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Abstract

This paper presents a database containing ‘ground
truth’ segmentations produced by humans for images of a
wide variety of natural scenes. We define an error measure
which quantifies the consistency between segmentations of
differing granularities and find that different human seg-
mentations of the same image are highly consistent. Use of
this dataset is demonstrated in two applications: (1) eval-
uating the performance of segmentation algorithms and (2)
measuring probability distributions associated with Gestalt
grouping factors as well as statistics of image region prop-
erties.

1. Introduction

Two central problems in vision are image segmentation
and recognition1. Both problems are hard, and we do not
yet have any general purpose solution approaching human
level competence for either one.

While it is unreasonable to expect quick solutions to ei-
ther problem, there is one dimension on which research in
recognition is on much more solid grounds–it is consider-
ably easier to quantify the performance of computer vision
algorithms at recognition than at segmentation. Recogni-
tion is classification, and one can empirically estimate the
probability of misclassification by simply counting classifi-
cation errors on a test set. The ready availability of test sets
– two of most significant ones are the MNIST handwrit-
ten digit dataset and the FERET face data set–has meant
that different algorithms can be compared directly using the
same quantitative error measures. It is well accepted that
one cannot evaluate a recognition algorithm by showing a
few images of correct classification. In contrast, image seg-

1It could be argued that they are aspects of the same problem. We do
not necessarily disagree!

Figure 1: Sample of 10 images from the segmentation database. Each
image has been segmented by 3 different people. A total of 10 people are
represented in this data.
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(a) (b) (c) (d)

Figure 2: Using the segmentation tool. See x2.1 for details.

(a) (b)

(c) (d)

Figure 3: Motivation for making segmentation error measures tolerant
to refinement. (a) shows the original image. (b)-(d) show three segmen-
tations in our database by different subjects. (b) and (d) are both simple
refinements of (c), while (b) and (d) illustrate mutual refinement.

mentation performance evaluation remains subjective. Typ-
ically, researchers will show their results on a few images
and point out why the results ‘look good’. We never know
from such studies whether the results are best examples or
typical examples, whether the technique will work only on
images that have no texture, and so on.

The major challenge is that the question “What is a cor-
rect segmentation” is a subtler question than “Is this digit
a 5”. This has led researchers e.g. Borra and Sarkar[3]
to argue that segmentation or grouping performance can be
evaluated only in the context of a task such as object recog-
nition. We don’t wish to deny the importance of evaluating
segmentations in the context of a task. However, the the-
sis of this paper is that segmentations can also be evaluated
purely as segmentations by comparing them to those pro-
duced by multiple human observers and that there is consid-
erable consistency among different human segmentations of
the same image so as to make such a comparison reliable.

Figure 1 shows some example images from the database

and 3 different segmentations for each image. The images
are of complex, natural scenes. In such images, multiple
cues are available for segmentation by a human or a com-
puter program–low level cues such as coherence of bright-
ness, texture or continuity of contour, intermediate level
cues such as symmetry and convexity, as well as high level
cues based on recognition of familiar objects. The instruc-
tions to the human observers made no attempt to restrict or
encourage the use of any particular type of cues. For in-
stance, it is perfectly reasonable for observers to use their
familiarity with faces to guide their segmentation of the im-
age in the second row of Figure 1. We realize that this im-
plies that a computational approach based purely on, say,
low-level coherence of color and texture, would find it dif-
ficult to attain perfect performance. In our view, this is per-
fectly fine. We wish to define a ‘gold standard’ for seg-
mentation results without any prior biases on what cues and
algorithms are to be exploited to obtain those results. We
expect that as segmentation and perceptual organization al-
gorithms evolve to make richer use of multiple cues, their
performance could continue to be evaluated on the same
dataset.

Note that the segmentations produced by different hu-
mans for a given image in Figure 1 are not identical. But,
are they consistent? One can think of a human’s percep-
tual organization as imposing a hierarchical tree structure
on the image. Even if two observers have exactly the same
perceptual organization of an image, they may choose to
segment at varying levels of granularity. See e.g. Figure 3.
This implies that we need to define segmentation consis-
tency measures that do not penalize such differences. We
demonstrate empirically that human segmentations for the
wide variety of images in the database are quite consistent
according to these criteria, suggesting that we have a re-
liable standard with which to evaluate different computer
algorithms for image segmentation. We exploit this fact to
develop a quantitative performance measure for image seg-
mentation algorithms.

There has been a limited amount of previous work evalu-
ating segmentation performance using datasets with human
observers providing the ground truth. Heath et al. [8] eval-
uated the output of different edge detectors on a subjective
quantitative scale using the criterion of ease of recogniz-
ability of objects (for human observers) in the edge images.
Closer to our work is the Sowerby image dataset that has
been used by Huang [9] and Konishi et al. [12]. This dataset
is small, not publicly available, and contains only one seg-
mentation for each image. In spite of these limitations, the
dataset has proved quite useful for work such as that of Kon-
ishi et al. who used it to evaluate the effectiveness of dif-
ferent edge filters as indicators of boundaries. We expect
that our dataset would find far wider use, by virtue of being
considerably more varied and extensive, and the fact that
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Figure 4: Distributions of the GCE (left) and LCE (right) measures
over the segmentation database. The error measures are applied to all pairs
of segmentations. The upper graphs show the error for segmentations of
the same image. The lower graphs show the error for segmentations of
different images. The spike at zero in the different-image graphs is due
to degenerate segmentations of one particular image, of which everything
else is a refinement. Clockwise from the top-left, the means are 0.11, 0.07,
0.39, 0.30.

we provide a mechanism for computing the consistency of
different segmentations.

The database that we have collected is a valuable re-
source for studying statistics of natural images. Most such
studies in the past have concentrated on first and second or-
der statistics such as the power spectrum or covariances, ei-
ther on pixel brightnesses directly or on wavelet coefficients
[10, 15, 16, 11, 12, 5, 13, 18]. We can go much further
given the additional information provided by the segmen-
tations. For instance, we can evaluate prior distributions
corresponding to the various Gestalt factors such as simi-
larity, proximity, convexity etc. and thus provide objective
justifications for the use of these cues in grouping. While
this way of thinking about the Gestalt factors was suggested
nearly 50 years ago by Brunswik [4], so far empirical mea-
surements of probability distributions have been limited to
the factor of good continuation, e.g. [2]. Another applica-
tion of the database is in studying the empirical distribution
of sizes of regions in an image. This turns out to follow a
power law, consistent with the work of Alvarez, Gousseau
and Morel [1] with a rather different definition of sizes.

This paper is organized as follows. In x 2, we describe in
detail the construction of the database of image segmenta-
tions. In x 3 we define measures for evaluating consistency
of different segmentations of an image. x 4 puts the database
to use by evaluating the performance of the Normalized cut
algorithm on the different images. Performance is evaluated
by computing the consistency of the computer segmenta-
tions with those made by human observers and comparing
that to consistency among human observers. In x 5, we find
another use for the database, namely in evaluating the eco-
logical statistics of various Gestalt grouping factors. We
conclude in x 6.

GCE LCE Ideal Measure

Figure 5: Error matrix for all image pairs, for GCE (left) and LCE
(middle). Mij corresponds to the error between segmentations i and j,
where black signifies zero error. Segmentations are sorted by image, so
segmentations of the same image are adjacent. The spurious horizontal
and vertical bands confirm that the spike in the different-image graphs of
Figure 4 are caused by degenerate segmentations of one image. The right-
most matrix shows the block-diagonal structure of the ideal error measure
applied to a flawless dataset.
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Figure 6: LCE vs. GCE for segmentations of different images (left)
and the same image (right). The dashed line x = y shows that GCE is a
stricter measure than LCE.

2. Image Segmentation Database

The first task in constructing the segmentation database
was to select a set of images. We chose 1000 representa-
tive 481x321 RGB images from the Corel image database.
This database of 40,000 images is widely used in computer
vision (e.g. [6, 7]). The criterion for selecting images was
simple: We chose images of natural scenes that contain at
least one discernible object. This criterion culls images that
are inappropriate for the task of recognition, such as pho-
tographs of reflections of neon signs on wet concrete side-
walks, or photographs of marble textures.

2.1. Segmentation Tool

In order to easily collect segmentations from a wide
range of people, we have developed a Java application that
one can use to divide an image into segments, where a seg-
ment is simply a set of pixels. This approach has several
advantages. First, anyone with Internet access can segment
images. Second, the process produces an explicit partition
of the pixels into groups (segments). Third, a server process
can dynamically assign images to users, which gives precise
control over the database content as it evolves.
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Figure 2 shows a sequence of snapshots taken from a
typical session with the segmentation tool. Each snapshot
shows two windows. The upper window is the main win-
dow of the application. It shows the image with all segments
outlined in white. The lower window in each snapshot is the
splitter window, which is used to split an existing segment
into two new segments.

Consider Figure 2(a). The main window shows two seg-
ments. The user has selected the larger one in order to split
it using the lower window. Between (a) and (b), the user
drew a contour around the leftmost two pups in the top pane
of the splitter window. This operation transfers the enclosed
pixels to the bottom pane, creating a new segment. Between
(c) and (d), the user split the two pups from each other. In
(d), there are 4 segments.

In addition to simply splitting segments, the user can
transfer pixels between any two existing segments. This
provides a tremendous amount of flexibility in the way in
which users create and define segments. The interface is
simple, yet accommodates a wide range of segmentation
styles. In less than 5 minutes, one can create a high-quality,
pixel-accurate segmentation with 10-20 segments using a
standard PC.

2.2. Experiment Setup and Protocol

It is imperative that variation among human segmenta-
tions of an image is due to different perceptual organiza-
tions of the scene, rather than aspects of the experimental
setup. In order to minimize variation due to different inter-
pretations of the task, the instructions were made intention-
ally vague in an effort to cause the subjects to break up the
scene in a “natural” manner: Divide each image into pieces,
where each piece represents a distinguished thing in the im-
age. It is important that all of the pieces have approximately
equal importance. The number of things in each image is up
to you. Something between 2 and 20 should be reasonable
for any of our images.

The initial subject group was a set of students in a
graduate-level computer vision class who were additionally
instructed to segment as naive observers. The subjects were
provided with several example segmentations of simple, un-
ambiguous images as a visual description of the task.

Images were assigned to subjects dynamically. When a
subject requested a new image, an image was chosen ran-
domly with a bias towards images that had been segmented
by some other subject. In addition, the software ensured
that (1) no subject saw the same image twice, (2) no im-
age was segmented by more than 5 people, and (3) no two
images were segmented by exactly the same set of subjects.

Figure 7: Segmentations produced by the Normalized Cuts algorithm
using both contour and texture cues. Compare with Figure 1.
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Figure 8: Distributions of the GCE (left) and LCE (right) measures for
NCuts segmentations vs. human segmentations. The error measures were
applied to pairs of segmentations, where each pair contains one NCuts and
one human segmentations (see x4 for details). The upper graphs show the
error for segmentations of the same image. For reference, the lower graphs
show the error for segmentations of different images. Clockwise from the
top-left, the means are 0.28, 0.22, 0.38, 0.31. Compare with Figure 4.

2.3. Database Status and Plans

The results in this paper were generated using our first
version of the dataset that contains 150 grayscale segmen-
tations by 10 people of 50 images, with 30 images with 3 or
more segmentations. The data collection is ongoing, and at
this time, we have 3000 segmentations by 25 people of 800
images. We aim to ultimately collect at least 4 grayscale
and 4 color segmentations of 1000 images.

3. Segmentation Error Measures

There are two reasons to develop a measure that pro-
vides an empirical comparison between two segmentations
of an image. First, we can use it to validate the segmen-
tation database by showing that segmentations of the same
image by different people are consistent. Second, we can
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Figure 9: The GCE for human vs. human (gray) and NCuts vs. human
(white) for each image for which we have � 3 human segmentations. The
LCE data is similar.

use the measure to evaluate segmentation algorithms in an
objective manner.

A potential problem for a measure of consistency be-
tween segmentations is that there is no unique segmenta-
tion of an image. For example, two people may segment an
image differently because either (1) they perceive the scene
differently, or (2) they segment at different granularities. If
two different segmentations arise from different perceptual
organizations of the scene, then it is fair to declare the seg-
mentations inconsistent. If, however, one segmentation is
simply a refinement of the other, then the error should be
small, or even zero. Figure 3 shows examples of both sim-
ple and mutual refinement from our database. We do not pe-
nalize simple refinement in our measures, since it does not
preclude identical perceptual organizations of the scene.

In addition to being tolerant to refinement, any error
measure should also be (1) independent of the coarseness
of pixelation, (2) robust to noise along region boundaries,
and (3) tolerant of different segment counts between the two
segmentations. The third point is due to the complexity of
the images: We need to be able to compare two segmenta-
tions when they have different numbers of segments. In the
remainder of this section, we present two error measures
that meet all of the aforementioned criteria. We then apply
the measures to the database of human segmentations.

3.1. Error Measure Definitions

A segmentation is simply a division of the pixels of an
image into sets. A segmentation error measure takes two
segmentations S1 and S2 as input, and produces a real-
valued output in the range [0::1] where zero signifies no
error.

We define a measure of error at each pixel that is tolerant
to refinement as the basis of both measures. For a given
pixel pi consider the segments in S1 and S2 that contain

that pixel. The segments are sets of pixels. If one segment
is a proper subset of the other, then the pixel lies in an area
of refinement, and the local error should be zero. If there
is no subset relationship, then the two regions overlap in an
inconsistent manner. In this case, the local error should be
non-zero. Let n denote set difference, and jxj the cardinality
of set x. If R(S; pi) is the set of pixels corresponding to the
region in segmentation S that contains pixel p i, the local
refinement error is defined as:

E(S1; S2; pi) =
jR(S1; pi)nR(S2; pi)j

jR(S1; pi)j
(1)

Note that this local error measure is not symmetric. It
encodes a measure of refinement in one direction only:
E(S1; S2; pi) is zero precisely when S1 is a refinement of
S2 at pixel pi, but not vice versa. Given this local refinement
error in each direction at each pixel, there are two natural
ways to combine the values into a error measure for the en-
tire image. Global Consistency Error (GCE) forces all local
refinements to be in the same direction. Local Consistency
Error (LCE) allows refinement in different directions in dif-
ferent parts of the image. Let n be the number of pixels:

GCE(S1; S2) =
1

n
min

(X
i

E(S1; S2; pi);

X
i

E(S2; S1; pi)

)
(2)

LCE(S1; S2) =
1

n

X
i

min
�
E(S1; S2; pi);

E(S2; S1; pi)
	

(3)

As LCE � GCE for any two segmentations, it is clear
that GCE is a tougher measure than LCE. Looking at Fig-
ure 3, GCE would tolerate the simple refinement from (c)
to (b) or (d), while LCE would also tolerate the mutual
refinement of (b) and (d). Note that since both measures
are tolerant of refinement, they are meaningful only when
comparing two segmentations with an approximately equal
number of segments. This is because there are two trivial
segmentations that achieve zero error: One pixel per seg-
ment, and one segment for the entire image. The former is
a refinement of any segmentation, and any segmentation is
a refinement of the latter.

3.2. Error Measure Validation

We apply the GCE and LCE measures to all pairs of seg-
mentations in our dataset with two goals. First, we hope to
show that given the arguably ambiguous task of segmenting
an image into an unspecified number of segments, different
people produce consistent results on each image. Second,
we hope to validate the measures by showing that the error
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between segmentations of the same image is low, while the
error between segmentations of different images is high.

Figure 4 shows the distribution of error between pairs of
human segmentations. The top graphs show the error be-
tween segmentations of the same image; the bottom graphs
show the error between segmentations of different images.
As expected, the error distribution for segmentations of the
same image shows a strong spike near zero, while the error
distribution for segmentations of different images is neither
localized nor close to zero.

We characterize the separation of the two distributions
by noting that for LCE, 5.9% of segmentation pairs lie
above 0.12 for the same image or below 0.12 for different
images. For GCE, 5.9% of pairs lie above 0.16 for the same
image or below 0.16 for different images. Note the good
behavior of both measures despite the fact that the number
of segments in each segmentation of a particular image can
vary by a factor of 10. Figure 5 shows the raw data used to
the compute the histograms.

In Figure 6, we plot LCE vs. GCE for each pair of seg-
mentations. As expected, we see (1) that GCE and LCE are
measuring similar qualities, and (2) that GCE > LCE in all
cases.

4. A Segmentation Benchmark

In this section, we use the segmentation database and er-
ror measures to evaluate the Normalized Cuts (NCuts) im-
age segmentation algorithm.

In collecting our dataset, we permitted a great deal of
flexibility in how many segments each subject created for an
image. This is desirable from the point of view of creating
an information-rich dataset. However, when comparing a
human segmentation to a computer segmentation, our mea-
sures are most meaningful when the number of segments
is approximately equal. For example, an algorithm could
thwart the benchmark by producing one segment for the
whole image, or one segment for each pixel. Due to the
tolerance of GCE and LCE to refinement, both of these de-
generate segmentations have zero error.

Since image segmentation is an ill-posed problem with-
out stating the desired granularity, we can expect any seg-
mentation algorithm to provide some sort of control over
the number of segments it produces. If our human segmen-
tations of an image contain 4, 9, and 13 segments, then we
instruct the computer algorithm to also produce segmenta-
tions with 4, 9, and 13 segments. We then compare each
computer segmentation to each human segmentation. In this
way, we can make a meaningful comparison to the human
segmentation error shown in Figure 4. In addition, we con-
sider the mean error over all images as a summary statistic
that can be used to rank different segmentation algorithms.

The NCuts algorithm [17, 14] takes a graph theoretic ap-
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Figure 10: Proximity: The probability that two points belong to the
same segment given their distance. Distances have been scaled per image
as discussed in the text and normalized to range from 0 to 1. We sample
1000 points from each segmentation and compute all pairwise distances.
Error bars show �� intervals.

proach to the problem of image segmentation. An image
is treated as a weighted graph. Each pixel corresponds to
a node, and edge weights computed from both contour and
texture cues denote a local measure of similarity between
two pixels. NCuts segments an image by cutting this graph
into strongly connected parts. The version of NCuts de-
scribed in [14] automatically determines the number of re-
gions by splitting the graph until the cuts surpass a thresh-
old. We modified the stopping criterion to provide explicit
control over the final number of segments.

Figure 8 shows the error between NCuts segmentations
and human segmentations. In comparing this NCuts error
to the human error shown in Figure 4, we see that NCuts is
producing segmentations worse than humans, but still better
than “random.” The error distributions for segmentations of
different images (the bottom graphs in each figure) approx-
imate the performance of random segmentation. The mean
error over all segmentation pairs gives NCuts an overall er-
ror of 22% by LCE (compared to 7% for humans), and 28%
by GCE (compared to 11% for humans).

Figure 9 shows both the human error (blue) and NCuts
error (red) for each image separately. In most cases, the
human segmentations form a tight distribution near zero. In
virtually all cases, NCuts performs worse than humans, but
it fares better on some images than others. This data can be
used to find the type of images for which an algorithm has
the most difficulty.

5. Bayesian Interpretation of Gestalt Grouping
Factors

Brunswik [4] suggested that the various Gestalt factors
of grouping such as proximity, similarity, convexity, etc.
made sense because they reflected the statistics of natural
scenes. For instance, if nearby pixels are more likely to
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Figure 11: Similarity: The probability that two points belong to the
same segment given their absolute difference in intensity (256 gray levels).
We sample 1000 points from each segmentation and compute all pairwise
similarities. Error bars show �� intervals.

belong to the same region, it is justified to group them.
In computer vision, we would similarly like grouping al-
gorithms to be based on these ecological statistics. The
Bayesian framework provides a rigorous approach to ex-
ploiting this knowledge in the form of prior probability dis-
tributions. Our database enables the empirical measurement
of these distributions.

In this section, we present our measurements of the
probability distributions associated with the Gestalt cues of
proximity, similarity of intensity, and convexity of regions.
As another interesting empirical finding, we determine the
frequency distribution of region areas and show that it fol-
lows a power law.

5.1. Proximity Cues

Experiments have long shown that proximity is an im-
portant low-level cue in deciding how stimuli will be
grouped. We characterize this cue by estimating the prob-
ability that two points in an image will lie in the same re-
gion given their distance on the image plane. The results
are summarized in the form of a histogram where each
bin counts the proportion of point-pairs in a given distance
range that lie within the same segment as designated by the
human segmentor. We would like our estimate to be in-
variant to the granularity at which a particular image has
been segmented. To this end, we scale all distances byq

number of segments
image area .

Results are show in Figure 10. As might be expected the
probability of belonging to the same group is one when the
distance is zero and decreases monotonically with increas-
ing distance.

5.2. Similarity Cues

Using a similar methodology to x5.1, we examine the
probability that two points lie in the same region given their
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Figure 12: Convexity: The distribution of the convexity of segments.
Convexity is measured as ratio of a region’s area to the area of its convex
hull yielding a number between 0 and 1. Error bars show �� intervals.

similarity. We evaluate point-wise similarity based on the
absolute difference in pixel intensity (256 gray levels). This
could be clearly be extended to make use of color or local
texture. The results are shown in Figure 11. If images of ob-
jects were uniform in intensity over the extent of the object
with some additive noise and each object in a given scene
had a unique intensity, we would expect to see a curve that
started at 1 and quickly decayed to 0. However, images of
natural objects feature variation in intensity due to texture,
shading, and lighting so the histogram we compute starts
at 0.6 and monotonically decays to 0.2. This suggests that
although similarity in intensity isn’t a perfect cue, it does
capture some useful information about group membership.

5.3. Region Convexity

One commonly posited mid-level grouping cue is the
convexity of foreground object boundaries. We capture
the notion of convexity for discrete, pixel-based regions by
measuring the ratio of a region’s area to the area of its con-
vex hull. This yields a number between zero and one where
one indicates a perfectly convex region. Since the regions
in our dataset have no labels that designate them as fore-
ground or background we are forced to look at the distribu-
tion of the convexity of all image regions. This on its own is
arguably instructive and we imagine that since there can be
many foreground groups and only a few background groups
in a given image, the distribution for only foreground re-
gions would look very similar. Figure 12 shows our results.
As expected, grouped pixels commonly form a convex re-
gion.

5.4. Region Area

The authors of [1] approach the problem of estimating
the distribution of object sizes in natural imagery by au-
tomatically finding connected components of bilevel sets
and fitting the distribution of their areas. Our results from
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Figure 13: Region Area: This log-log graph shows the distribution in
region areas. We fit a curve of the form y =

A
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yielding an � = 1:008.
For the purposes of fitting, we throw out those sparsely populated bins
which contain regions that are greater than 25% of the total image area.

x5.2 suggest that intensity bilevel sets are only a rough ap-
proximation to perceptual segments in the image. Figure 13
shows the distribution of region areas in our data set. We get
an excellent fit from a power law curve of the form y = A

x�

yielding an � = 1:008.

6. Summary and Conclusion

In this paper, we presented a database of natural images
segmented by human subjects along with two applications
of the dataset. First, we developed an image segmentation
benchmark by which one can objectively evaluate segmen-
tation algorithms. Second, we measured ecological statis-
tics related to Gestalt grouping factors. In time, we expect
the database to grow to cover 1000 images, with 4 human
segmentations of each image in both grayscale and color.
This data is to be made available to the community in the
hope that we can place the problem of image segmentation
on firm, quantitative ground.
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