
reconstruction.

1We assume the temporal coordinate of each measurement is given
while a full generalization of SLAM would also estimate the 6+1 DOF
camera space-time pose

More recent work, such as ElasticFusion [38], has fo-
cused on improving performance of online real-time recon-
struction and odometry by active updating and loop closure.
To improve accuracy and robustness of offline reconstruc-
tions, Choi et al. used stronger priors on reconstructed
geometry while carrying out global pose-graph optimiza-
tion [6]. Recognition of familiar objects has also been in-
tegrated with SLAM-based approaches using prior knowl-
edge of 3D structure [33] and fusing 2D semantic under-
standing with 3D reconstruction [16, 37]

3D Registration A core component of contemporary
SLAM approaches based on LiDAR or RGB-D sensors is
estimating alignments between pointclouds from successive
measurements. A traditional starting point is iterative closet
point (ICP) [4] which refines a rigid alignment minimizing
mean-square inter-point or point-to-surface distance. How-
ever, the RGB-D fragment alignment problem differs some-
what from the classic problem of aligning range scans (e.g.,
[2]) due to the narrow field of view which often lacks dis-
tinguishing geometric features.

Our approach is based on a family of methods that
model geometry in terms of probability densities (rather
than points, meshes or signed distance functions). Ho-
raud et al. introduced expectation conditional maximiza-
tion (ECM) method for rigid point registration [17]. This
formulation is appealing as it avoids explicit point corre-
spondences and naturally generalizes to multi-way registra-
tion [8] and non-rigid deformation models [27, 12]. Our
model builds on the work of Evangelidis et al., which uses
an ECM-based formulation to align multiple point sets to
a single underlying consensus model [8]. We augment this
density model with a temporal dimension, occlusion rea-
soning, and a richer parameterization of local mixture com-
ponents.

Dynamic Scenes and 4D maps Traditional SfM has pri-
marily focused on recovering structure of a single rigid
scene modeled by sparse keypoints. For dynamic scenes
where correspondence is available in the form of extended
keypoint tracks, multi-body SfM provides an approach to
grouping tracks into subsets, each of which moves rigidly
(e.g., [7, 40]) while non-rigid SfM (e.g., [5]) addresses re-
covery of non-rigid surfaces from such tracks. When corre-
spondence is not available but smooth surfaces are densely
sampled in space-time, surface tracking approaches can be
used to fuse observations (e.g., [26, 28]). Here we focus
on scenarios where the temporal sampling is too sparse to
allow for effective surface or feature tracking.

Related work on the problem of geometry change de-
tection from sparse imagery was investigated by [34] and
[36], who detect geometric changes relative to an existing
model using voxel-based appearance consistency to drive
model updates. Change detection with viewability and oc-
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Figure 2. Observations are explained by a collection of surface patches that exist for some temporal extent and emit point observations into
some unknown local coordinate system. We use a probabilistic mixture model (right) that represents parameters for K patches producing
Nt point observations at each of T time points. The prior probability of a patch emitting an observation at a given time πt depends on
whether the patch exists etk and is visible vtk, which in turn depends on the space-time geometry of the scene (ξk,µk,νk).

clusion was also explored by [11] for aligning observations
to a construction job site plan. The work of [24] focuses on
modeling dynamic appearance by grouping scene feature
points into rectangular planes with an estimated temporal
extent that captures, e.g., changing images on billboards.
Finally, [23] used SfM to estimate geometry and warp im-
ages into a common viewpoint, enabling synthesis of time-
lapse videos from unstructured photo collections. Closest
in spirit to our approach is the work of Schindler and Del-
laert [31] on “4D Cities”, which utilizes bottom-up heuris-
tics for grouping point observations from an SfM pipeline
into building hypotheses and a probabilistic temporal model
to infer the time interval during which buildings exist.

3. Space-time model fitting
We now describe our model for 4D geometry as a col-

lection of surface patches with specified location, spatial
and temporal extents. The model is fit to 3D point obser-
vations using a generative probabilistic approach inspired
by the joint registration methods of Horaud et al. [17] and
Georgios et al. [8].

3.1. Notation and Model Formulation

Surface patches We model the scene as a collection of
K surface patches. Each patch has a mean parameter
(µk,νk) ∈ R3× S2 that describes the location and orienta-
tion. The spatial extent and roughness of the surface patch is
described by corresponding variance parameters (Σk, τk).
Additionally, each patch k has a specific temporal extent
during which it exists in the scene specified by a time inter-
val [ak, bk]. We denote the collection of shape parameters
by X = {(µ1,Σ1,ν1, τ1), . . .} and temporal parameters
by ξ = {(a1, b1), (a2, b2), . . .}. We use the binary vector
etk ∈ {0, 1} to indicate if patch k exists at time t so that
etk = 1 iff t ∈ [ak, bk].

Observations The input data stream consists of obser-
vations of scene structure Y = {y1 . . .yT } at T discrete
times. The observation at time t consists of Nt points with

surface normals yt = {(lit,nit) ∈ R3 × S2}1≤i≤Nt where
lit and nit to denote the location and surface normal asso-
ciated with observation yit. In our experiments this data
comes from a scan acquired by an RGB-D sensor but could
come from other sources (e.g., ToF laser scanner or SfM
reconstruction).

Pose and Occlusion Individual observations are assumed
to be metric but are recorded in an arbitrary local coordi-
nate system specified by unknown pose parameters Θ =
{Rt, tt}1≤t≤T which vary across time. We estimate a rigid
transformation φt mapping each observation into a single
global coordinate system. φt(lit,nit) = (Rtlit+tt,Rtnit).
A patch k may not be visible at time t due to the sensor
placement relative to the scene structure. We use the vari-
able vtk ∈ {0, 1} indicate whether patch k is visible at time
t which depends on the 4D model X and sensor parameters.

Generating Observations from Patches To generate ob-
served data at time t from scene (X , ξ) with a specified
camera placement, we select a surface patch k at random
from those patches present at time t. If the patch is vis-
ible from the sensor position, then we sample a point lo-
cation and normal from the patch density with parameters
µk,Σk. To allow for noise in the observations, we also in-
clude a background noise component whose distribution is
uniform over the volume of a bounding box enclosing the
scene model.

For a given time t, the probability of generating an obser-
vation y in local coordinates is modeled as a probabilistic
mixture:

P (yt|X ,Θ, ξ) =
K∑

k=0

P (φt(yt)|Xk)P (k|et,vt) (1)

The probability of generating an observation from patch k
is given by:

πt(k) = P (k|et,vt) =

{
1
Zt
p0 k = 0

1
Zt
pketkvtk k ∈ {1 . . .K}

3



where pk is the time-independent intensity with which a
patch k generates observations, p0 is the background noise
intensity, and Zt is a normalizing constant.

Observations associated with a given patch are trans-
formed into the global coordinate frame with location mod-
eled by a Gaussian density and unit surface normal modeled
by a von Mises Fisher (vMF) density

P (φt(l,n)|Xk) = P (φt(l)|µk,Σk)P (φt(n)|νk, τk)

P (φt(l)|µk,Σk) =
1

Z(Σk)
exp(−1

2
||(Rtl+ tt)− µk||2Σk

)

P (φt(n)|νk, τk) =
1

Z(τt)
exp(τkn

TRT
t νk)

Background noise points (k = 0) are drawn from a uniform
distribution over the observation volume y ∼ U(V × S2).

3.2. Computing Visibility

To assign observations to surface patches, we need to
compute visibility variables vtk that indicate if patch k is
visible at time t. In order for a patch to be observed it must
fall within the field of view of the sensor and must not be
occluded by any other surface that existed at the observation
time. For each time, we have one or more sets of camera
parameters associated with gathering observations yt which
we write as {Ctu}1≤u≤Ft where Ft is the number of RGB-
D frames used to build the observation.

Let φ−1
t be the transformation specified by parameters

Θt that transforms the global model X into the local coor-
dinate frame used by observations at time t. We define the
indicator function FOV (φ−1

t (µk,νk),Ctu) to be 1 if patch
k was in the field of view of camera Ctu.

To estimate occlusion, we use the hidden point re-
moval algorithm introduced in [30] applied to the union
of the observed points yt and the set of transformed patch
locations φ−1

t (X ) which are in the field of view. Let
OCL(φ−1

t (µk), yt,Ctu) be 1 if φ−1
t (µk) is occluded by

some part of yt from camera viewpoint Ctu and 0 other-
wise.

Combining these two components, we estimate that a
patch k should be visible at time t if it is within the field
of view and unoccluded in at least one camera view used to
construct observation yt.

vtk =





1
∃u : [FOV (φ−1

t (µk,νk),Ctu) = 1] ∧
[OCL(φ−1

t (µk), yt,Ctu) = 0]

0 otherwise

3.3. Model Parameter Estimation

To fit the model, we maximize the log-likelihood of ob-
serving Y given transformation parameters Θ and space-
time geometry {X , ξ} assuming independent point obser-

vations:

max
X ,Θ,ξ

log
∏

it

P (yit|X ,Θ, ξ)P (X ,Θ, ξ)

We assume an uninformative priors on X and Θ and a prior
on ξ that favors longer intervals (see below for details).

Let zit be a latent variable that denotes mixture assign-
ments with zit = k when yit is a point from patch k. We
use expectation conditional maximization (ECM), which al-
ternates between estimating expectations of Z and condi-
tionally optimizing subsets of model parameters [25]. For a
fixed setting of model parameters, (X ,Θ,ξ), the E-step es-
timates the probability that each observation yit came from
surface patch k.

αitk = P (zit = k | X ,Θ, ξ)

During the M-step we maximize the expected likelihood of
subsets of parameters sequentially conditioned on the other
parameters. Letting s denote the iteration, we first update
the alignment parameters, followed by the scene geometry
and finally the temporal extent.

Θs+1 = arg max
Θ

EZ
[

log
(
P (Y,Z;X s,Θ, ξs)

)]

X s+1 = arg max
X

EZ
[

log
(
P (Y,Z;X ,Θs+1, ξs)

)]

ξs+1 = arg max
V

EZ
[

log
(
P (Y,Z;X s+1,Θs+1, ξ)

)]

We provide details for each parameter update below.

Patch Assignment Given the aligning transformation
φt(·) for time t along with geometric, existence and visi-
bility terms for K patches, we compute the posterior prob-
ability that an observation is generated by a particular patch
as:

αitk =
P (φt(yti)|Xk)πt(k)

∑K
j=1 P (φt(yti)|Xj)πt(k) + β

where πt(k) is the mixing weight of a patch k at time t, β is
the weight of the background/outlier cluster which depends
on p0, and we set αit0 ∝ β (see [17] for details).

Alignment Parameters Given the cluster assignment ex-
pectations for each observation, we would like to update
the estimated transformation parameters Rt and tt for t-th
dataset. This amounts to a weighted least-squares problem
with orthogonality constraint on Rt. Following [17], we
simplify this expression by first constructing a single “vir-
tual point” utk per mixture component that integrates the
interaction of all observed points with the patch.

utk = wtk

Nt∑

i=1

αitklti wtk =

(
Nt∑

i=1

αitk

)−1
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The optimal transformation can then be expressed as a
weighted rigid alignment problem:

arg min
R,t

1

2

K∑

k=1

wtk||Ruk + t− µk||2Σk

When Σk is isotropic this can be solved efficiently using
SVD (e.g., [18]). This provides a good initialization that
can be further refined by projected gradient for anisotropic
case and the additional linear term from the density over
surface normals.

Spatial Patch Parameters Given the transformation pa-
rameters, we update mean and covariance for each Gaussian
mixture component.

µk =

∑T
t=1

∑Nt

i=1 αitkφt(lit)∑T
t=1

∑Nt

i=1 αitk

Σk =

∑T
t=1

∑Nt

i=1αitk

(
φt(lit)−µk

)(
φt(lit)−µk

)ᵀ
∑T

t=1

∑Nt

i=1 αitk

+ εvI

The variable εv is used to prevent the variance of a given
cluster from collapsing (εv = 0.16 in our experiments). The
updates for vMF mean and concentration parameters for
the surface normal follow a similar form [13]. In practice,
we found that constraining the covariance to be isotropic
works well for large K and yields more efficient optimiza-
tion. Patch intensity priors pk are estimated as the assign-
ment proportion

∑
it αitk scaled by the proportion of ob-

servations in which the patch was visible and existed.

Temporal Patch Parameters To reliably estimate when
each patch is present, we must make some stronger as-
sumptions about the prior distribution over ek. We thus as-
sume that a given patch exists for a single temporal interval
[ak, bk] during which the probability of the patch emitting
an observation is uniform.

P (etk = 1) =

{
γab t ∈ [ak, bk]

ε otherwise

where ε is a small constant and γ is chosen so the distribu-
tion integrates to 1 over the total observation interval T .

γab =
1− ε(T − (b− a))

(b− a)
,

To estimate ak, bk we maximize the expected posterior
probability over times where the cluster was visible:

[ak, bk] = arg max
a,b

∑

t∈[a,b]

vtk

[
Nt∑

i=1

αitk log(γab)

]
+

∑

t/∈[a,b]

vtk

[
Nt∑

i

αitk log(ε)

]
+ logP s(a, b)

where logP s(a, b) = avg(α··k) log(b − a + εp) is a prior
that encourages existence of patches for longer time spans.
The prior is scaled using average value of α··k. In our ex-
periments we use 0.05 for ε and 0.01 for εp.

Extension to Non-parametric Mixtures In addition to
standard mixture model fitting with fixed number of clus-
ters K, we also considered a variant of our model us-
ing a Dirichlet Process (DP) prior over the cluster alloca-
tions [35, 22, 21]. This is appealing since it allows the
model to naturally grow in complexity as more observa-
tions become available. We use collapsed Gibbs sampling
to explore the space of the number of mixture components
K and weights π. Rather than performing full Bayesian
inference, we interleaved rounds of sampling with condi-
tional maximization to optimize alignment parameters. We
observed empirically that starting from an initial state with
few mixture components and refining the alignment while
non-parametrically growing the number of components of-
ten resulted in better registration results (see experiments).
We presume this may be because the early energy landscape
with few mixture components has fewer local minima.

4. Space-Time Datasets

While there are a large number of published RGB-D and
3D scene datasets (e.g., [39]), previous work has focused on
static scenes described at a single point in time (or collected
at high-frame rate over a short interval). To validate our ap-
proach with more compelling temporally varying elements,
we developed datasets based on both synthetic scenes with
simulated sensors and real scans of human workspaces

Synthetic Data Synthetic data is easy to generate and
provides perfect ground-truth which is useful for evaluating
reconstruction accuracy. To emulate the noise characteris-
tics of real scanning, we start from a 3D model and simulate
acquisition of RGB-D data from a moving sensor and pass
it through a standard SLAM pipeline to produce a 3D point
cloud which constitutes observation at a single time point.

We use 3D room models provided by [14] and popu-
late them with IKEA furniture models. Each item of fur-
niture is present for randomly specified interval of time. We
generate a virtual sensor trajectory by selecting several key
points manually and synthesize a smooth path connecting
the key points. Given a trajectory we render a sequence
of RGB-D frames which are then fed into the ElasticFu-
sion [38] pipeline to produce a simulated observed point-
cloud. Back-projecting keypoints from the observation pro-
vides a ground-truth alignment with the world coordinate
system and mapping between the simulated observed points
and the object ids in the scene model. We generate 8 time
point per scene producing scans with a million points (sum-
marized in Table 1).
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(a) Observations (b) Aligned observations from the same time point (c) Observations from all time points

Figure 3. 3D model pieces with 4 different types (a) for “Laboratory” dataset. (b) and (c) shows merged model with one time or space.
Synthetic Data

Name # regions # times # frames # 3D points
Bedroom 1 8 3.2k 1.2M
Bathroom 1 8 4k 1.5M

Real Data
Name # regions # times # frames # 3D points
Laboratory 4 8 3k 1M
Copier room 1 7 1.5k 0.6M
Kitchen 1 5 1.5k 0.6M

Table 1. Summary statistics of test datasets.

Real Data We also collected scans of 3 different indoor
scenes (Laboratory, Kitchen, and Copier room) once a day
over several weeks using a Kinect sensor. We chose these
scenes since they contained a number of objects that nat-
urally move from one day to the next by people passing
through the room. To provide the best quality and con-
sistency in scanning, we used a custom motorized tripod
fixture to automated the scan path. For our “Laboratory”
dataset, we collected 4 scans per time point in order to
cover different overlapping parts of a larger room (see Fig-
ure 3). Each scan is processed individually using Elastic-
Fusion [38] to produce a point cloud. Dataset statistics are
summarized in Table 1.

To establish a high quality ground-truth alignment, we
exploit the presence of the floor which is visible in all our
recovered scans. We first segment the floor based on color
and surface normal from each scan. We then constrain the
search over alignments to only consider translations in the
plane of the floor and rotations around the z axis perpundic-
ular to the floor. This pre-process greatly reduces the num-
ber local minima and, guided by a few hand-clicked corre-
spondences, is sufficient for finding high quality alignments
which can be further refined to improve accuracy.

Once the scans are aligned into a common coordinate
frame, we segment and annotate the points in each scan
with object instance labels such as “floor”, “desk”, “chair”,
etc. These instance labels are shared across time points, al-
lowing us to identify observations at different times which
correspond to the same underlying surface and provide a
basis for benchmarking the ability of our model to correctly
identify spatio-temporal extents (see Figure 6).

5. Experimental Evaluation
Figure 3 shows qualitative results of running our joint

registration and reconstruction model on the Laboratory
dataset depicting (a) individual scans, (b) reconstruction of

a single time point consisting of multiple overlapping scans,
and (c) all time point reconstructions superimposed in a sin-
gle global coordinate system. Colors (b) and (c) indicate
points belonging to different scans.

We quantitatively evaluate the method in terms of the
accuracy of reconstruction and localization (alignment). In
particular, we show that the existence and visibility terms
are valuable even when aligning partially overlapping scans
for static scenes. We then evaluate the accuracy of estimated
existence time intervals. Lastly, we demonstrate the utility
of this 4D representation in segmenting out dynamic objects
in a scene.

Spatial reconstruction accuracy To evaluate metric re-
construction quality, we compare our method to two base-
lines which don’t model temporal change. First, we con-
sider running the ElasticFusion pipeline applied to data con-
catenated from all time points (EF3D). Second, we consider
running ElasticFusion independently at each time point and
subsequently align reconstructions from different times us-
ing the method of Evangelidis et al. [8] (EF4D). EF3D pro-
duces a single 3D reconstruction which is compared to all
time points while EF4D and our model produce 4D recon-
structions which change over time. We evaluate precision
and recall (of those model points that were visible from the
sensor) w.r.t. ground-truth surface across all time points for
the synthetic 4D benchmark using a distance threshold of
1cm.

As Table 2 shows, the precision of a single 3D recon-
struction (EF3D) is lower than the 4D models (EF4D,ours).
Our model further improves precision over simply aligning
individual time points by providing more robustness to dy-
namic objects. Our method also shows a substantial boost
in recall over both baselines due to the ability of the model
to fill in occluded regions with observations from a different
time.

Temporal reconstruction accuracy We use the synthetic
dataset for which the ground-truth duration of existence of
each object is known and evaluate the accuracy ( Table 3).
Since our model predicts existence of patches, we establish
a correspondence, assigning points of each ground-truth ob-
ject to a mixture component in our estimated model. This
assignment imposes an upper-bound on the accuracy (i.e.,
since a mixture component may span two different objects
whose temporal extent differs). We find that most incorrect
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Figure 4. Registration accuracy of our method (ST-SLAM) com-
pared to (ICP) [4] and joint registration (JRMPC) [8] measured
by average closest point distance. Error axis is on a logarithmic
scale. Explicitly inferring visibility improves robustness to par-
tial overlap, as does using non-parametricly growing the number
of mixture components during optimization (ST-SLAM+DP). Er-
ror in estimated rigid transformation parameters behaves similarly
(see supplement).

predictions come from near such edges.

Density visualization Since our reconstruction is genera-
tive, we can also visualize it as a spatio-temporal probability
density. In Figure 5, we display the estimated density of ob-
servations marginalized over all time as well as conditioned
on specific time points alongside the corresponding scene.
To aid visualization, we exclude the background scene com-
ponent and rescale the colormap. As the figure shows, the
estimated space-time density tracks the arrangement of fur-
niture within the room.

Robustness on partially overlapping observations Pre-
vious joint registration methods [4, 19, 8] that align multiple
pointclouds into a single consensus model often rely on a
high degree of overlap between scans in order to achieve
correct alignment. Since our approach explicitly models
which surface patches are visible in a given scan, it can han-
dle larger non-overlapping regions by allocating additional
mixture components and explaining away the lack of data
generated from those components in scans where they were
not visible.

To demonstrate the value of estimating visibility, we
carry out an experiment on the ground-truth Laboratory re-
construction by splitting a single time point into two pieces
with controlled degree of overlap, ranging from 50% to
90%, apply a random rigid transformation and add Gaus-
sian noise to point locations. We measure difference be-
tween the known transformation and the estimate, as well
as mean distance between corresponding points, averaged
over 10 trials.

As Figure 4 displays, all methods have higher registra-
tion error as the degree of overlap decreases. Since ICP [4]
and the joint registration method JRMPC [8] do not infer
which consensus points/mixtures are visible in a given ob-
servation, their performance degrades more rapidly as over-
lap decreases. Our model with a fixed number of mixtures
(ST-SLAM) is more robust and using the DP mixture allo-

EF3D EF4D Our method (STSLAM)
Precision 71.3% 92.7% 93.3%
Recall 90.4% 90.0% 98.5%

Table 2. Evaluation for reconstruction quality. Baselines EF3D
merges all observations in a single 3D model; EF4D builds a sepa-
rate model for each time point and then registers them. Our model
of temporal extent and visibility improves both precision and re-
call. See Section 5 for details.

Baseline STSLAM STSLAM-DP Upper-bound
Bedroom 83.2% 90.8% 90.9% 95.5%
Bedroom (NS) 41.2% 74.3% 74.8% 95.4%
Bathroom 69.7% 78.0% 77.7% 95.0%
Bathroom (NS) 31.8% 62.2% 62.7% 99.9%

Table 3. Temporal reconstruction accuracy. Baseline assumes ev-
ery object exists for all time points. Non-static (NS) evaluation
excludes the static background component. Upper-bound indi-
cates maximal achievable accuracy given the spatial quantization
imposed by cluster assignment.

cation (ST-SLAM+DP) yields more robust results, presum-
ably due to annealing effects of starting with a small number
of mixture components.

RGB Patch assignment

K=160 K=800 K=3000
Ground Truth Segmentation

K=160 K=800 K=3000
Aligned Observations

Space-Time Segmentation (K=3000)

t=1 t=2 t=3 t=4 t=5 t=6 t=7
Figure 6. Segmentation results on the “Copier room” dataset show-
ing grouping of surface patches with similar temporal extent. Seg-
mentation accuracy depends on the number of surface patches
(top). Segmentation across all space-time observations using the
optimal cluster size discovers static and dynamic scene compo-
nents (bottom).

Segmentation of dynamic objects The space-time ge-
ometry model provides a natural basis for performing ad-
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(a) Marginal density P (y) (b) P (y|t = 1) (c) P (y|t = 2) (d) P (y|t = 3) (d) P (y|t = 4)

Figure 5. Visualization of 3D probability density predicted by the fit model. (a) shows density marginalized over time (b) - (e) display
probability density conditioned on different observation times with the static component excluded for clarity.
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Figure 7. We measure the accuracy with which individual patches
constitute an under-segmentation of the objects in the scene (left)
and how well grouping patches by temporal extent recovers object
segments (right) on real datasets “Copier room” and “Kitchen”.
Since the scene is dominated by static structure, we also separately
plot the segmentation accuracy for the non-static components.

ditional inferences about a scene. In particular, the tempo-
ral coherence of a set of surface patches provides a strong
indicator that those patches belong to the same surface.
In Figure 6 we visualize segmentations into objects based
on grouping those patches with a similar estimated tempo-
ral extent. Raw measurements are assigned the segment la-
bel for that cluster with the highest assignment probability
(αitk). As shown in the upper figure panel, the segmenta-
tion accuracy is limited based on the size/number of sur-
face patches fit to the scene. To produce good quality as-
signments we choose a number of mixture components that
yields patches of an average small physical dimension (rel-
ative to the resolution of the raw point observations). The
lower panel of Figure 6 shows such a segmentation with
the static background component in green.

We consider two quantitative measures of segmentation
accuracy. Let U , V , S denote the surface patches, pre-
dicted segments, and ground-truth segments respectively.
We characterize the degree of under-segmentation (i.e., how
often a surface patch spans an object boundary) by the av-
erage percentage of a patch that is completely contained in
some ground-truth segment.

Scoreuseg =
1

Nc

Nc∑

i=1

max
j

|Ui ∩ Sj |
|Sj |

.

To measure the effectiveness of grouping patches by tem-
poral extent, we compute the IoU of predicted and ground-
truth segments.

Scoreseg =
1

Ns

Ns∑

i=1

max
j

|Vi ∩ Sj |
|Vi ∪ Sj |

In Figure 7 we plot these scores as a function of the number
of mixture components. As might be expected, the under-
segmentation error decreases rapidly as the number of clus-
ters grow, allowing smaller patches that are less likely to
span an object boundary. However, there is a tradeoff in
segmentation accuracy of dynamic objects as the number
of clusters goes beyond a certain point as the estimates of
temporal extent become increasingly noisy with few obser-
vations per cluster.

6. Conclusion
We present a novel probabilistic formulation of space-

time localization and mapping from RGB-D data streams
which jointly estimates sensor pose and builds an explicit
4D map. We validated this approach on real and syn-
thetic data, showing improved reconstruction and registra-
tion for dynamic scenes and demonstrate unique features of
the model which allow estimation of the temporal extent of
surface patches and segmentation into temporally coherent
objects. In the future we hope to extend this approach to
handle more dynamic and larger-scale scenes, replace our
wide-FoV observations with individual RGB-D frames, and
tackle the problem of inter-frame tracking of moving ob-
jects.
Acknowledgements: This work was supported by NSF
grants IIS-1618806, IIS-1253538, and a hardware donation
from NVIDIA.
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Supplement: Space-Time Localization and Mapping
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1. Robustness of Registration to Observation Overlap
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Figure 1. Registration accuracy of our method (STSLAM) compared to (ICP) [1] and joint registration (JRMPC) [2] measured by average
closest point distance (Top), rotation angle error (middle), and translation error (bottom).
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2. Laboratory Datset

Merged laboratory scans from a single time point. Different observations are marked as different colors

Merged laboratory scans from a single time point.

2



Figure 2. An example of a 3D observation at a single time (top) and ground-truth object instance segmentation colored by category (bottom)
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3. Kitchen Dataset
Visualization of estimated transformation, occlusion and temporal extents.

3D Observation (y·1) 3D Observation (y·2) 3D Observation (y·3)

3D Observation (y·4) 3D Observation (y·5) Merged Observation (
⋃5

t=1 φt(y·t))
Figure 3. Individual observations of the Kitchen scene at 5 time points and the union of all 5 observations across time based on the estimated
transformation.
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4. Bedroom Dataset: Visualization of 4D probability density predicted by the model.

Ground-Truth model Marginal density P (y) P (y|t = 1)

Ground-Truth, t=1 Ground-Truth, t=2 Ground-Truth, t=3 Ground-Truth, t=4

P (y|t = 1) P (y|t = 2) P (y|t = 3) P (y|t = 4)

Ground-Truth, t=5 Ground-Truth, t=6 Ground-Truth, t=7 Ground-Truth, t=8

P (y|t = 5) P (y|t = 6) P (y|t = 7) P (y|t = 8)
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