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Abstract—The goal of this work is to accurately detect and localize boundaries in natural scenes using local image measurements.

We formulate features that respond to characteristic changes in brightness, color, and texture associated with natural boundaries. In

order to combine the information from these features in an optimal way, we train a classifier using human labeled images as ground

truth. The output of this classifier provides the posterior probability of a boundary at each image location and orientation. We present

precision-recall curves showing that the resulting detector significantly outperforms existing approaches. Our two main results are

1) that cue combination can be performed adequately with a simple linear model and 2) that a proper, explicit treatment of texture is

required to detect boundaries in natural images.

Index Terms—Texture, supervised learning, cue combination, natural images, ground truth segmentation data set, boundary

detection, boundary localization.

�

1 INTRODUCTION

CONSIDER the images and human-marked boundaries
shown in Fig. 1. How might we find these boundaries

automatically?
We distinguish the problem of boundary detection from

what is classically referred to as edge detection. A boundary
is a contour in the image plane that represents a change in
pixel ownership from one object or surface to another. In
contrast, an edge is most often defined as an abrupt change
in some low-level image feature such as brightness or color.
Edge detection is thus one low-level technique that is
commonly applied toward the goal of boundary detection.
Another approach would be to recognize objects in the
scene and use that high-level information to infer the
boundary locations.

In this paper, we focus on what information is available
in a local image patch like those shown in the first column
of Fig. 2. Though these patches lack global context, it is clear
to a human observer which contain boundaries and which
do not. Our goal is to use features extracted from such an
image patch to estimate the posterior probability of a
boundary passing through the center point. A boundary
model based on such local information is likely to be
integral to any perceptual organization algorithm that
operates on natural images, whether based on grouping
pixels into regions [1], [2] or grouping edge fragments into

contours [3], [4]. This paper is intentionally agnostic about
how a local boundary model might be used in a system for
performing a high-level visual task such as recognition.

The most common approach to local boundary detection
is to look for discontinuities in image brightness. For
example, the Canny detector [5] models boundaries as
brightness step edges. The brightness profiles in the second
column of Fig. 2 show that this is an inadequate model for
boundaries in natural images where texture is a ubiquitous
phenomenon. The Canny detector fires wildly inside
textured regions where high-contrast edges are present,
but no boundary exists. In addition, it is unable to detect the
boundary between textured regions when there is only a
subtle change in average image brightness.

A partial solution is provided by examining gradients at
multiple orientations around a pixel. For example, a
boundary detector based on the eigenspectrum of the
spatially averaged second moment matrix can distinguish
simple edges from the multiple incident edges that may
occur inside texture. While this approach will suppress false
positives in a limited class of textures, it will also suppress
corners and contours bordering textured regions.

The significant problems with simple brightness edge
models have lead researchers to develop more complex
detectors that look for boundaries defined by changes in
texture, e.g., [6], [7]. While these work well on the pure
texture-texture boundaries provided by synthetic Brodatz
mosaics, they have problems in the vicinity of simple
brightness boundaries. Texture descriptors computed over
local windows that straddle a boundary have different
statistics from windows contained in either of the neighbor-
ing regions. This inevitably results in either doubly-
detected boundaries or thin halo-like regions along con-
tours (e.g., see images in [6], [8], [9]). Just as a brightness
edge model does not detect texture boundaries, a pure
texture model does not detect brightness edges effectively.
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Clearly, boundaries in natural images can be marked by
joint changes in several cues including brightness, color,
and texture. Evidence from psychophysics [10] suggests
that humans make combined use of multiple cues to
improve their detection and localization of boundaries.
There has been limited work in computational vision on
addressing the difficult problem of cue combination. For
example, the authors of [2] associate a measure of
texturedness with each point in an image in order to
suppress contour processing in textured regions and vice
versa. However, their solution is full of ad hoc design
decisions and hand chosen parameters.

In this paper, we provide a more principled approach to
cue combination by framing the task as a supervised
learning problem. A large data set of natural images that
have been manually segmented by multiple human
subjects [11] provides the ground truth label for each pixel
as being on or off-boundary. The task is then to model the
probability of a pixel being on-boundary conditioned on
some set of local image features. This sort of quantitative
approach to learning and evaluating boundary detectors is
similar in spirit to the work of Konishi et al. [12] who used
the Sowerby data set of English countryside scenes. Our
work is distinguished by an explicit treatment of texture,
enabling superior performance on a more diverse collection
of natural images.

By modeling texture and combining various local cues in

a statistically optimal manner, we demonstrate a marked

improvement over the state of the art in boundary detection.

Fig. 3 shows the performance of our detector compared to

the Canny detector, a detector based on the second moment

matrix used by Konishi et. al. [12], and the human subjects.

The remainder of the paper will present how this improve-

ment was achieved. In Section 2, we describe the local

brightness, color, and texture features used as input to our

algorithm. In Section 3, we present our training and testing

methodology and the data set of 12,000 human segmenta-

tions that provide the ground truth data. We apply this

methodology in Section 4 to optimize each local feature

independently, and in Section 5 to perform cue combina-

tion. Section 6 presents a quantitative comparison of our

method to existing boundary detection methods. We

conclude in Section 7.

2 IMAGE FEATURES

Our approach to boundary detection is to look at each pixel
for local discontinuities in several feature channels, over a
range of orientations and scales. We will consider two
brightness features (oriented energy and brightness gradi-
ent), one color feature (color gradient), and one texture
feature (texture gradient). Each of these features has free
parameters that we will calibrate with respect to the
training data.

2.1 Oriented Energy

In natural images, brightness edges are more than simple
steps. Phenomena such as specularities, mutual illumina-
tion, and shading result in composite intensity profiles
consisting of steps, peaks, and roofs. The oriented energy
(OE) approach [13] can be used to detect and localize these
composite edges [14]. OE is defined as:

OE�;� ¼ ðI � fe
�;�Þ

2 þ ðI � fo
�;�Þ

2; ð1Þ

where fe
�;� and fo

�;� are a quadrature pair of even and odd-
symmetric filters at orientation � and scale �. Our even-
symmetric filter is a Gaussian second-derivative, and the
corresponding odd-symmetric filter is its Hilbert transform.
OE�;� has maximum response for contours at orientation �.
The filters are elongated by a ratio of 3:1 along the putative
boundary direction.

2.2 Gradient-Based Features

We include the oriented energy feature in our analysis
because it is the standard means of detecting brightness
edges in images. For more complex features, we introduce a
gradient-based paradigm that we use for detecting local
changes in color and texture, as well as brightness. At a
location ðx; yÞ in the image, draw a circle of radius r, and
divide it along the diameter at orientation �. The gradient
function Gðx; y; �; rÞ compares the contents of the two
resulting disc halves. A large difference between the disc
halves indicates a discontinuity in the image along the
disc’s diameter.

How shall we describe and compare the two half-disc
regions for each cue? Successful approaches to this problem
have commonly made use color and texture features based
on the empirical distribution of pixel values averaged over
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Fig. 1. Example images and human-marked segment boundaries. Each

image shows multiple (4-8) human segmentations. The pixels are darker

where more humans marked a boundary. Details of how this ground-

truth data was collected are discussed in Section 3.



some neighborhood. Distributions of color in perceptual

color spaces have been used successfully as region

descriptors in the QBIC [15] and Blobworld [8] image

retrieval systems. In addition, the compass operator of

Ruzon and Tomasi [16], [17] uses color histogram compar-

isons to find corners and edges in color images. For texture

analysis, there is an emerging consensus that an image

should first be convolved with a bank of filters tuned to

various orientations and spatial frequencies [18], [19]. The

empirical distribution of filter responses has been demon-

strated to be a powerful feature in both texture synthesis

[20] and texture discrimination [21].
For brightness and color gradient features, we bin kernel

density estimates of the distributions of pixel luminance
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Fig. 2. Local Image Features. In each row, the first panel shows an image patch. The following panels show feature profiles along the patch’s
horizontal diameter. The features are raw image intensity, oriented energy OE, brightness gradient BG, color gradient CG, raw texture gradient TG,
and localized texture gradient dTGTG. The vertical line in each profile marks the patch center. The scale of each feature has been chosen to maximize
performance on the set of training images—2 percent of the image diagonal (5.7 pixels) for OE, CG, and TG, and 1 percent of the image diagonal
(3 pixels) for BG. The challenge is to combine these features in order to detect and localize boundaries.



and chrominance in each disc half. The binning was done

by sampling each Gaussian kernel out to 2� at a rate

ensuring at least two samples per bin. For the texture

gradient, we compute histograms of vector quantized filter

outputs in each disc half. In all three cases, the half-disc

regions are described by histograms, which we compare

with the �2 histogram difference operator [22]:

�2ðg; hÞ ¼ 1

2

X ðgi � hiÞ2

gi þ hi
: ð2Þ

The brightness, color, and texture gradient features there-

fore encode, respectively, changes in the local distributions

of luminance, chrominance, and filter responses.
Each gradient computation shares the step of comput-

ing a histogram difference at eight orientations and three

half-octave scales at each pixel.1 In the following sections,

we discuss in detail the possible design choices for

representing and comparing color, brightness, and texture.

2.2.1 Brightness and Color Gradients

There are two common approaches to characterizing the

difference between the color distributions of sets of pixels.

The first is based on density estimation using histograms.

Both QBIC and Blobworld use fully three-dimensional color
histograms as region features and compare histograms
using a similarity measure such as L1 norm, �2 difference,
or some quadratic form. Blobworld smooths the histograms
to prevent the aliasing of similar colors, while QBIC models
the perceptual distance between bins explicitly.2 A second
common approach avoids quantization artifacts by using
the Mallows [23] or Earth Mover’s distance (EMD) [24] to
compare color distributions. In addition, the EMD explicitly
accounts for the “ground distance” between points in the
color space. This is a desirable property for data living in a
perceptual color space where nearby points appear percep-
tually similar. However, once colors in such a space are
further apart than some degree of separation, they tend to
appear “equally distant” to a human observer. Ruzon and
Tomasi use an attenuated EMD to model this perceptual
roll-off, but the EMD remains computationally expensive.
For one-dimensional data, efficient computation is possible
using sorting. In higher dimensions, however, one must
explicitly solve an assignment problem, resulting in a
considerable increase in computational complexity.

We would like a way to model the color distribution
accurately with respect to human perception, while retain-

ing computationally feasibility. Our approach is based on
binning kernel density estimates of the color distribution in
CIELAB using a Gaussian kernel, and comparing histo-
grams with the �2 difference. The �2 histogram difference
does not make use of the perceptual distance between bin

centers. Therefore, without smoothing, perceptually similar
colors can produce disproportionately large �2 differences.
Because the distance between points in CIELAB space is
perceptually meaningful in a local neighborhood, binning a
kernel density estimate whose kernel bandwidth � matches

the scale of this neighborhood means that perceptually
similar colors will have similar histogram contributions.
Beyond this scale, where color differences are perceptually
incommensurate, �2 will regard them as equally different.
We believe this combination of a kernel density estimate in

CIELAB with the �2 histogram difference is a good match to
the structure of human color perception.

For the brightness gradient we compute histograms of
L* values. The color gradient presents additional challenges

for density estimation because the pixel values are in
the 2D space (a* and b*). When using 2D kernels and
2D histograms one typically reduces both the number of
kernel samples and the number of bins in order to keep the
computational cost reasonable. However, this compromises

the quality of the density estimate.
Rather than compute the joint gradient CGab, we

compute marginal color gradients for a* and b* and take
the full color gradient to be the sum of the corresponding
marginal gradients: CGaþb ¼ CGa þ CGb. This is motivated
by the fact that the a* and b* channels correspond to the
perceptually orthogonal red-green and yellow-blue color
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Fig. 3. Two Decades of Boundary Detection. The performance of our
boundary detector compared to classical boundary detection methods
and to the human subjects’ performance. A precision-recall curve is
shown for each of five boundary detectors: 1) Gaussian derivative (GD),
2) Gaussian derivative with hysteresis thresholding (GD+H), the Canny
detector, 3) A detector based on the secondmomentmatrix (2MM), 4) our
gray-scale detector that combines brightness and texture (BG+TG), and
5) our color detector that combines brightness, color, and texture
(BG+CG+TG). Each detector is represented by its precision-recall curve,
which measures the trade off between accuracy and noise as the
detector’s threshold varies. Shown in the caption is each curve’s
F-measure, valued from zero to one. The F-measure is a summary
statistic for a precision-recall curve. The pointsmarked by a “+” on the plot
show the precision and recall of each ground truth human segmentation
when compared to the other humans. The median F-measure for the
human subjects is 0.80. The solid curve shows the F=0.80 curve,
representing the frontier of human performance for this task.

1. A naive implementation would involve much redundant computation.
Appendix A presents efficient algorithms for computing the gradient
features.

2. The quadratic form distance function used in QBIC is dðg; hÞ ¼
ðg� hÞTAðg� hÞ, where g and h are the histograms to compare, and A is a
matrix giving the similarity Aij between two bins i and j. The QBIC authors
indicate that this measure is superior for their task. We will not consider
this histogram similarity function because it is computationally expensive,
difficult to define A, and similar in spirit to the Earth Mover’s distance.



opponents found in the human visual system (see Palmer
[25]). The comparison of CGab to CGaþb is presented in
Section 4.

2.2.2 Texture Gradient

In a manner analogous to the brightness and color gradient
operators, we formulate a directional operator that mea-
sures the degree to which texture of scale r varies at an
image location ðx; yÞ in direction �. We compute the texture
dissimilarity in the two halves of a disk of centered on a
point and divided in two along a diameter. Oriented texture
processing along these lines has been pursued by Rubner
and Tomasi [6].

Fig. 4a shows the filter bank that we use for texture
processing. It contains six pairs of elongated, oriented
filters, as well as a center-surround filter. The oriented
filters are in even/odd quadrature pairs, and are the same
filters we used to compute oriented energy. The even-
symmetric filter is a Gaussian second derivative, and the
odd-symmetric filter is its Hilbert transform. The center-
surround filter is a difference of Gaussians. The even and
odd filter responses are not combined as they are in
computing oriented energy. Instead, each filter produces a
separate feature. To each pixel, we associate the vector of
13 filter responses centered at the pixel. Note that unlike [2],
we do not contrast-normalize the filter responses for texture
processing. Our experiments indicate that this type of
normalization does not improve performance, as it appears
to amplify noise more than signal.

Each disc half contains a set of filter response vectors
which we can visualize as a cloud of points in a feature
space with dimensionality equal to the number of filters.
One can use the empirical distributions of these two point
clouds as texture descriptors, and then compare the
descriptors to get the value of the texture gradient.

Many questions arise regarding the details of this
approach. Should the filter bank contain multiple scales,
and what should the scales be? How should we compare
the distributions of filter responses? Should we use the
Earth Mover’s distance, or should we estimate the distribu-
tions? If the latter, should we estimate marginal or joint

distributions and with fixed or adaptive bins? How should
we compare distributions—some Lp-norm or the �2 differ-
ence? Puzicha et al. [21] evaluate a wide range of texture
descriptors in this framework and examine many of these
questions. We choose the approach developed in [2], which
is based on the idea of textons.

The texton approach estimates the joint distribution of
filter responses using adaptive bins. The filter response
vectors are clustered using k-means. Each cluster defines a
Voronoi cell in the space of joint filter responses, and the
cluster centers define texture primitives. These texture
primitives—the textons—are simply linear combinations of
the filters. Fig. 4b shows example textons for k ¼ 64
computed over the 200 images in the training set. After
the textons have been identified, each pixel is assigned to
the nearest texton. The texture dissimilarities can then be
computed by comparing the histograms of texton labels in
the two disc halves. Figs. 4c and 4d shows an image and the
associated texton map, where each pixel has been labeled
with the nearest texton. Some questions remain, namely,
what images to use to compute the textons, the choice of k,
the procedure for computing the histograms, and the
histogram comparison measure.

For computing textons, we can use a large, diverse
collection of images in order to discover a set of universal
textons. Alternately, one can compute image-specific textons
by separately clustering filter responses in each test image.
The optimal number of textons, k, depends on this choice
between universal and image-specific as well as the scale r
of the texture gradient operator and the size of the image.
Experiments exploring both of these issues are presented in
Section 4.

To compute the texton histograms, we use hard binning
without smoothing. It is possible to do soft binning in the
texton framework by considering a pixel’s distance to each
bin center. However, this type of soft binning is
computationally expensive and, in our experiments, it
has not proved worthwhile. It seems likely that hard
binning is not a problem because adjacent pixels have
correlated filter responses due to the spatial extent of the
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Fig. 4. Computing Textons. (a) Filter Bank: The 13-element filter bank used for computing textons. (b) Universal Textons: Example universal textons
computed from the 200 training images, sorted by L1 norm for display purposes. (c) Image and (d) Texton Map: An image and its associated texton
map. Texton quality is best with a single scale filter bank containing small filters. Each pixel produces a 13-element response to the filter bank, and
these responses are clustered with k-means. In this example, using 200 images with k = 64 yields 64 universal textons. The textons identify basic
structures such as steps, bars, and corners at various levels of contrast. If each pixel in the image shown in (c) is assigned to the nearest texton and
each texton is assigned a color, we obtain the texton map shown in (d). The elongated filters have 3:1 aspect, and the longer � was set to 0.7 percent
of the image diagonal (about 2 pixels).



filters. Consequently, the data is already somewhat
smoothed, and pixels in a disc are likely to cover fewer
bins ensuring more samples per bin.

Finally, the �2 difference is not the only viable measure
of histogram difference for this task. Both Puzicha et al. [22]
and Levina [26] evaluate various methods for comparing
texture distributions, including L1 norm, �2 difference, and
the Mallows or Earth Mover’s distance. The optimal
difference measure, however, depends on the task (match-
ing or discrimination) and on the images used (Brodatz
patches or natural images). Our experiments show that for
local boundary detection in natural images, the �2 differ-
ence is marginally superior to the L1 norm, and signifi-
cantly better than the Mallows distance.

2.3 Localization

The underlying function of boundary existence that we are
trying to learn is tightly peaked around the location of
image boundaries marked by humans. In contrast, Fig. 2
shows that the features we have discussed so far don’t have
this structure. By nature of the fact that they pool
information over some support, they produce smooth,
spatially extended outputs. Since each pixel is classified
independently, spatially extended features are problematic
for a classifier, as both on-boundary pixels and nearby off-
boundary pixels will have large gradient values.

The texture gradient is particularly prone to this effect
due to its large support. In addition, the TG produces
multiple detections in the vicinity of brightness edges. The
bands of textons present along such edges often produce a
larger TG response on each side of the edge than directly on
the edge. This double-peak problem is ubiquitous in texture
edge detection and segmentation work [6], [8], [9], where it
produces double detections of edges and sliver regions
along region boundaries. We are aware of no work that
directly addresses this phenomenon. Nonmaxima suppres-
sion is typically used to narrow extended responses, but
multiple detections requires a more general solution. We
exploit the symmetric nature of the texture gradient
response to both localize the edge accurately and eliminate
the double detections.

To make the spatial structure of boundaries available to
the classifier, we transform the raw feature signals in order
to emphasize local maxima in a manner that simultaneously
smooths out multiple detections. Given a feature fðxÞ
defined over spatial coordinate x orthogonal to the edge
orientation, consider the derived feature f̂fðxÞ ¼ fðxÞ=dðxÞ,
where dðxÞ ¼ �jf 0ðxÞj=f 00ðxÞ is the first-order approxima-
tion of the distance to the nearest maximum of fðxÞ. We use
the smoothed and stabilized version

f̂fðxÞ ¼ ~ffðxÞ � �f 00ðxÞ
jf 0ðxÞj þ �

� �
ð3Þ

with � chosen to optimize the performance of the feature. By
incorporating the 1=dðxÞ localization term, f̂fðxÞ will have
narrower peaks than the raw fðxÞ. ~ffðxÞ is a smoothed
estimate of the underlying gradient signal that eliminates
the double peaks.

To robustly estimate the directional derivatives and the
smoothed signal, we fit a cylindrical parabola over a

2D circular window of radius r centered at each pixel.3

The axis of the parabolic cylinder is constrained to lay
parallel to the image plane and encodes the edge location
and orientation; the height encodes the edge intensity; and
the curvature of the parabola encodes localization uncer-
tainty. We project the data points inside the circular fit
window onto the plane orthogonal to both the image plane
and the edge orientation, so that the fit is performed on a 1D
function. The least squares parabolic fit ax2 þ bxþ c
provides directly the signal derivatives as f 00ðxÞ ¼ 2a and
f 0ðxÞ ¼ b, as well as ~ffðxÞ ¼ c. Thus, the localization function
becomes f̂f ¼ �ð2cþaþÞ=ðjbj þ �Þ, where c and a are half-
wave rectified. This rectification is required to avoid
nonsensical sign changes in the signal when c and a are
multiplied together.

The last two columns of Fig. 2 show the result of
applying this transformation to the texture gradient. The
effect is to reduce noise, tightly localize the boundaries, and
coalesce double detections. We found that the localization
procedure does not improve the brightness and color
gradient features so our final feature set consists of

fdOEOE;BG;CG; cTGTGg, each at eight orientations and three

half-octave scales.

3 EVALUATION METHODOLOGY

Our system will ultimately combine the cues of the previous
section into a single function Pbðx; y; �Þ that gives the
posterior probability of a boundary at each pixel ðx; yÞ and
orientation �. In order to optimize the parameters of this
system and compare it to other systems, we need a
methodology for judging the quality of a boundary
detector. We formulate boundary-detection as a classifica-
tion problem of discriminating nonboundary from bound-
ary pixels and apply the precision-recall framework using
human-marked boundaries from the Berkeley Segmentation
Dataset [11] as ground truth.

The segmentation data set contains 5-10 segmentations
for each of 1,000 images. The instructions to subjects were
brief:

You will be presented a photographic image. Divide the
image into some number of segments, where the segments
represent “things” or “parts of things” in the scene. The
number of segments is up to you, as it depends on the
image. Something between 2 and 30 is likely to be
appropriate. It is important that all of the segments have
approximately equal importance.

Fig. 1 demonstrates the high degree of consistency
between different human subjects. Additional details on
the data set construction may be found in [11]. In addition,
the data set can be downloaded from the Internet [27] along
with code for running our boundary detection and
segmentation benchmark. We use 200 images and asso-
ciated segmentations as the training data, and the next
100 images and associated segmentations as the test data set.

Our evaluation measure—the precision-recall curve—is

a parametric curve that captures the trade off between
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3. Windowed parabolic fitting is known as second-order Savitsky-Golay
filtering, or LOESS smoothing. We also considered Gaussian derivative
filters fGr;G

0
r; G

00
rg to estimate ffr; f 0r; f 00r g with similar results.



accuracy and noise as the detector threshold varies.

Precision is the fraction of detections that are true positives

rather than false positives, while recall is the fraction of true

positives that are detected rather than missed. In probabil-

istic terms, precision is the probability that the detector’s

signal is valid, and recall is the probability that the ground

truth data was detected.
Precision-recall curves are a standard evaluation techni-

que in the information retrieval community [28] and were
first used for evaluating edge detectors by Abdou and Pratt
[29]. A similar approach was taken by Bowyer et al. [30] for
boundary detector evaluation with receiver operating
characteristic (ROC) curves. The axes for an ROC curve
are fallout and recall. Recall, or hit rate, is the same as above.
Fallout, or false alarm rate, is the probability that a true
negative was labeled a false positive.

AlthoughROCandPR curves qualitatively show the same

trade off between misses and false positives, ROC curves are

not appropriate for quantifying boundary detection. Fallout

is not a meaningful quantity for a boundary detector since it

depends on the size of pixels. If we increase the image

resolution by a factor of n, the number of pixels grows as n2.

Since boundaries are 1D (or at least have a fractal dimension

less than 2) the number of true negatives will grow as n2

while the number true positives will grow as slow as n. Thus,

the fallout will decline by as much as 1=n. Precision does not

have this problem since it is normalized by the number of

positives rather than the number of true negatives.
Other methods of evaluating boundary detectors in a

quantitative framework exist, such as the Chernoff informa-
tion used by Konishi et al. [12]. Though the information
theoretic approach approach can lead to a useful method for
ranking algorithms relative to one another, it does not
produce an intuitive performance measure.

The precision and recall measures are particularly
meaningful in the context of boundary detection when we
consider applications that make use of boundary maps,
such as stereo or object recognition. It is reasonable to
characterize higher level processing in terms of how much
true signal is required to succeed R (recall), and how much
noise can be tolerated P (precision). A particular application
can define a relative cost � between these quantities, which
focuses attention at a specific point on the precision-recall
curve. The F-measure [28], defined as

F ¼ PR=ð�Rþ ð1� �ÞP Þ ð4Þ

captures this trade off as the weighted harmonic mean of P
and R. The location of the maximum F-measure along the
curve provides the optimal detector threshold for the
application given �, which we set to 0.5 in our experiments.

Precision and recall are appealing measures, but to
compute them we must determine which true positives are
correctly detected, and which detections are false. Each
point on the precision-recall curve is computed from the
detector’s output at a particular threshold. In addition, we
have binary boundary maps as ground truth from the
human subjects. For the moment, let us consider how to
compute the precision and recall of a single thresholded
machine boundary map given a single human boundary
map. One could simply correspond coincident boundary

pixels and declare all unmatched pixels either false
positives or misses. However, this approach would not
tolerate any localization error and would consequently
overpenalize algorithms that generate usable, though
slightly mislocalized boundaries. From Fig. 1, it is clear
that the assignment of machine boundary pixels to ground
truth boundaries must tolerate localization errors since even
the ground truth data contains boundary localization errors.

The approach of [31] is to add a modicum of slop to the
rigid correspondence procedure described above in order to
permit small localization errors at the cost of permitting
multiple detections. However, an explicit correspondence of
machine and human boundary pixels is the only way to
robustly count the hits, misses, and false positives that we
need to compute precision and recall. In particular, it is
important to compute the correspondence explicitly in
order to penalize multiple detections. Single detection is
one of the three goals of boundary detection formalized by
Canny [5], the other two being a high detection rate and
good localization.

The correspondence computation is detailed in Appen-
dix B, which provides us the means of computing the
precision and recall for a single human segmentation while
permitting a controlled amount of localization error. The
segmentation data set, however, provides multiple human
segmentations for each image, so that the ground truth is
defined by a collection of 5 to 10 human segmentations.
Simply unioning the humans’ boundary maps is not
effective because of the localization errors present in the
data set itself. A proper approach to combining the human
boundary maps would likely require additional correspon-
dences, or even estimating models of the humans’
detection and localization error processes along with the
hidden true signal.

Fortunately, we are able to finesse these issues in the
following manner. First, we correspond the machine
boundary map separately with each human map in turn.
Only those machine boundary pixels that match no human
boundary are counted as false positives. The hit rate is
simply averaged over the different humans, so that to
achieve perfect recall the machine boundary map must
explain all of the human data. Our intention is that this
approach to estimating precision and recall matches as
closely as possible the intuitions one would have if scoring
the outputs visually. In particular, all three desirable
properties of a boundary detector—detection, localization,
single detection—are encouraged by the method and visible
in the results.

In summary, we have a method for describing the
quality of a boundary detector that produces soft boundary
maps of the form Pbðx; y; �Þ or Pbðx; yÞ. For the latter, we
take the maximum over �. Given the soft boundary image
Pbðx; yÞ, we produce a precision-recall curve. Each point on
the curve is computed independently by first thresholding
Pb to produce a binary boundary map and then matching
this machine boundary map against each of the human
boundary maps in the ground truth segmentation data set.
The precision-recall curve is a rich descriptor of perfor-
mance. When a single performance measure is required or
is sufficient, precision and recall can be combined with the
F-measure. The F-measure curve is usually unimodal, so the
maximal F-measure may be reported as a summary of the
detector’s performance. We now turn to applying this
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evaluation methodology to optimizing our boundary
detector, and comparing our approach to the standard
methods.

4 CUE OPTIMIZATION

Before combining the brightness, color, and texture cues
into a single detector, we first optimize each cue individu-
ally. By applying coordinate ascent on each cue’s para-
meters with high precision and recall as the objective, we
can optimize each cue with respect to the ground truth data
set so that no change in any single parameter improves
performance. For space considerations, we do not present
the complete set of experiments, rather only those that
afford interesting observations.

Each of the four cues—oriented energy (OE), brightness
gradient (BG), color gradient (CG), and texture gradient
(TG)—has a scale parameter. In the case of OE, the scale � is
the bandwidth of the quadrature filter pair. For the others,
the scale r is the radius of the disc. We determined the
optimal one octave range for each cue. In units of
percentage of the image diagonal, the ranges are 1.4 to
2.8 percent for OE, CG, and TG, and 0.75 to 1.5 percent for
BG. These scales are optimal, independent of whether or not
we use the localization procedure of Section 2.3. The middle
scale always performs best, except in the case of raw OE
where the largest scale is superior.

Fig. 5 shows the precision-recall (PR) curves for each cue
at the optimal scales both with and without localization
applied. In addition, each plot shows the PR curve for the
combination of the three scales. Each curve is generated
from a Pbðx; yÞ function that is obtained by fitting a logistic
model to the training data set. We evaluate the Pb function
on the test set to produce the Pbðx; yÞ images from which the
curve is generated. The � for each cue’s localization function
was optimized separately to 0.01 for TG and 0.1 for all other
cues. The figure shows that localization is not required for
BG and CG, but helpful for both OE and TG. The
localization function has two potential benefits. It narrows
peaks in the signal, and it merges multiple detections. From
Fig. 2, we see that the scale of OE is rather large so that
localization is effective at narrowing the wide response. TG
suffers from both multiple detections and a wide response,
both of which are ameliorated by the localization procedure.

Fig. 6 shows our optimization of the kernel size used in
the density estimation computations for BG and CG. For
these features, we compare the distributions of pixel values
in two half discs, whether those values are brightness (L*)
or color (a*b*). First consider the color gradient CGaþb

computed over the marginal distributions of a* and b*. With
a disc radius ranging from four to eight pixels, kernels are
critical in obtaining low-variance estimates of the distribu-
tions. In the figure, we vary the Gaussian kernel’s sigma
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Fig. 5. (a) RawOE, (b) Raw BG, (c) Raw CG, (d) Raw TG, (e) Localized OE, (f) Localized BG, (g) Localized CG, (h) Localized TG. Performance of raw
and localized features (top and bottom rows, respectively). The precision and recall axes are defined in Section 3. Curves toward the top (lower noise)
and right (more recovered signal) are better. Each curve is parameterized by Pb and is scored by its maximal F-measure, the value and location of
which are shown in the legend. Each panel in this figure shows four curves: one curve for each of three half-octave spaced scales of the feature, along
with one curve for the combination of the three scales. The three scales are labeled smallest to largest as 0,1,2, and the combination of scales is
indicated by a “*”. The starting scales for OE, BG, CG, and TG are 1.4 percent, 0.75 percent, 1.4 percent, and 1.4 percent of the image diagonal,
respectively.With the exception of Fig. 10, we use the logistic regression to model Pb. In this figure, we see that the localization procedure is marginally
helpful for OE, unnecessary for BG and CG, and extremely helpful for TG. The performance gain for TG is due to the elimination of double-detections
along with good localization, as is evident from Fig. 2. In addition, TG is the only feature for which there is benefit from combining scales. Note that each
feature’s � and scale parameters were optimized against the training set using the precision-recall methodology.



from 1.25 to 40 percent of the diameter of the domain. In
addition, the number of bins was varied inversely in order
to keep the number of samples per bin constant, and above
a minimum of two per bin. The kernel was clipped at 2�
and sampled at 23 points. The dominant PR curve on each
plot indicates that the optimal parameter for BG is � ¼ 0:2
(with 12 bins) and � ¼ 0:1 for CG (with 25 bins).

The experiments in Fig. 6 used the separated version of
the color gradient CGaþb rather than the joint version CGab.
Fig. 7 shows the comparison between these two methods of
computing the color gradient. Whether using a single scale
of CG or multiple scales, the difference between CGaþb and
CGab is minimal. The joint approach is far more expensive
computationally due to the additional dimension in the
kernels and histograms. The number of bins in each
dimension was kept constant at 25 for the comparison, so
the computational costs differed by 25x, requiring tens of
minutes for CGab. If computational expense is kept constant,
then the marginal method is superior because of the higher
resolution afforded in the density estimate. In all cases, the
marginal approach to computing the color gradient is
preferable.

The texture gradient cue also has some additional
parameters beyond r and � to tune, related to the texture
representation and comparison. The purpose of TG is to
quantify the difference in the distribution of filter responses
in the two disc halves. Many design options abound as
discussed in Section 2.2.2. For filters, we use the same even
and odd-symmetric filters that use for oriented energy—
a second derivative Gaussian and its Hilbert transform—
at six orientations along with a center-surround DOG. We
experimented with multiscale filter banks, but found
agreement with Levina [26] that a single-scale filter bank
at the smallest scale was preferable. Fig. 4a shows the filter
bank we used for texture estimation. As for distribution
estimation issues, we follow the texton approach of Malik et
al. [2] which estimates the joint distribution with adaptive
bins by clustering the filter responses with k-means, and

compares histograms using the �2 measure. We verified
that none of L1, L2, or L1 norm performs better. In
addition, we determined that the Mallows distance com-
puted on the marginal raw filter outputs performed poorly.
The Mallows distance on the joint distribution is computa-
tionally infeasible, requiring the solution to a large assign-
ment problem.

After settling on the approach of comparing texton
histograms with the �2 difference, we must choose between
image-specific and universal textons as well as the number
of textons (the k parameter for k-means). For image-specific
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Fig. 6. (a) Brightness gradient. (b) Color gradient. Kernel bandwidth for BG and CG kernel density estimates. Both BG and CG operate by comparing
the distributions of 1976 CIE L*a*b* pixel values in each half of a disc. We estimate the 1D distributions of L*, a*, and b* with histograms, but
smoothing is required due to the small size of the discs. Each curve is labeled with � and bin count. The accessible ranges of L*, a*, and b* are
scaled to ½0; 1�. The kernel was clipped at 2� and sampled at 23 points. The bin count was adjusted so that there would be no fewer than two samples
per bin. The best values are � ¼ 0:2 for BG (12 bins) and � ¼ 0:1 for CG (25 bins).

Fig. 7. Marginal versus Joint Estimates of CG. (a) CG middle scale:
shows the middle scale of the color gradient and (b) CG combined
scales: shows the three scales combined. Our inclination in estimating
pixel color distributions was to estimate the 2D joint distribution of a* and
b*. However, the 2D kernel density estimation proved to be computa-
tionally expensive. Since the a* and b* axes in the 1976 CIE L*a*b* color
space were designed to mimic the blue-yellow green-red color
opponency found the human visual cortex, one might expect the joint
color distribution to contain little perceptual information not present in the
marginal distributions of a* and b*. The curves labeled “AB” show the
color gradient computed using the joint histogram (CGab); the curves
labeled “A+B” show the color gradient computed computed as
ðCGa þ CGbÞ. The number of bins in each dimension is 25 for both
experiments, so that the CGab computation requires 25x more bins and
25x the compute time. The cue quality is virtually identical and, so, we
adopt the marginal CG approach.



textons, we recompute the adaptive texton bins for each test
image separately. For universal textons, we compute a
standard set of textons from the 200 training images. The
computational cost of each approach is approximately equal
since the per-image k-means problems are small and one
can use fewer textons in the image-specific case.

Fig. 8 shows experiments covering both texton ques-
tions. One can see that the choice between image specific
and universal textons is not important for performance. We
use image-specific textons for convenience, though uni-
versal textons are perhaps more appealing in that they can
be used to characterize textures in an image-independent
manner. Image-independent descriptions of texture would
be useful for image retrieval and object recognition
applications. The figure also reveals two scaling rules for
the optimal number of textons. First, the optimal number of
textons for universal textons is roughly double that
required for image specific textons. Second, the optimal
number of textons scales linearly with the area of the disc.
The former scaling is expected, to avoid overfitting in the
image-specific case. The latter scaling rule keeps the
number of samples per texton bin constant, which reduces
overfitting for the smaller TG scales.

It may be surprising that one gets comparable results
using both image-specific and universal textons as the
image-specific textons vary between training and testing
images. Since the texture gradient is only dependent on
having good estimates of the distribution in each half-disc,
the identity of individual textons is unimportant. The
adaptive binning given by k-means on a per-image basis
appears to robustly estimate the distribution of filter

response and is well behaved across a wide variety of
natural images.

5 CUE COMBINATION

After optimizing the performance of each cue, we face the
problem of combining the cues into a single detector. We
approach the task of cue combination as a supervised
learning problem, where we will learn the combination
rules from the ground truth data. There is some previous
work on learning boundary models. Will et. al. [7] learn
texture edge models for synthetic Brodatz mosaics. Meila
and Shi [32] present a framework for learning segmenta-
tions from labeled examples. Most compelling is the work
of Konishi et. al. [12], where edge detectors were trained on
human-labeled images.

Fig. 9 presents the first set of cue combination experi-
ments using logistic regression. The first task is to
determine whether any of the cues is redundant given the
others. Until this point, we have presented four cues, two of
which—OE and BG—detect discontinuities in brightness.
Fig. 9a shows that BG is a superior cue to OE, whether used
in conjunction with the texture gradient alone or with the
texture and color gradients together. In addition, since we
do not gain anything by using OE and BG in conjunction
(not shown), we can safely drop OE from the list of cues.

We have the option of computing each cue at multiple
scales. Fig. 5 shows that only the texture gradient contains
significant independent information at the different scales.
The benefit of usingmultiple TGscales does not remainwhen
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Fig. 8. (a) Image specific TG0, (b) Universal TG0, (c) Image specific TG2, (d) Universal TG2, (e) Image specific vs. universal. Image specific versus
Universal textons. We can compute textons on a per-image basis or universally on a canonical image set. (a) and (c) show the performance of the
small and large scales of TG for 8-128 image specific textons; (b) and (d) show the performance of the same TG scales for 16-256 universal textons;
(e) shows the performance of image specific versus universal textons for the middle TG scale along with the combined TG scales. The optimal
number of universal textons is double the number for image specific textons. In addition, smaller scales of TG require fewer textons. The scaling is
roughly linear in the area of the TG disc, so that one scales the number of textons to keep the number samples/bin constant. Results are insensitive
to within a factor of two of the optimal number. From (e), we see that the choice between image-specific and universal textons is not critical. In our
experiments, we use image-specific textons with k={12,24,48}. The choice for us is unimportant, though for other applications such as object
recognition one would likely prefer the measure of texture provided by universal textons, which can be compared across images.



TG is combined with other cues. Fig. 9b shows the effect of

using multiple TG scales in conjunction with BG and CG. In

both the BG and BG + CG cases, multiple TG scales improve

performance only marginally. The Figs. 9c and 9d show the

effect of adding multiple BG and CG scales to the model. In

neither case domultiple scales improve overall performance.

In some cases (see Fig. 9d), performance can degrade as

additional scales may introduce more noise than signal.
In order to keep the final system as simple as possible,

we will retain only the middle scale of each feature.

However, it is surprising that multiscale cues are not

beneficial. Part of the reason may be that the segmentation

data set itself contains a limited range of scale, as subjects

were unlikely to produce segmentations with more than

approximately 30 segments. An additional explanation is

suggested by Figs. 5h and 9b, where we see that the

multiple scales of TG have independent information, but

the benefit of multiple TG scales vanishes when BG is used.

The brightness gradient operates at small scales, and is

capable of low-order texture discrimination. At the smallest

scales, there is not enough information for high-order

texture analysis anyway, so BG is a good small-scale texture

feature. The texture gradient identifies the more complex,

larger scale textures.

Until this point, all results were generated with a logistic
model. We will show that the logistic model is a good
choice by comparing a wide array of classifiers, each trained
on the human segmentation data set. With more powerful
models, we hoped to discover some interesting cross-cue
and cross-scale gating effects. For example, one might
discount the simpler boundary detection of BG when TG is
low because the brightness edges are likely to correspond to
edges interior to textured areas. In addition, the optimal
mixing function for the various cues could well be non-
linear, with each cue treated as an expert for a certain class
of boundaries. These are the classifiers that we used:

Density Estimation. We do density estimation with
adaptive bins provided by vector quantization using
k-means. Each k-means centroid provides the density
estimate of its Voronoi cell as the fraction of on-boundary
samples in the cell. We use k=128 bins and average the
estimates from 10 runs to reduce variance.

Classification Trees. The domain is partitioned hierarchi-
cally with top-down axis-parallel splits. When a cell is
split, it is split in half along a single dimension. Cells are
split greedily so as to maximize the information gained
at each step. The effect of this heuristic is to split nodes so
that the two classes become separated as much as
possible. A 5 percent bound on the error of the density
estimate is enforced by splitting cells only when both
classes have at least 400 points present.

Logistic Regression. This is the simplest of our classifiers
and the one perhaps most easily implemented by
neurons in the visual cortex. Initialization is random,
and convergence is fast and reliable by maximizing the
likelihood with about five Newton-Raphson iterations.
We also consider two variants: quadratic combinations
of features, and boosting using the confidence-rated
generalization of AdaBoost by Schapire and Singer
[33]. No more than 10 rounds of boosting are required
for this problem.

Hierarchical Mixtures of Experts. The HME model of
Jordan and Jacobs [34] is a mixture model where both the
experts at the leaves and the internal nodes that compose
the gating network are logistic functions. We consider
small binary trees up to a depth of three (eight experts).
The model is initialized in a greedy, top-down manner
and fit with EM. Two hundred iterations were required
for the log likelihood to converge.

Support Vector Machines. We use the SVM package
libsvm [35] to do soft-margin classification using
Gaussian kernels. The optimal parameters were � ¼ 0:2
and � ¼ 0:2. In this parameterization of SVMs, �
provides the expected fraction of support vectors, which
is also an estimate of the degree of class overlap in the
data. The high degree of class overlap in our problem
also explains the need for a relatively large kernel.

We used 200 images for training and algorithm devel-
opment. The 100 test images were used only to generate the
final results for this paper. The authors of [11] show that the
segmentations of a single image by the different subjects are
highly consistent, so we consider all human-marked
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Fig. 9. Cue Combination. After optimizing the parameters of each cue
independently, we seek to combine the cues effectively. (a) OE versus
BG: shows that whether or not we include CG, we are always better off
using BG as our brightness cue instead of OE. Note that though the
curve is not shown, using OE and BG together is not beneficial.
(b) Multiscale TG: Although we saw in Fig. 5 that we benefit from using
multiple scales of TG, the benefit is significantly reduced when BG is
included. This is because BG contains some ability to discriminate fine
scale textures. (c) Gray-scale model: Our noncolor model of choice is
simply the combination of a single scale of BG with a single scale of TG.
(d) Color model: Our color model of choice also includes only a single
scale of each of the BG, CG, and TG features.



boundaries valid. For training, we declare an image location
ðx; y; �Þ to be on-boundary if it is within �x �

ffiffiffi
8

p
pixels and

�� ¼ 30 degrees of any human-marked boundary. The
remainder are labeled off-boundary.

This classification task is characterized by relatively
low dimension, a large amount of data (100M samples for
our 240 x 160-pixel images), poor class separability, and a
10:1 class ratio. The maximum feasible amount of data,
uniformly sampled, is given to each classifier. This varies
from 50M samples for the density estimation and logistic
regression to 20K samples for the SVM and HME. Note
that a high degree of class overlap in any low-level feature
space is inevitable because the human subjects make use
of both global constraints and high-level information to
resolve locally ambiguous boundaries.

The CPU time required for training and evaluating the
models varied by several orders of magnitude. For training,
the logistic regression and classification trees required
several minutes on a 1GHz Pentium IV, while the density
estimation, HME, and SVM models—even with signifi-
cantly reduced data—required many hours. For evaluation,
the logistic regression and classification trees were again the
fastest, respectively, taking constant time and time loga-
rithmic in the number of data points. For these, the
evaluation time was dominated by the couple of minutes
required to compute the image features. The density
estimation model evaluation is linear in the value of k used
for k-means and the number of runs, adding a constant
factor of 1,280 to an operation requiring 2f operations per
pixel, where f is the number of features. The HME is a
constant factor of at most 15 slower than the logistic, due to
our limit of eight experts. The SVM model is prohibitively
slow. Since 25 percent of the training data become support
vectors, the SVM required hours to evaluate for a single
image.

Fig. 10a shows the performance of the seven classifiers
using only the middle scale of BG, CG, and TG. The
PR curves all cross approximately at the maximal
F-measure point and, so, all the classifiers are equivalent
as measured by the F-measure. The classification tree and
SVM are able to achieve marginally higher performance
in the high recall and low precision regime, but they
perform worse in the low recall and high precision area.
Overall, the performance of all the classifiers is approxi-
mately equal, but other issues affect model choice such as
representational compactness, stability, bias, variance, cost
of training, and cost of evaluation.

The nonparametric models achieve the highest perfor-
mance, as they are able to make use of the large amount of
training data to provide unbiased estimates of the posterior,
at the cost of opacity and a large model representation. The
plain logistic is stable and quick to train, and produces a
compact and intuitive model. In addition, the figure shows
that the logistic’s bias does not hurt performance. When
given sufficient training data and time, all the variants on
the logistic—the quadratic logistic, boosted logistic, and
HME—provided minor performance gains. However, the
many EM iterations required to fit the HME required us to
subsample the training data heavily in order to keep
training time within reasonable limits.

The support vector machine was a disappointment.
Training time is superlinear in the number of samples, so
the training data had to be heavily subsampled. The large
class overlap produced models with 25 percent of the
training samples as support vectors, so that the resulting
model was opaque, large, and exceedingly slow to
evaluate. In addition, we found the SVM to be brittle with
respect to its parameters � and �. Even at the optimal
settings, the training would occasionally produce nonsen-
sical models. Minute variations from the optimal settings
would produce infeasible problems. We conclude that the
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Fig. 10. Choice of Classifier. Until this point, all results have been shown using the logistic regression model. (a) One scale per cue and (b) three
scales per cue. This model is appealing because it is compact, robust, stable, interpretable, and quick to both train and evaluate. However, its linear
decision boundary precludes any potentially interesting cross-cue gating effects. In this figure, we show the result of applying various more powerful
models on (a) one scale of each of BG, CG, and TG, and (b) all three scales of each feature (nine total features). The classification tree model could
not be applied in (b) due to the increased number of features. In neither case does the choice of classifier make much difference. In both cases, the
logistic regression performs well. The addition of multiple scales does not improve performance. The logistic is still the model of choice.



SVM is poorly suited to a problem that does not have
separable training data.

Fig. 10b shows the performance of each classifier except
the classification tree when all three scales are included for
each of the three features. The results are much as before,
with virtually no difference between the different models.
Balancing considerations of performance, model complex-
ity, and computational cost, we favor the logistic model and
its variants.

6 RESULTS

Having settled on a grayscale boundary model using a
single scale each of BG and TG, and a color model that adds
a single scale of CG, we seek to compare these models to
classical models and the state of the art. The model that we
present as a baseline is MATLAB’s implementation of the
Canny [5] edge detector. We consider the detector both with
and without hysteresis. To our knowledge, there is no work
proving the benefit of hysteresis thresholding for natural
images. We will call the Canny detector without hysteresis
“GD,” as it is simply a Gaussian derivative filter with
nonmaxima suppression. With hysteresis, the operator is
called “GD + H.” The GD and GD + H detectors each have a
single parameter to tune—the � of the Gaussian derivative
filters. Figs. 11a and 11b show the PR curves for various
choices of �. For both cases, � ¼ 1 pixel is a good choice.
Note that the detector threshold is not a parameter that we
need to fit, since it is the parameter of the PR curves.

We also consider a detector derived from the spatially-
averaged second moment matrix (2MM). It has long been
known that the eigenspectrum of the second moment
matrix provides an informative local image descriptor. For
example, both eigenvalues being large may indicate a
corner or junction. This is the basis of the Plessey or Harris-
Stephens [36] corner detector and the Förstner corner
detector [37]. One large and one small eigenvalue may
indicate a simple boundary. The Nitzberg edge detector [38]
used by Konishi et al. [12] is based on the difference
between the eigenvalues.

We apply the same training/test methodology to the
2MM detector as we do to our own detectors, using the full

eigenspectrum as a feature vector. From the 200 training
images, we obtain on and off-boundary labels for pixels and
train a logistic model using both eigenvalues of the 2MM as
features. Fig. 12 shows the model trained in this manner.
Fig. 12a shows the distribution of the training data in
feature space. Fig. 12b shows the empirical posterior, and
Fig. 12c shows the fitted posterior from the logistic model.
To perform nonmaxima suppression on the 2MM output,
we calculated the orientation of the operator’s response
from the leading eigenvector.

The 2MM detector also has two scale parameters. The
inner scale is the scale at which image derivatives are
estimated. We set the inner scale to a minimum value,
estimating the derivatives with the typical 3 x 3 [-1,0,1]
filters. Fig. 11c shows the optimization over the outer scale
parameter, which is the scale at which the derivatives are
spatially averaged. Only a modest amount of blur is
required (� ¼ 0:5 pixels). Note that some blur is required,
or the second eigenvalue vanishes. Less smoothing is not
possible due to pixel resolution.

In Fig. 13, we give a summary comparison of the BG, CG,
and TG detectors, along with two combinations: BG + TG
for grayscale images, and BG + CG + TG for color images. It
is clear that each feature contains a significant amount of
independent information. Fig. 3 shows the comparison
between the two Gaussian derivative operators (GD and
GD + H), the second moment matrix operator (2MM), our
grayscale BG + TG operator, and our color BG + CG + TG
operator.4 First, note that hysteresis does impart a marginal
improvement to the plain GD operator, though the
difference is pronounced only at very low recall rates. The
2MM operator does mark a significant improvement over
the Canny detector, except at low recall. The main benefit of
the 2MM operator is that it does not fire where both
eigenvalues are large—note the opposite signs of the
coefficients in the model. As a result, it does not fire where
energy at multiple orientations coincide at a pixel, such as at
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4. The logistic coefficients for the BG + TG operator are 0.50 for BG and
0.52 for TG with an offset of -2.81. The coefficients for the color model are
0.31 for BG, 0.53 for CG, and 0.44 for TG, with an offset of -3.08. The features
are normalized to have unit variance. Feature standard deviations are 0.13
for BG, 0.077 for CG, and 0.063 for TG.

Fig. 11. (a) Gaussian derivative. (b) GD + hysteresis. (c) Second moment matrix. Choosing � for the classical edge operators. The Gaussian

derivative (GD) operator (a) without and (b) with hysteresis, and (c) the second moment matrix (2MM) operator, fitted as in Fig. 12. From these

experiments, we choose the optimal scales of � ¼ 1 for GD regardless of hysteresis, and � ¼ 0:5 for 2MM.



corners or inside certain textures. Thus, 2MM reduces the
number of false positives from high contrast texture.

The operators based on BG and TG significantly outper-
form both classical and state of the art boundary detectors.
The main reason for the improved performance is a robust
treatment of texture. Neither GM nor 2MM can detect
texture boundaries. For the same reason that 2MM
suppresses false positives inside textured areas, it also
suppresses edges between textured areas.

Fig. 3 also shows the performance of the human subjects
in the segmentation data set. Each plotted point shows the
precision and recall of a single human segmentation when it
is compared to the other humans’ segmentations of the
same image. The median human F-measure is 0.80. The
solid line in the upper right corner of the figure shows the
iso-F-measure line for 0.80, representing the F-measure
frontier of human performance.

Each of the curves in Fig. 3 uses a fixed distance tolerance

dmax ¼ 1 percent of the image diagonal (2.88 pixels). Fig. 14

shows how each detector’s F-measure varies as this

tolerance changes. The digital pixel grid forces a discretiza-

tion of this parameter, and the figure shows the result for

dmax ¼ f
ffiffiffi
2

p
; 2;

ffiffiffi
5

p
;

ffiffiffiffiffi
10

p
g. Figs. 14a, 14b, 14c, and 14d show

the PR curves for each detector. Since these curves do not

intersect and are roughly parallel, the F-measure captures

the differences effectively. Fig. 14e shows how the

F-measure changes as a function of dmax for each detector

and for the human subjects. If a detector’s localization were

good to within 1 pixel, then the detector’s curve would be

flat. In contrast, all of the machine curves reveal localization

error greater than that shown by the human subjects.

Additional work on local boundary detection will no doubt

narrow the gap between machine and human performance,

but large gains will ultimately require higher-level algo-

rithms. Preliminary work [39] suggests that human subjects

viewing local patches such as those in Fig. 2 perform at a

level equivalent to our best detector.
We present qualitative results in Figs. 15, 16, and 17. The

first figure shows various versions of our detectors along
with the humans’ boundaries. The second figure shows a
comparison between the GD + H, 2MM, and BG + TG
detectors alongside the humans’ boundaries. The third
figure shows close-up views of several interesting bound-
aries. Each machine detector image in these figure shows
the soft boundary map after non-maxima suppression, and
after taking the maximum over �. In Fig. 15, we see the
complementary information contained in the three chan-
nels, and the effective combination by the logistic model.
For example, color is used when present in (b, c, i) to
improve the detector output. Fig. 16 shows how the BG +
TG detector has eliminated false positives from texture
while retaining good localization of boundaries. This effect
is particularly prominent in image Fig. 16e.

The man’s shoulder from Fig. 16e is shown in more detail

in Fig. 17a. This image illustrates several interesting issues.

The striped shirt sleeve is a difficult texture boundary due

to the large scale of the stripes compared to the width of the

region. Nevertheless, the boundary is successfully detected
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Fig. 12. Optimizing the second moment matrix model. For this model, the two features are the smaller and larger eigenvalues of the locally averaged
2nd moment matrix. (a) Log10 (sample count): shows the histogram of samples from the 200 training images along with the 100 samples/bin
contour. (b) Empirical posterior: shows the empirical posterior probability of a boundary. (c) Fitted posterior: shows the fitted posterior using logistic
regression. We did not find more complex models of the posterior to be superior. The linear decision boundary of the fitted logistic is drawn in both (b)
and (c). The coefficients of the fitted logistic are -0.27 for the larger eigenvalue and 0.58 for the smaller eigenvalue, with an offset of -1.

Fig. 13. Detector Comparison. The performance of the boundary

detectors proposed in this paper, both independently and in combination.



by TG with good localization and without the false positives

marked by brightness-based approaches such as GM. The

2MM detector also has grave difficulty with this texture

because is it not isotropic, so that the eigengap remains

large inside the texture. Note that no detector found the top

edge of the man’s shoulder. There is no photometric

evidence for this boundary, yet it was marked by the

human subjects with surprising agreement. It is clear that

we cannot hope to find such boundaries without object-

level information.
Figs. 17e and 17g in show the reduction in false positives

in our detectors compared to the GM and 2MM detectors.
Fig. 17c shows another difficult texture boundary along the
underside of the boat where the texture is anisotropic, and
its direction is oblique to the object boundary.

Figs. 17b, 17d, and 17f show how different feature
channels in our detector can cooperate to find composite
boundaries. Especially in Fig. 17b, we can see that all three
channels (BG, CG, and TG) have found the boundary of the
ear. The BG has good localization because of its smaller
scale, but also hasmore false positives inside the ear. The CG
has a powerful response from the skin tone, but its larger
support sacrifices localization somewhat around the ear-
lobe. The texture gradient has strong responses around the
ear, between the ear and face, and around the eye, but
localization is everywhere a few pixels off. By combining the
three responses, important boundaries found in any one
channel survive while boundaries found in multiple
channels are reinforced. This reinforcement not only
strengthens the response, but also benefits localization
where, for example, the BG response around the ear pulls

the TG response into better alignment. The final result is

strikingly similar to the human marked boundaries.

7 CONCLUSION

We have defined a novel set of brightness, color, and

texture cues appropriate for constructing a local boundary

model, as well as a methodology for benchmarking

boundary detection algorithms. By using a large data set

of human-labeled boundaries in natural images, we have

formulated the task of cue combination for local boundary

detection as a supervised learning problem. This approach

models the true posterior probability of a boundary at every

image location and orientation, which is particularly useful

for higher-level algorithms. The choice of classifier for

modeling the posterior probability of a boundary based on

local cues is not important—a simple linear model is

sufficiently powerful. Based on a quantitative evaluation

on 100 natural images, our detector outperforms existing

methods, indicating that a proper treatment of texture is

essential for detecting boundaries in natural images.

APPENDIX A

COMPUTING GRADIENT FEATURES

The most computationally expensive part of the gradient

computations is the computation of the half-disc feature

histograms. At each pixel, we must compute two

histograms over semicircular neighborhoods at several

orientations and several scales. Properly structured, this

computation can be done efficiently.
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Fig. 14. Detector comparison at various distance tolerances. (a) GD + hysteresis, (b) second moment matrix, (c) BG + TG, and (d) BG + CG + TG
show the precision recall curves for each detector as the matching tolerance varies from
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to
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p
pixels. The curves for each detector do not

intersect, and so the F-measure is a good representation of the performance regardless of threshold. (e) shows the relationship between F-measure
and the distance tolerance for the four detectors, along with the median human performance. The human curve is flatter than the machine curves,
showing that the humans’ localization is good. The gap between human and machine performance can be reduced but not closed by better local
boundary models. Both mid-level cues and high-level object-specific knowledge are likely required to approach the performance of the human
subjects.



The most significant speedup is achieved by optimizing

the loop over orientations. Assuming that we wish to

compute the gradient at n evenly spaced orientations, we

can divide the disc into 2n pie slices. If we compute the

pixel histogram for each pie slice, then any half-disc

histogram is simply the sum of n adjacent pie slice

histograms. In addition, we can compute the histograms

for orientation iþ 1 incrementally from the histograms

from orientation i by subtracting the last slice and adding

the next slice as we spin the disc. Note also that the initial

step of computing the pie slice histograms can be optimized

by precomputing a slice membership mask.
For the texture gradient, these optimizations are suffi-

cient. However, the soft binning required by BG and CG

suggest other opportunities for speedup. Each pixel

contributes one point to the histogram for each kernel

sample. Simply precomputing kernel offsets and values is

effective, though this approach is slow if the number of

kernel samples is large. If there are more kernel samples

than bins, then one should precompute the total histogram

contribution from each pixel.
Other loops may admit additional optimization oppor-

tunities. In the same way that we split the disc by

orientation into pie slices, one could additionally split the

disc into concentric rings corresponding to the multiple

scales. Since our half-octave scales produce an area

increment for the disc of 2x per scale, our computation is

dominated by the larger scale. A smaller scale increment

might motivate this optimization.
There is still much redundant computation as we sweep

the disc across a scan-line. The pie slice histograms change

slowly between adjacent pixels, especially when the

number of orientations is not large. It is possible to compute

them incrementally by computing slice update masks. For
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Fig. 15. Boundary images for the gradient detectors presented in this paper. Rows 2, 3, and 4 show real-valued probability-of-boundary (Pb) images

after nonmaxima suppression for the three cues. The complementary information in each of the three BG, CG, and TG channels is successfully

integrated by the logistic function in row 5. The boundaries in the human segmentations shown in row 6 are darker where more subjects marked a

boundary.



large radii, this optimization achieves an order of magni-
tude speedup.

APPENDIX B

CORRESPONDING BOUNDARY MAPS

In this section, we present the algorithm used for comput-
ing the correspondence between a thresholded machine
boundary map and a human labeled boundary map. We
convert the correspondence problem into a minimum cost
bipartite assignment problem, where the weight between a
machine boundary pixel and a human boundary pixel is
proportional to their relative distance in the image plane.
One can then declare all boundary pixels matched beyond
some threshold dmax to be nonhits.

The best dense assignment algorithms [40], [41] have
typical runtime complexity somewhere between Oðn2Þ and
Oðn3Þ. This is too slow for our purposes and, so, we must
formulate a sparse assignment problem. We use Goldberg’s
CSA package, which implements the best known algorithms
for min-cost sparse assignment [42], [43]. The CSA code
appears to run in time linear in the size of the graph, OðnÞ.

What remains is to construct a sparse version of our
assignment problem that conforms to certain practical

algorithmic concerns. In order to make the problem sparse,
we include in the graph only those edges with weight
w � dmax, since an edge with w > dmax could only serve to
vacuously assign a missed human boundary to a machine’s
false positive. After this sparsification step, any isolated
node can be removed from the assignment problem and
immediately counted as a miss or false positive.

The min-cost assignment problem requires one to specify
the degree of the assignment to restrict the search to
nontrivial solutions. Since we cannot know the degree a
priori, we must request a perfect matching, i.e., a matching
that involves all nodes. However, the sparsification step
will almost certainly have removed edges required for a
perfect matching. This problem is easily solved by adding
outlier nodes on both sides of the match. All edges incident
on an outlier node have higher weight than any real edge in
the graph, ensuring that they are used only when necessary
to extend the true min-cost partial matching to a valid
perfect matching.

Given a sparse assignment problem with nL nodes on the
left side and nR nodes on the right, we add nR outlier nodes
to the left and nL outlier nodes to the right. This squared
problem has enough nodes to ensure a perfect matching,
but we cannot afford dense outlier connections. We can,
however, exploit the fact that all the outlier connections
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Fig. 16. Boundary images for three grayscale detectors. Compare with Fig. 15. Rows 2, 3, and 4 show Pb images for the Gaussian derivative (GD),

the second moment matrix (2MM), and our brightness+texture detector (BG + TG). The human segmentations are shown once more for comparison.

The BG + TG detector benefits from 1) operating at a large scale without sacrificing localization and 2) the suppression of edges in the interior of

textured regions.



have identical weight. Given an assignment solution, used
outlier edges are interchangeable and unused outlier
connections could not have affected the solution. Conse-
quently, dense outlier connections contain enormous re-
dundancy and are overly conservative. By appealing to the
high degree of connectivity present in random graphs, we
can keep the size of our graph linear in the number of nodes
by including a constant number of outlier connections per
node. We found d ¼ 6 connectivity to be sufficient, so that
there are d random outlier connections to each real node
and d random outlier connections to each outlier node.

One small detail remains, as the graph still does not
guarantee the existence of a perfect matching. As a safety
net, we overlay a perfect matching of high cost that matches
each real node to an outlier node in a parallel fashion. We
add these connections before the random outlier connec-
tions and add the outlier connections randomly without
replacement. The minimum cost perfect matching in this
graph provides the best correspondence of pixels between
the machine and human boundary maps, with a maximum
localization tolerance of dmax. Fig. 18 depicts the graph
construction procedure.
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Fig. 17. Close-up boundary and nonboundary examples. These examples are taken from the images shown in Figs. 15 and 16. They have been
chosen to illustrate the strengths of the different features, as well as the shortcomings of these various local detectors. Briefly, they show (a) a
difficult texture boundary and an illusory contour, (b) useful CG signal and appropriate scale for TG, (c) a difficult texture boundary (bottom of boat)
found by TG, (d) an example where BC, CG, and TG cooperate effectively, (e) and (f) more difficult texture boundaries (from images (b) and (i) in
Figs. 15 and 16) arguably localized by our detectors but completely lost in the GM and 2MM responses, and (g) the interior of a textured region (from
the wall in image (g)) showing the reduced false positive responses of our detectors inside a natural texture.



The main shortcoming of the algorithm as presented is in

the area of junctions, where assignments can be made

between boundary pixels that occur on boundaries at

different orientations. One can easily incorporate an

orientation penalty into the bipartite graph’s edge weights,

but we have verified that this enhancement has no

perceptible effect on the aggregate precision and recall

values because of the scarcity of junctions relative to simple

edges. One could also count hits, misses, and false positives

in a soft manner by using the values of the edge weights in

the match. However, the simple binary counting is

sufficient given the large number of images we used, not

to mention the lack of a convincing cost function.
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