N-best maximal decoders for part models

Dennis Park Deva Ramanan
UC Irvine

{iypark, dramanan}@ics.uci.edu

Abstract

We describe a method for generating N-best configura-
tions from part-based models, ensuring that they do not
overlap according to some user-provided definition of over-
lap. We extend previous N-best algorithms from the speech
community to incorporate non-maximal suppression cues,
such that pixel-shifted copies of a single configuration are
not returned. We use approximate algorithms that per-
form nearly identical to their exact counterparts, but are
orders of magnitude faster. Our approach outperforms
standard methods for generating multiple object configura-
tions in an image. We use our method to generate multiple
pose hypotheses for the problem of human pose estimation
from video sequences. We present quantitative results that
demonstrate that our framework significantly improves the
accuracy of a state-of-the-art pose estimation algorithm.

We address the task of generating multiple candidate ob-
ject configurations in an image or video, within the frame-
work of part-based models. Such a task is relevant if mul-
tiple instances of an object are present, or if one wishes to
resolve ambiguous candidate configurations using higher-
level knowledge (e.g., temporal context from neighboring
frames). We take inspiration from the speech community
and advocate the use of N-best algorithms for generating a
set of N high-scoring candidates.

Though N-best algorithms are popular in speech, they
have not been widely used in vision due to the fact
that second-best configurations will typically be one-pixel
shifted versions of the best. Crucially, one needs to enforce
some form of non-maximum suppression (NMS) during the
decoding process to ensure that near-identical configura-
tions will not be returned. We describe novel and efficient
appproximate N-best algorithms that return a set of putative
configurations that are

1. high-scoring, in that they score above some user-
defined threshold

2. diverse, in the sense that they do not overlap according
to a user-defined criteria.

Figure 1. In order to localize articulated objects in cluttered scenes,
one will need to reason about multiple pose hypotheses. In the
above image in the top left, we show a true pose in the top mid-
dle. We show other hypotheses that may also score highly given a
reasonable object model. We argue that the correct pose should be
extracted from higher level contextual reasoning involving nearby
objects, occlusion reasoning, etc. We describe novel dynamic pro-
gramming algorithms for part-based models that can return such
diverse, but high-scoring pose hypotheses from an image.

We demonstrate these algorithms for the problem of
tracking people in video sequences. We use a recent state-
of-the-art part model [21] to generate multiple pose hy-
potheses for each frame, and compare our approach to a
variety of baselines including standard NMS and sampling
algorithms. We then stitch candidates together to yield a fi-
nal track, demonstrating that our pose hypotheses produce
significantly more accurate tracks.

Formulation: Let us write z for a configuration of part
locations, and S(z) for its associated score. As in past
work [5, 2], we use a simple greedy algorithm for instantiat-
ing multiple configurations: Search over the exponentially-
large space of configurations z for the maximally scor-
ing configuration, instantiate it, remove all configurations
which overlap, and repeat. The process is repeated until the
score for the next-best configuration is below a threshold or

N configurations have been instantiated. A naive implemen-
tation of such an algorithm would take exponential time. If
the score S(z) is decomposable, one can apply a standard
N-best algorithm that sequentially returns configurations
[13, 22] until N non-overlapping poses are returned. We
describe an approximate algorithm that is orders of magni-
tude faster (but near identical in performance) by exploiting
decomposable notions of overlap.

Common approaches: It is not clear how to define over-
lap for configurations of multiple parts. One simple ap-
proach is to define overlap using a single “root” part; this is
the approach taken in most part-models [7, 8]. For example,
one may define two human pose configurations to overlap
if the root torsos overlap. This is unsatisfactory because we
may still wish to consider poses with identical torsos, but
different arms or legs (see Fig.1). Part models often make
such errors due to self-occlusion or cluttered backgrounds,
and one would ideally like to resolve these mistakes using
higher-level reasoning (using say, temporal context). An-
other possibility may be to generate segmentation masks for
two configurations, and then define overlap in terms of pixel
overlap. However, such an approach ignores the natural se-
mantics of body pose; consider an image of a upright person
and someone performing a handstand. They may have large
pixel overlap but are semantically quite different.

Our approach: We examine multiple definitions of
overlap, but begin with a simple one: two poses overlap if
all parts overlap. Under this definition, two poses that over-
lap for all but one part are still considered “different”. This
allows us to explicitly reason about poses that differ only by
the location of a single part (e.g., the left hand). Under this
definition and similar variants, one can compute the N-best
maximal configurations by analyzing the max-marginal of
each part. Specifically, we describe an N-best algorithm
whose cost is IV times the cost of computing the single-best
configuration with dynamic programming. Our algorithm is
approximate in that it exactly solves the formulation above
only under certain conditions (which we describe), but we
empirically demonstrate that it consistently produces high-
quality solutions.

After discussing related work, we build the basic ma-
chinery for our N-best algorithm by reviewing algorithms
for computing the best-configuration and max-marginals
(Sec.2) in a tree-structured object model. We review an ex-
isting N-best algorithm in 3, and present our N-best maxi-
mal decoder in Sec.4. We present implementation issues in
Sec.5, and evaluate the quality of our algorithm compared
to a brute-force approach in Sec.6. We finally present exper-
imental results in Sec.7 for video-based body pose estima-
tion, demonstrating the superiority of our algorithm com-
pared to standard approaches in vision.

1. Related work

N-best inference algorithms have been developed for
chain-structured hidden markov models [14, 18], tree-
structured graphical models [13], context-free grammars
[11], and loopy models [22]. Though such approaches have
proven effective in domains such as speech and bioinfor-
matics, they are uncommon in vision because they tend to
return pixel-shifted copies of the best configuration. We in-
troduce N-best maximal algorithms that address these lim-
itations by ensuring that returned configurations are non-
overlapping.

Vision researchers often use sampling-based algorithms
to generate multiple hypotheses for subsequent refinement.
Data-driven MCMC [20] is a popular inference algorithm in
this vain, which successful application to the task of body
pose estimation [12, 17]. Tree-structured models have also
been shown be to effective proposal distributions for evalu-
ating non-tree scoring functions [7, 3]. We explicitly com-
pare our method to such approaches, and show we tend to
consistently generate better results. This is because our
method, unlike sampling-based approaches, provides ex-
plicit control of the quality and diversity of generated hy-
potheses.

We illustrate our N-best algorithm for the task of track-
ing by stitching together N-best hypotheses from frames of
a video. Such tracking-by-detection approaches are attrac-
tive because they can avoid drift and recover from errors
[1, 15, 19, 10]. Exemplar-based detectors generate multiple
hypotheses by finding locally maximal template responses
with a coarse-scale search over poses and locations [10, 19].
These maximal responses can be refined by a local gradient
search [4]. Our N-best algorithms combine these two steps
by directly search over an exponentially large of configu-
rations, using a user-defined notion of overlap to generate
locally-maximal responses.

2. Best and next-best configurations

We write z; for the location of part ¢+ and z =
{#z1,...,2K} for a configuration of K parts. We write
z € Z, where Z is the exponentially-large set of possible
configurations. We score a configuration as:

S(z) = dlz)+ > (zi,2) (1)

eV ijeE

where ¢(z;) is a local part score, 1(z;, z;) is a pairwise de-
formation model, often interpreted as a spring, and G =
(V, E) is a graph that defines relational constraints between
certain pairs of parts. It is well-known that when G is a
tree, one can compute Best(Z) = max,cz S(z) with ef-
ficient one-pass dynamic programming (DP) routines that
pass messages from the leaf parts to the root part[7]. By
backtracking from the highest-scoring root location, one

b1

Figure 2. A single max-marginal table does not suffice for N-best
decoding. From left to right, we show top three poses which differ
by either the knee location (a1, a2) or foot location (b1, b2). Let’s
say the second pose was found by backtracking from the foot max-
marginal at location by. The third pose will never be found by
backtracking from any entry of the original max-marginal table.
This necessitates the need for constructing constrained partitions
of the configuration space.

can construct the associated configuration Best*(Z) =
argmax, ¢, S(2).

We define a marginal score of part ¢ at location z; = j to
be the best scoring configuration given that part ¢ lies at j:

max S(z) (2)

mZ(Z?j) o z2E€EZ:zi=]

Standard one-pass DP already computes marginal scores for
the root; these are scores which are thresholded (and possi-
bly non-maximum suppressed) to compute a sparse set of
detections in [7, 8]. To generate marginal scores for all
parts, one could repeat this procedure K times, letting each
part take its turn as the root. It turns out that many of the
messages across these K instances are identical, and they
can be implemented in an effcient two-pass DP algorithm
(e.g., max-marginal inference on trees).

[22] makes the observation that the highest-entry in
the max-marginal table mz corresponds to Best(Z), while
the second-highest entry must correspond to the next-best
configuration in Z. We similarly write NextBest(Z) and
NextBest*(Z) for score and configuration variables of the
next-best configuration. One might think that the third-best
pose can be found by the third-highest entry in the table, but
this is not true - see Fig.2. This observation is the founda-
tion behind the iterative N-best algorithm presented in the
next section.

3. N-best decoding

We now describe the N-best algorithm of [22] which iter-
atively returns configurations ordered by score. For conve-
nience, we refer to configurations as poses. One can use this
algorithm to perform N-best maximal decoding by repeat-
edly generating poses until /N non-overlapping ones are re-
turned (for any definition of overlap). As we show in Sec.6,
this “brute-force” approach is slow because most returned
poses will be overlapping. We describe an extension in the
next section which is orders of magnitude faster for decom-
posable notions of overlap.

The algorithm works by iteratively partitioning Z into
N sets, such that the best pose for each set is one of the V-

4 Best
@ Next Best

original Z > modified Z ,»

Figure 3. We visualize the iterative N-best decoder of [22], de-
scribed in Sec.3. Assume we are at the begining of iteration t = 4.
We have already partitioned Z into 3 sets such that the Best pose
in each make up the best 3 poses (left). The 4*"-best pose must
lie in some set Z,,/ (because the partitioning covers Z) and must
be equal to NextBest(Z,,/) (by the definition of NextBest). Lines
1 and 2 of the algorithm find this next best pose where we write
(¢/,7',n’) for the index of the max-marginal table entry and parti-
tion index where it was found. Lines 3-5 further paritions Z,,s in
two (middle) such that we now have a 4-set partitioning such that
the Best of each make up the top 4 poses (right).

best. Initialize the first set to be the entire set of configura-
tions Z; = Z, and compute the best pose ¢! = Best* (7).
Iterate the following fort =2 : N:

1 (7,5',n') = argmax; ; ,, ., NextBest(Z,,)
2 ¢t = NextBest*(Z,/)

37 ={z:zp=j'}

4 Zy=Z, N7

s Zo = Zo \ Z'

The final set of N-best poses is {c!, ..., cV}. We refer the
reader to [22] for a detailed proof, but provide a visualiza-
tion and description of the algorithm in Fig.3.

4. N-best maximal decoding

We now show how one can modify the presented algo-
rithm to directly return poses that are diverse by exploit-
ing decomposable notions of overlap. We define two poses

21, 2% € Z as overlapping if each part overlaps:

ov(z',2%) = Novi(z, 7)) 3)

where ov; is a symmetric predicate for defining overlap of
individual parts. One may define two parts as overlapping if
the area of their intersection exceeds 50% of the area of their
union - this is benchmark criteria used in PASCAL [6]. Al-
ternatively, for articulated parts, one may use the endpoint-
error criteria common in pose estimation benchmarks [9].
In pose-based action recognition, it may be important to rea-
son about poses with different end effector locations (e.g.,
hands and feet). We can do this with a part-specific overlap
relation ov;.

The following lemma states that one can find the next-
best non-overlapping pose by examining the max-marginal
table:

Lemma 4.1 Given a set of poses Z and their associated
max-marginals mz (i,), the score of the next-best pose that

does not overlap Best(Z) is:

NextOvBest(Z) = max

1,5:70vi(ci,g)

mz (i, j) “4)

Proof The next-best non-overlapping pose must contain at
least one part ¢ that does not overlap c¢;. The max-marginal
table allow us to enumerate each possible part and non-
overlapping location.

To use the partitioning approach of the previous algo-
rithm, we need to add an additional constraint to ensure that
a partition is valid with respect to overlap:

Lemma 4.2 Let {Z,,} be a partitioning of Z that satisfies
the following condition.

—ov(NextOvBest*(Z,,), Best (Z,)) Vn,m (5)

We call such a partitioning non-overlapping. The score
of the next-best configuration that does not overlap any
Best*(Z,,) is:

max NextOvBest(Z,) (6)

n

Proof Because {Z,,} partitions Z, the next-best configura-
tion must lie in Z,,; for some n'. If it is not NextBest(Z),),
then there exists another higher-scoring configuration which
does not overlap any Best*(Z,,). This is a contradiction of
Lemma 4.1.

We now can describe our N-best maximal decoder. Ini-
tialize Z; and ¢! as in Sec.3, and iterate the following for
t=2:N:

1 (i, j',n') = argmax;, ; , ., NextOvBest(Z,,)
2 ¢! = NextOvBest* (Z,,)

3 7' ={z:0vi(zir,5') A —ovi(zir, ¢)}

4 Zi=2,N2

5 Ly =Zyw \Z'

The N-best algorithm from Sec.3 is a special case of the
above algorithm obtained by defining a single-pixel over-
lap predicate ov; (2}, 22) < (2} = 22). The main differ-
ences are two fold: the NextBest function is replaced by
NextOvBest, and Step 3 is refined to ensure that that 2/, is
sub-partitioned into two sets who’s Best poses do not over-
lap. If the NextBest poses are also nonoverlapping, than one
can invoke Lemma 4.2 to ensure that at the next iteration,
the algorithm will find the true next-best non-overlapping
pose. If not, the next iteration will return a pose that over-
laps with one of the previously-returned poses. In practice,
we find that Lemma 4.2 holds the vast majority of iterations,
implying that our algorithm (usually) returns the optimal set
of poses. We show a failure case in Fig.4. In this case, one
could simply ignore such invalid poses, and continue iter-
ating until NV non-overlapping poses have been found. We

present a further analysis of such errors in Sec.6.

Iteration 1:
[a1 1] = Best*(2)

Zy 4}
Iteration 2:

(@, as, 1) = argmax NextOvBest(Z,,)
i,j,ne{l}

[az bg} = NextOvBest*(Z;)
Zy : {(a,as,a1,1)}
Zy : {(a,as,a1,0)}

Iteration 3:
\ (b, b3,1) = argmax NextOvBest(Z,)

igme{1,2}
[as bs] = NextOvBest*(Z1)
Zs : {(a,az,a1,0), (b, b3, b1, 1)}

Figure 4. We illustrate the first three iterations of our algorithm
for a two-part (a and b) model. On the left, we show part de-
tections, and designate a region of overlap around every detection
with a circle. The second pose, (a2, b2), is obtained by backtrack-
ing from the max-marginal entry az. We partition Z into two sets
such that (a1, b1) is the best pose in Z1, and (a2, b2) is the best
pose in Z2, where Z5 is the set of poses that overlap a2 but don’t
overlap a; (the shaded region). We represent sets using quadru-
ples, as explained in Sec.5. Assume the next-best max-marginal
entry is found in marginal location b3, in set Z;. It is possible
that the backtracked pose (a3, b3) might overlap (a2, b2), shown
in red. We show in Sec.6 that this is a rare occurence.

Hybrid decoder: We can turn the above algorithm into
an optimal N-best decoder by identifying the faulty sets that
violate Lemma 4.2, and resorting to the brute-force N-best
algorithm from Sec.3 when refining those sets. This can be
implemented by changing the overlap function ov; to use
single-pixel overlap when considering poses within such
sets. In Sec.6, we contrast the performance and speed of
this hybrid algorithm versus the brute-force and approxi-
mate algorithm.

5. Efficient implementation

Representing partitions: One needs an implicit repre-
sentation for each partition Z,,, since one cannot directly
enumerate such exponentially-large subsets. We represent
each partition with a set of quadruples {(i’,j’ ,cgi',y’)}
where y' € {0,1} is a bit that specifies whether or not
part ¢ overlaps region R, where R is the set of locations
that overlap j and do not overlap location cﬁl (Fig.4). Each
quadruple represents a constraint that is iteratively added as
the algorithm adds next-best configurations and partitions
the set Z,» from which they were found.

Memory: As written, the above algorithm requires stor-
ing and searching over N max-marginal tables at Step (1).
We need to store only the best and next-best configuration
for each partition, together with the part index ¢’ and loca-
tion 5’ that triggered the next-best configuration. Hence we
can compute max-marginal tables in place: once we create

711 brute force
45| = = =hybrid
approx

w

precision
o o
&

&,
iteration(x10%)
o

°

4
0
-

0.1

°
[
-

o 01 02 03 04 05 06 07 08 09 1 0 10 20 30 40 50 60 70
recall N

Figure 5. Quality and speed of approximation. The curve on left
shows the accuracy of the our algorithm. We use top 90 non-
overlapping poses of a reference image for evaluation. We achieve
high accuracy over the entire range of recall rate (AP = 85.4%).
On right, we show the number of iterations of each algorithm re-
quired to find N non-overlapping poses. Our algorithm takes 87
iterations to generate 68 poses, while brute force and hybrid ap-
proaches take about 50k and 15k iterations.

a new partition (in Step 4 and 5), we compute the best and
next-best configurations for each. We can then safely ignore
its max-marginal table. This means each iteration of the al-
gorithm requires 2 max-marginal computations, making our
overall N-best algorithm linear in IV (as in [22]).

Caching: We compute local part scores ¢(z;) from (1)
once, and reuse them to compute max-marginals for any
given partition. This can be done by temporarily invalidat-
ing part scores for locations outside a partition, and run-
ning the two-pass max-marginal algorithm from Section 2.
If we assume the deformation model ¢ (z;, z;) from (1) is
bounded, one can limit the amount of max-marginal com-
putations that must be updated at each iteration. Say, for
example, that the head and leg part can be at most § pixels
apart. This means that, if we add the constraint that heads
must (not) overlap a particular location, we need recom-
pute max-marginals only for parts that lie within § pixels of
the head location. This can be efficiently implemented by
computing a distance transform over a small J-radius sub-
window in an image, rather than the entire image.

6. Analysis of approximation

We compare the accuracy and speed of the brute-force
N-best maximal algorithm (Sec.3), as well as our approx-
imate and hybrid algorithm (Sec.4) on a random reference
image. As we run our iterative algorithm fort = 1... N,
we count the fraction of poses which are present in the top
t optimal results, scoring both the precision (the fraction of
poses we return that are optimal) and recall (the fraction of
the optimal poses we return). We also compare the speed
of each algorithm by counting the iterations needed to ob-
tain ¢ non-overlapping poses. Our approximate algorithm is
faster than brute force and hybrid approaches by three or-
ders of magnitude, while generating almost the same result.

7. Results

We demonstrate our algorithms by applying them to the
problem of tracking people in video sequences. We gener-
ate candidates from each frame of a video, and stitch them
together with dynamic programming. We use the recent
articulated part-based model of [21], which appears to be
the current state-of-the-art system as evidenced by various
pose-estimation benchmarks. We demonstrate that, even
given this high-accuracy detector, locally ambiguous hy-
potheses can be refined by exploiting temporal context from
neighboring frames.

Temporal context: Assume for frame ¢ in a video, we
generate N candidate poses. Let k; € {1,...N} be a
pointer to a particular pose. We wish to maximize the score:

Score(k) = ZLocal(kt) + aPairwise(kt, ki—1) (7)
t

where Local(k;) is the score of candidate pose k; computed
by (1). We write Pairwise(k;, k;—1) for an arbitrary pair-
wise term penalizing the difference of two configurations.
In practice, we simply use the (negative of the) total squared
pixel difference between each joint in pose k;_1 and pose
k:. We also experimented by penalizing the change in ap-
pearance of parts, and saw a minimal improvement in ac-
curacy. The parameter « controls the trade-off between the
two terms, and was tuned manually. The above score can
be optimized by standard dynamic programming on a trellis
graph.

Algorithms: We compare our approach of generating
N-best candidates with several baseline algorithms for gen-
erating N candidates. The simplest is noONMS, which per-
form standard 1-pass dynamic programming, but then back-
tracks from the N top-scoring root marginals to generate N
candidates. As one might suspect, the [V candidates tend
to be pixel-shifted versions of each other. We also con-
sider rootNMS, which performs NMS on the root scores
to avoid returning pixel-shifted root locations. We applied
noNMS to find a very large set of candidates, and then post-
processed them to find the best N configurations that do
not overlap according to definition (3); we denote this base-
line as partNMS. Finally, we also compare to the sampling
baseline advocated in [7, 3]. In particular, we use the max-
marginal sampling algorithm MMsampling of [3], which
seems to be the current state-of-the-art approach for gen-
erating multiple samples from a part model. The sampler
requires a temperature parameter that loosely controls the
amount of diversity; we found results were sensitive to this
parameter and put forth considerable effort to tune it.

To illustrate the ability of our approach to handle user-
defined overlap functions (3), we compare two versions of
our algorithm. We write Nbest(all) to denote an overlap
function which treats all parts equally, where two parts are
defined as overlapping if their bounding boxes intersect at

all. We write Nbest(limb) to denote an overlap function
that only requires leaf parts (hands, heads, and feat) to be
non-overlapping. This can be implemented by defining ov;
to be 1 for all non-leaf parts, regardless of their position z;.

Evaluation: We assembled a set of video sequences
with varying degrees of clutter (Fig.6) [15, 16]. We quanti-
tatively evaluate our algorithms in two ways; we look at the
overall track score from (7), and we evaluate tracking ac-
curacy using the now-standard Percentage of Correct Parts
(PCP) criteria introduced in [9]. To perform the latter, we
manually annotated ground-truth limb locations in these se-
quences. We will make these annotations publicly available
to spur further quantitative evaluation.

Analysis: We show qualitative results for various algo-
rithms in Fig.7. We refer the reader to the caption for de-
tailed analysis, but note that our algorithm consistently pro-
duces more diverse and higher quality hypothesis than stan-
dard approaches. We present PCP results in Fig.9. We refer
the reader to the caption for a detailed analysis, but our N-
best algorithm consistently outperforms all baseslines. In
general, both our approach and sampling do much better
than the baseline NMS algorithms. We further analyze this
behaviour in Fig.10, and show that for small NV, our ap-
proach clearly outperforms sampling because we are guar-
anteed to report high-scoring configurations while a sam-
pler is not.

Computation: We have implemented our algorithm
with a subset of caching speedups proposed in Sec.5. For
small N < 10, our algorithm is similar in speed to the base-
lines above. For large N, our linear dependance on N domi-
nates the effect of our caching, making our approach slower
than the baselines. We are exploring alternate approxi-
mate algorithms that further sacrifice some performance for
speed.

Conclusion: We have described a general method for re-
turning back N configurations from a part model that do not
overlap, according to some user-defined notion of overlap.
We show that our algorithm produces, both qualitatively and
quantitatively, a strong set of hypotheses that can be used
for subsequent refinement using more complex, intractable
objective functions. We believe our N-best formalism pro-
vides a practical and general approach for minimizing such
complex functions, similar to such inference strategies from
the speech recognition community. As suggested in Fig.10,
there still remains a disconnect between objective functions
currently in use and overall accuracy, and so we are cur-
rently pursing approaches for learning meaningful objective
functions from data using N-best decoders.

Acknowledgements: Funding for this research was pro-
vided by NSF Grant 0954083, ONR-MURI Grant N0O0O14-
10-1-0933, and support from Google and Intel.

Figure 6. We use four video sequences for evaluation, used in pre-
vious work [15, 16]. From left to right, we name them as Walk-
ing, Pitching, Lolal, and Lola2. They exhibit varying degrees of
clutter (including multiple people), camera movement, and body

Figure 7. We show the 20-best configurations returned by our N-
best algorithm for a frame in the Lola video. Note that each con-
figuration contains at least one part that does not overlap any other
configuration. Since there exists arm-like clutter at the top of the
image, many of the top-scoring hypotheses consider various arm
positions. Note that many of these configurations share the same
root; hence they would not returned from typical NMS-based al-
gorithms for generating multiple detections in an image. We show
final configuration selected by the DP tracker in red, which was
the 19-th returned pose.

References

[1] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-
detection and people-detection-by-tracking. In CVPR, pages
1-8. IEEE, 2008. 2

[2] O. Barinova, V. Lempitsky, and P. Kohli. On detection of
multiple object instances using hough transforms. In CVPR,

MMSampling partNMS

Nbest

Figure 8. Tracking result for the Walking sequence. partNMS tends to estimate wrong head(first and third) frame, because it can only
report a single configuration for the best root part. MM sampling tends to report noisy samples with varying degrees of quality due to
its stochastic nature. Due to the looseness of the PCP scoring criteria, we found that many of these configurations were scored as correct,
though qualitatively they appeared to be noisy. Nbest tends to generate reasonable looking results.

Algorithms | walking | pitching | lolal | lola2
noNMS 0.825 0.762 | 0.505 | 0.445
rootNMS 0.815 0.741 | 0.455 | 0.390
partNMS 0.825 0.762 | 0.515 | 0.420
MMsmpl 0.930 0.800 | 0.645 | 0.440
Nbest(all) 0.940 0.800 | 0.635 | 0.495
Nbest(limb) | 0.950 0.797 | 0.670 | 0.500

Figure 9. We compare average PCP of tracks derived from N=300
candidates for baselines and our algorithm. Our approaches domi-
nate all baselines, including the state-of-the-art method of [3]. We
further analyze the behaviour of all algorithms in Fig.10

(3]

(4]

(5]

(6]

pages 2233-2240. IEEE, 2010. 1

P. Buehler, M. Everingham, D. Huttenlocher, and A. Zisser-
man. Long term arm and hand tracking for continuous sign
language TV broadcasts. In Proc. BMVC, 2008. 2, 5,7

D. Demirdjian, L. Taycher, G. Shakhnarovich, K. Grauman,
and T. Darrell. Avoiding the “’streetlight effect”: Tracking by
exploring likelihood modes. ICCV, 1:357-364, 2005. 2

C. Desai, D. Ramanan, and C. Fowlkes. Discriminative mod-
els of multi-class object layout. In /CCV, 2009. 1

M. Everingham, L. Van Gool, C. Williams, J. Winn, and
A. Zisserman. The PASCAL visual object classes (VOC)
challenge. IJCV, 88(2):303-338, 2010. 3

(7]

(8]

[9

—

[10]

(11]

(12]

[13]

[14]

(15]

P. Felzenszwalb and D. Huttenlocher. Pictorial structures for
object recognition. IJCV, 61(1):55-79, 2005. 2, 3,5

P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE PAMI, 99(1), 5555. 2,3

V. Ferrari, M. Marin-Jimenez, and A. Zisserman. Progressive
search space reduction for human pose estimation. In CVPR,
June 2008. 3,6

D. Gavrila and V. Philomin. Real-time object detection for
smart vehicles. In /CCV, pages 87-93, 1999. 2

L. Huang and D. Chiang. Better k-best parsing. In Proceed-
ings of the Ninth International Workshop on Parsing Tech-
nology, pages 53-64. ACL, 2005. 2

M. Lee and I. Cohen. Proposal maps driven mcmc for es-
timating human body pose in static images. In CVPR, vol-
ume 2. IEEE, 2004. 2

D. Nilsson. An efficient algorithm for finding the M
most probable configurationsin probabilistic expert systems.
Statistics and Computing, 8(2):159-173, 1998. 2

D. Nilsson and J. Goldberger. Sequentially finding the N-
best list in hidden Markov models. In IJCAI, 2001. 2

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking peo-
ple by learning their appearance. /[EEE PAMI, pages 65-81,
2007. 2,6

0.94 —42

0.92
0.9

0.88[*

0.86f 1

mean PCP
mean PCP
track score

walking

0.84

0.82

. 0.8 ‘ -
0 50 100 150 200 250 300 0 10 20 30 40 50 540 10 20 30 40 50

0.82 0.82 -60

-100

pitching
mean PCP
mean PCP
track score

-120

-140

0.74 -1
o 60

10 20 30 40 50 0 10 20 30 40 50
N N
0.7
0.65
0.6
— o o ! o
© 9 & 055 . g
— - o 3
o § § 05 €8 E
0.451
0.4
0.35
0 10 20 30 40 50
N
AN o o o
O § I 5
— aE: aEJ g —©— noNMS
rootNMS
‘‘‘‘‘ partsNMS
== MMsmpl
& nbest

0 50 100 150 200 250 300) 10 20 30 40 50 0 10 20 30 40 50
N N N

Figure 10. On the left, we show PCP accuracy as a function of N, the number of generated hypotheses, for various algorithms. Most
algorithms tend to produce stable tracks for N > 100. We examine their behaviour over the first N < 50 generated hypotheses in the
middle. In general, we see that our n-best algorithm tends to produce accurate tracks, even for small N. Rather than scoring tracking
accuracy, we can score the ability of various algorithms to maximize the objective function from (7) (on the right). We see that our
algorithm consistently produces better scores than sampling, particular for small N. This makes sense since for N = 1, our algorithm
reports back the overall best configuration in a frame, while sampling algorithms may report back (in theory) any configuration. In general,
the disconnect between the right and middle plots suggest that algorithms that perform better at maximizing our objective function may
not produce better tracks. This indicates, that in addition to our focus of better inference algorithms, we still need better objective functions
to maximize.

[16] H. Sidenbladh, M. Black, and D. Fleet. Stochastic tracking based hand tracking using a hierarchical bayesian filter.
of 3D human figures using 2D image motion. ECCV, pages IEEE PAMI, 28(9):1372-1384, 2006. 2
702-718, 2000. 6 [20] Z. Tu and S. Zhu. Image segmentation by data-driven
[17] L. Sigal and M. Black. Measure locally, reason globally: Markov chain Monte Carlo. IEEE PAMI, pages 657-673,
Occlusion-sensitive articulated pose estimation. In CVPR, 2002. 2
volume 2, pages 2041-2048. IEEE, 2006. 2 [21] Y. Yang and D. Ramanan. Articulated Pose Estimation using
[18] F. Soong and E. Huang. A tree-trellis based fast search for Flexible Mixtures of Parts. In CVPR, pages 1-8, 2011. 1, 5
finding the n-best sentence hypotheses in continuous speech [22] C. Yanover and Y. Weiss. Finding the M Most Probable Con-
recognition. In icassp, pages 705-708. IEEE, 1991. 2 figurations Using Loopy Belief Propagation. In NIPS, page

[19] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla. Model- 289. The MIT Press, 2004. 2, 3, 5

