
Steerable Part Models

Hamed Pirsiavash Deva Ramanan
Department of Computer Science, University of California, Irvine

{hpirsiav,dramanan}@ics.uci.edu

Abstract

We describe a method for learning steerable deformable
part models. Our models exploit the fact that part tem-
plates can be written as linear filter banks. We demonstrate
that one can enforce steerability and separability during
learning by applying rank constraints. These constraints
are enforced with a coordinate descent learning algorithm,
where each step can be solved with an off-the-shelf struc-
tured SVM solver. The resulting models are orders of mag-
nitude smaller than their counterparts, greatly simplifying
learning and reducing run-time computation. Limiting the
degrees of freedom also reduces overfitting, which is useful
for learning large part vocabularies from limited training
data. We learn steerable variants of several state-of-the-art
models for object detection, human pose estimation, and fa-
cial landmark estimation. Our steerable models are smaller,
faster, and often improve performance.

1. Introduction
Part-based models provide a promising framework for

capturing variation in the appearance of an object. They
do so by reasoning about local appearance using part tem-
plates; by composing different parts together in shifted posi-
tions, one can model a variety of global appearances. How-
ever, one will likely need a large set of parts to model
changes in view point, deformation, scale, etc., across thou-
sands of object categories. One challenge that lies ahead is
the development of scalable representations that efficiently
capture such large-scale part vocabularies.

Most current part models are implemented as templates
defined on gradient features such as HOG [3]. Often these
templates are trained using linear classifiers (such as an
SVM), resulting in very high-dimensional learning prob-
lems. We argue that by conceptualizing these problems as
one of learning spatial filters rather than high-dimensional
parameter vectors, one can leverage the considerable body
of work in image processing for developing efficient repre-
sentations [8, 14, 11].

Typical approaches for reducing the size of a part vocab-

(a) Changes in part viewpoint

(b) Vocabulary of parts

(c) Steerable basis

Figure 1: One needs large part vocabularies to capture vari-
ations in appearance due to viewpoint (a), among other fac-
tors. We approximate a large vocabulary of thousands of
part templates (b) as linear combinations of a small set of
basis parts (c). We show how can learn a steerable, sep-
arable basis together with the steering coefficients using
rank-constrained structural SVMs. This reduces the num-
ber of model parameters by orders of magnitude, simplify-
ing learning and increasing run-time speed.

ulary include vector quantization (e.g., visual words [18]).
We show that one can also use linear subspace methods as
an alternative form of compression. We represent a large
vocabulary of parts as linear combinations of a small set
of basis filters. One can use a small number of basis fil-
ters to “steer” across a variety of factors, including view-
point, scales, and even semantic part types. We show that
one can encode steerable and separable constraints during
learning using the framework of rank-constrained classi-
fiers [15, 10, 21]. We simultaneously learn a separable and
steerable basis, together with the steering coefficients, using
structural SVMs [20].

Our steerable representations can reduce the number of

1

model parameters by orders of magnitude, greatly simplify-
ing both learning and run-time computation. Limiting the
degrees of freedom reduces overfitting, which is useful for
learning large part vocabularies from limited training data.
Our steerable basis also represents a novel form of multi-
task learning, in that the models learned for a set of object
categories share information between them.

Since the current bottleneck of most part models is the
computation of local filter scores, our steerable models im-
prove run-time performance, often by an order of magni-
tude. This approaches recent speed ups obtained by cas-
caded [4] or coarse-to-fine [13] matching algorithms, but
our performance gains come from an underlying change in
the representation during learning, rather than an approx-
imation that is made after a model is learned. For exam-
ple, our efficiency gains still hold for high-recall detection,
while other matching algorithms may slow down because
one has to enumerate all candidate windows in an image.
Because the efficiency gains are orthogonal, our steerable
models can be combined with such matching algorithms to
yield extremely lightweight and efficient detectors.

We learn steerable part models for three state-of-the-art
systems for object detection [6] , articulated pose estimation
[22], and facial landmark estimation [24]. In all three cases,
we are able to achieve a near-10X reduction in parameters
with little or no loss in performance. All of our systems are
based on mixtures of parts, and so can be tuned for large or
small vocabularies. When we compare these tuned systems
with a steerable model with an equivalent number of param-
eters, our steerable models always significantly dominate in
performance.

2. Related work
Our representation can be seen an approach to shar-

ing parts. Parts are typically shared in a discrete fashion;
for example, a single template for a wheel part may be
shared across multiple view-based mixture models [19, 12]
or within a compositional grammar of vehicles [23, 7]. In
particular, [12] learns coefficients which calibrate parts that
are shared across sub-category mixtures. However, be-
cause parts may look different under different viewpoints
and compositions, we share a linear subspace rather than a
fixed template, letting a small number of basis filters gener-
ate a large, near-continuous range of part appearances.

Our approach is inspired by classic work on low-level
vision, including steerable filters [8], separable filters [1],
and filter banks [1]. Our work is most similar to the frame-
work of [11], who use an SVD to efficiently represent a
large set of oriented and scaled filters. We follow a similar
approach, but embed the rank restriction within the learning
of the classifier, allowing us to discriminatively learn both
a basis and reconstruction coefficients. Following the ter-
minology of [11], we refer to these as a steerable basis and

steering coefficients.
Our approach for rank-constrained learning is based on

a recent collection of papers [15, 10, 21]. We follow the
formalism of [15], who formulate a rank-constrained linear
model as a bilinear model. In our case, given a fixed ba-
sis, our model is linear in the steering coefficients, and vice
versa. [15] point out that convex learning algorithms for
linear classifiers (such as SVMs) can be generalized to bi-
convex learning algorithms that can be optimized with coor-
dinate descent. Each step of the coordinate descent reduces
to a standard SVM problem. In this work, we demonstrate
such tools can be extended to simultaneously learn steerable
and separable part filters using structural SVMs.

Any recognition algorithm that relies on a large vocab-
ulary of linearly-scored templates would benefit from our
approach. Some popular examples include poselets [2], vi-
sual phrases [17], and latent part models [6] . We focus
on three illustrative examples. We use part-based model
of [6] to illustrate part steering across object categories
and subcategories. We use the recent articulated model of
[22] to illustrate steering across in-plane orientations, useful
for modeling articulation. We use the multiview model of
[24] to illustrate steering across out-of-plane orientations,
useful for modeling viewpoint variation in faces. Based
on standard benchmark evaluation, all methods represent
the state-of-the-art methods in human pose estimation, face
pose/landmark estimation, and object detection. Our work
provides a 10-100X reduction in model size, considerably
simplifying learning and increasing run-time efficiency.

3. Steerable basis model
We begin by describing a general form of linearly-

parameterized part models with mixtures, amenable to our
steerable representation. The part models described in
[6, 22, 24] can all be seen as instances of this general form.

Let li = (xi, yi) be the pixel location of part i, and
let ti be the mixture component of part i. These mixture
components may span different in-plane orientations (as in
[22], out-of-plane orientations (as in [24]), or semantic sub-
categories of an object class (as in [6]). Given an image I ,
we score a collection of part locations l = {li} and mixtures
t = {ti} as:

score(I, l, t) =
[m∑

i

wti
i · φa(I, li)

]
+ ws · φs(l, t) (1)

where φa(I, li) is an appearance feature vector (e.g., HOG
descriptor [3]) extracted from pixel location li in image I .
The first term in (1) is an appearance model that computes
the local score of placing filter wi, tuned for mixture ti, at
location li.

Linear shape: The second term is a shape “prior” that
favors particular configurations of part locations and mix-

tures. For our purposes, we are agnostic as to form of this
function so long as it is linearly parameterized and there ex-
ist tractable algorithms for computing the best scoring con-
figuration argmaxl,t score(I, l, t). For example, [22] en-
codes springs between pairs of parts and co-occurrence pri-
ors between particular mixtures, where spring rest position,
spring rigidity, and co-occurrence biases are all encoded lin-
early in ws. When pairwise relations are restricted to a tree,
the best-matching configuration can be computed with dy-
namic programming. Usually, there are very few param-
eters in the prior term compared to the appearance terms.
We will describe linear subspace methods for approximat-
ing the high-dimensional appearance terms.

Bilinear appearance: Assume that all part filters are
identical in size, each requiring nd parameters. If they are
not, one can zero-pad templates to achieve this. We would
like to write each filter as a linear combination of ns basis
filters:

wti
i =

ns∑
j=1

bjs
ti
ij (2)

where bj is a basis filter of size nd and stiij is the scalar steer-
ing coefficient specific to each part mixture wti

i . Plugging
(2) into (1), we can see that our scoring function is now bi-
linear; if we fix the basis b, it is linear in the coefficients s
and vice versa. We now make this connection explicit by
introducing matrix notation for (1) and defining z = (l, t):

score(I, z) = Tr(WT
a Φa(I, z)) + wT

s φs(z) (3)

where Wa ∈ Rnd×np is the filter bank (in column-wise
order). Each column of Wa represents a single part fil-
ter with nd parameters. We write np for the total size
of the part vocabulary, including all mixtures of all parts.
Φa(I, z) ∈ Rnd×np is a sparse matrix of local appear-
ance features extracted from location l, with nonzero en-
tries corresponding to the active mixtures t. Finally, Tr() is
the standard trace operator, where we use the property that
Tr(ATB) = A(:)TB(:) following Matlab notation. We can
then write Wa as a product of a basis and steering coeffi-
cient matrix:

Wa = BST where B ∈ Rnd×ns , S ∈ Rnp×ns (4)

where each column of B is a basis filter and each row of S
specifies the steering coefficients for a particular part mix-
ture. We see that our steerable model can be interpreted as
a rank ns constraint on the filter bank Wa. Plugging in (4)
into (3), we get:

score(I, z) = Tr(SBT Φa(I, z)) + wT
s φs(z) (5)

The new score is bilinear in its parameters (B,S,ws); if we
fix the steerable basis B, the score is linear in the coeffi-
cients S and shape parameters ws. If we fix S, the score is

linear in B and ws. This suggests that we can generalize
convex algorithms for learning parameters (such as SVMs)
to biconvex algorithms that iterate learning one set of pa-
rameters holding the others fixed.

4. Learning
We now describe a method for learning steerable mod-

els given supervised data, where part locations and mixture
types, are known for all positive training examples. When
these variables are not known, [6] describes a coordinate
descent algorithm that iterates between (1) learning model
parameters assuming such latent variables are known and
(2) updating latent variables given the learned model pa-
rameters. For weakly supervised datasets, our learning al-
gorithm can be applied within step (1). If all labels are given
in a supervised framework (as is the case for [22] and [24]),
then one can directly apply the approach here.

Given labeled positive examples {In, zn} and negative
examples {In} we can write our max-margin learning for-
mulation as:

L(w) =
1

2
wTw + C

∑
n

max
z∈Zn

[0, 1− ynwTφ(In, z)] (6)

Zn = {zn} ∀n s.t. yn = 1

Zn = {unrestricted} ∀n s.t. yn = −1

where parameters and features in (1) are vectorized and con-
catenated to form vectors w and φ(In, z). The first term is
a standard regularizer. The second term is a cumulative loss
over training examples. For each positive training example
In, if the score of the given labels zn is greater than 1, the
loss evaluates to 0. Else the loss is set to the difference (the
slack). For each negative training example, one searches
all possible locations and mixture types z for the highest
scoring configuration. If its score is less than −1, the loss
evaluates to 0; else the loss is set to the difference.

The above formulation is equivalent to the convex inner
loop of a latent SVM [6]. It can also be written as a struc-
tural SVM, for which many excellent large-scale solvers
exist [6, 20]. To optimize the above, we rewrite it as a
quadratic objective with linear constraints, minimizing it
with the dual-coordinate descent quadratic program (QP)
solver of [22].

We can rewrite (6) in matrix form as:

L(Wa, ws) =
1

2
Tr(WT

a Wa) +
1

2
wT

s ws+ (7)

C
∑
n

max
z∈Zn

[0, 1− yn
(

Tr(WT
a Φa(I, z)) + wT

s φs(z)
)

]

This means that any equation that can be written as (7) can
be solved by an off-the-shelf structured SVM solver. By
substituting a steerable basis B and coefficient matrix S for

the filter bank Wa, we can write the objective function as
L(B,S,ws). With the following key substitutions,

Tr(WT
a Wa) = Tr(SBTBST) (8)

Tr(WT
a Φa) = Tr(SBT Φa) = Tr(BT ΦaS) (9)

we can rewrite (7) as:

L(B,S,ws) =
1

2
Tr(SBTBST) +

1

2
wT

s ws+ (10)

C
∑
n

max
z∈Zn

[0, 1− yn
(

Tr(BT Φa(I, z)S) + wT
s φs(z)

)
]

The above function is no longer convex in its arguments.
However, by freezing the steering coefficients S, the above
function can be written as a convex function:

L(B̃, ws) =
1

2
Tr(B̃T B̃) +

1

2
wT

s ws+ (11)

C
∑
n

max
z∈Zn

[0, 1− yn
(

Tr(B̃T Φ̃a(In, zn)) + wT
s φs(z)

)
]

where B̃ = BA
1
2 , Φ̃a = ΦaSA

− 1
2 , A = STS

(11) is equivalent in structure to (7); hence it is convex
and can be optimized with an off-the-shelf structured
SVM solver. Given a solution, we can recover the final
steerable basis B = B̃A−

1
2 . Note that A = STS is

ns × ns matrix that will in general be invertible given
for ns � np (e.g., a small number of basis filters com-
pared to a large part vocabulary). One can easily show
a similar convex formulation for optimizing L(S,ws)
given a fixed steerable basis B. This makes the overall
formulation from (10) biconvex in its arguments, amenable
to coordinate descent algorithms for minimization [15].
Specifically, given some initial steerable basis B∗, iter-
ate the following steps using a structured SVM solver:

(S∗, w∗s) = argminS,ws
L(B∗, S, ws)1

(B∗, w∗s) = argminB,ws
L(B,S∗, ws)2

Initialization: In practice, to initializeB∗, we first inde-
pendently learn a filter for each part with a standard linear
SVM. This is typically inexpensive and parallelizable. We
then apply a rank-ns SVD to this set to estimate an initial
B∗.

Latent alignment: A traditional difficulty with sub-
space methods is that of alignment; if patches are not
aligned well, then low-rank approximations will tend to be
very blurred. By iterating both over our steerable param-
eters (S,B,ws) and latent configuration variables z, our
learning algorithm can re-align parts to better match our
steerable basis. Hence, even for fully-supervised datasets
where part locations z are known, we allow for small latent
translations that re-align parts as we learn a steerable basis.

5. Steerability and separability
Thus far we have made no assumption on the form of

each basis filter, beyond the fact that it contains nd param-
eters. We now augment our model to enforce the fact that
each basis filter is separable. One can model each nd-length
basis filter as a ny×nx×nf tensor, encoding a spatial neigh-
borhood of ny × nx cells, with nf orientation features ex-
tracted from each cell. A fully-separable filter can be writ-
ten as a rank-1 tensor, or a product of three one-dimensional
vectors. For simplicity, we focus on separability in one di-
mension. To do so, let us reshape each basis filter bj from
(2) into a nxy × nf matrix Bj that is restricted to be low
rank:

Bj =

nk∑
k=1

cjkf
T
jk where cjk ∈ Rnxy×1, fjk ∈ Rnf×1

where nk = 1 corresponds to the fully separable case. We
refer to cjk as the spatial basis and fjk as the feature basis.
Combining this with (2), we can write each part filter as:

W ti
i =

ns∑
j=1

nk∑
k=1

cjkf
T
jks

ti
ij where W ti

i ∈ Rnxy×nf

When plugging this expression back into (3), we see that
the overall score function is now multilinear in its param-
eters. By fixing two sets of its parameters (say the feature
basis and steering coefficients), it is simultaneously linear
in the third (the spatial basis) and the spatial parameters ws.
The resulting learning problem is multiconvex, amenable to
coordinate descent where each step corresponds to solving
a problem of the form from (11), derived by holding two pa-
rameters fixed and solving for the third. Again, this convex
program can be solved with an off-the-shelf structural SVM
solver. We omit the straightforward but cluttered equations
for lack of space.

One can combine the two approaches by learning a
“shared basis” of separability. For example, one could force
all basis filters Bj to share the same feature basis:

fjk = fk
One can then interpret fk as vectors that span a generic fea-
ture basis used by all basis filters. We consider this form of
separability in our experiments, as it considerably reduces
the number of parameters even further.

6. Multi-category learning
Current category-level models are trained and detected

independently for each object category [4]. This will clearly
not scale to tens of thousands of categories. An open ques-
tion is how to share structure across such models, both for
purposes of increased regularization and computational sav-
ings. We show that our steerable framework provides one
natural mechanism for sharing.

Assume we wish to train M category-specific models,
but wish to learn a shared steerable/separable vocabulary
across all categories. Given positive and negative training
examples for each category, we can write all M learning
problems as one optimization:

Lmulti(W
1
a . . .W

M
a , w1

s . . . w
M
a) =

M∑
m=1

L(Wm
a , w

m
s)

where L(Wm
a , w

m
s) is defined as (7). As written, the above

problem can be optimized over each category-specific
model independently. Instead, we share structure across
categories by restricting all models to share the same basis
filters:

Wm
a = BST

m

The previously described coordinate descent algorithm ap-
plies to this multi-category formulation as well. Given a
fixed basis B, it is straightforward to optimize (Sm, w

m
s)

with M independent structural SVM problems. Given the
learned steering coefficients Sm for each category, a single
steerable basis is learned by solving a single structural SVM
problem using all the training data. We omit the straightfor-
ward but cluttered equations for lack of space.

7. Computational savings

Given a learned model, at run-time, we want to maxi-
mize score(I, z) in (1) over all part positions p and mixture
types t. As stated previously, we assume that the shape prior
ws ·φs(p, t) factors into a tree model, amenable to dynamic
programming. Many practitioners have observed that the
bottleneck of the dynamic programming is the computation
of the local part scores, for all parts in the vocabulary at
all image locations [4, 13]. We analyze the computational
savings afforded by steerable and separable representations.

Inference: Following our existing notation, assume we
have a vocabulary of np parts of dimension nxy×nf . Given
an image withN cell locations, naive computation of the lo-
cal score will takeO(Nnxynfnp). One can show that given
a shared feature basis of nk dimensions and ns basis filters,
the local score computation is dominated by the convolu-
tion of basis filters, requiring O(Nnxynkns). For typical
parameter values, this results in a 10X to 100X reduction in
the number of operations.

Learning: The above savings for inference also speed
up learning, since one must run the inference algorithm to
collect support vectors. Our steerable model also decreases
storage costs by a similar amount. Support vectors will be
10X to 100X smaller since we need only optimize/store a
small fraction of the appearance features during each step
of coordinate descent. This is practically significant since
many models require a large number of support vectors,
approaching memory limits of typical hardware. Hence

Figure 2: We show results of applying our steer-
able/separable representation to three diverse but well-
benchmarked applications of articulated pose estimation
(on PARSE), facial landmark estimation (on MultiPIE), and
object detection (on PASCAL VOC 2007).

our factored representation allows us to learn significantly
larger models.

8. Experiments
We apply our method on three recognition tasks; artic-

ulated pose estimation, facial pose estimation/landmark es-
timation, and object detection (Fig. 2). We use standard
benchmark datasets, evaluation protocols, and compare re-
sults with state-of-the-art methods (as reported on these
datasets).

8.1. Articulated human pose estimation

The articulated part model of [22] is a pictorial struc-
ture defined on a part vocabulary of size np = 138, nxy =
25, nf = 32. These parts represent different in-plane ori-
entations of articulated body parts, and so are natural can-
didates for a steerable representation. We train and test the
model on the Image Parse dataset [16], following the stan-
dard evaluation protocol and criteria (PCP score). We vi-
sualize the original model from [22], and its reconstruction
under our steerable representation in Fig. 3. We show a
subset of the 138-part vocabulary and the learned steerable
filters in Fig. 1.

Fig. 4 compares our results with [22] for various param-
eter settings. Notably, the baseline model can be tuned for
different number of parameters by varying the number of
discrete orientations modeled at each part, from 1 to 6. We
show that, given a fixed number of parameters, we always
obtain a better model using steerable parts. We obtain sim-
ilar (and even slightly better) PCP performance with a 15X
reduction in the total number of parameters, and even obtain
reasonable performance for a 100X reduction in model size.
These translate to roughly similar improvements in run-time
speed, given the single-threaded public matlab/mex imple-
mentation of [22]. For example, per-image running time
decreases from 6 seconds to almost 0.5 seconds for our
ns = 20, nk = 8 model. We show part-specific localiza-
tion accuracy in Table 1. Finally, we show performance as
a function of the number of iterations of coordinate descent
in Fig. 5. We see that the initial steerable basis, though

(a) Baseline (np = 138, nf = 32) (b) Our model (ns = 20, nk = 8)

Figure 3: We show the original articulated human model
from [22] in (a) and our steerable/separable reconstruction
in (b). Our model looks and performs similar, but is roughly
15X smaller and faster at inference time.

10
0

10
1

10
2

0.5

0.55

0.6

0.65

0.7

0.75

Reduction in the number of parameters

P
C

P

Baseline
n

k
 = 8

n
k
 = 4

Figure 4: We compare the performance of the articulated
pose model of [22] with our steerable/separable variant for
equivalent number of parameters (on the PARSE bench-
mark). One can reduce the number of parameters in [22]
by limiting the number of oriented mixtures of each part
(the black baseline), or by exploiting our steerable repre-
sentation. We plot two curves obtained by varying the num-
ber of basis filters ns for different feature dimensions nk.
Our model always dominates for an equivalent number of
parameters, and even achieves state-of-the-art performance
with a 15X reduction in parameters. We also achieve rea-
sonable performance with 100X reduction in parameters.

initialized with care (as described in Sec. 4) considerably
improves after a full iteration of coordinate descent.

8.2. Facial pose estimation / landmark localization

The view-based part model of [24] appears to be current
state-of-the-art system for pose estimation and landmark lo-
calization, and given by evaluation on the MultiPIE bench-
mark [9]. This model defines a mixtures-of-trees part facial
landmark model, where each mixture encodes an out-of-
plane change in orientation. The best performance reported
in [24] is given by a model which defines a separate part

0 2 4 6 8 10
50

55

60

65

70

75

80

Number of iterations

P
C

P

138−part Baseline
52−part Baseline
n

s
=20, n

k
=8

Figure 5: We plot PCP performance over iterations of co-
ordinate descent. Iteration 0 corresponds to initialing both
a steerable basis and feature subspace with an SVD of part
filters trained independently with SVMs. We see a signif-
icant improvement in results in a single iteration, and even
slightly outperform the baseline after 6 iterations.

(a) Baseline (np=1050, nf=32) (b) Our model (ns=93, nk=8)

Figure 6: We show one of views from the multi-view facial
model from [24] in (a) and our steerable/separable recon-
struction in (b). Tree-structured spatial constraints between
parts are drawn as red lines. Our model looks and performs
similar, but is roughly 7X smaller and faster at inference
time.

filter for each out-of-plane orientation, resulting in a large
vocabulary of size np = 1050, nxy = 25, nf = 32.

Table 2 and Fig. 7 compare our results with [24] for var-
ious parameter settings. Notably, the baseline model can
be tuned for different number of parameters by varying the
number of out-of-plane orientations modeled at each part.
Tuning both our model and the baseline for a 7X reduction
in parameters, our model dominates in both pose estima-
tion and landmark localization accuracy. Our model even
slightly improves upon the state-of-the-art pose estimation
reported in [24], and still produces reasonable performance
for a 22X reduction in model size.

8.3. Sharing across object categories

We now present results for steerable variants of the pop-
ular deformable part model of [6]. We show results on the
PASCAL VOC 2007 testset using standard evaluation cri-
teria. Notably, we apply the multi-category steerable rep-
resentation presented in Sec.6. For simplicity, we only ap-

Method Reduction # basis Feature Torso Head Upper Lower Upper Lower Total
in # params ns dimension nk legs legs arms arms

138-part baseline[22] 1 - - 96.6 93.2 82.0 74.1 72.9 47.3 74.2
52-part baseline[22] 2.7 - - 95.6 92.2 82.2 72.4 68.5 36.3 70.7
Our Model 15.7 20 8 97.6 92.2 81.2 74.4 74.9 48.8 74.8
Our Model 22.6 20 4 97.1 90.2 82.0 75.4 72.2 42.2 73.1

Table 1: We compare articulated pose estimation results with [22], which reports state-of-the-art results on the PARSE
benchmark [16]. We use the standard evaluation criteria of PCP. We compare results to the baseline model [22] tuned
for different numbers of orientation mixtures. We report the results for different numbers of basis filters ns and different
feature dimensions nk. We achieve almost the same total and per part results with over 10 times reduction in the number of
parameters and running time. Our model even slightly outperforms the baseline for some parts.

Method Reduction # basis Subspace Accuracy of exact Localization error
in # params ns dimension nk pose estimation (mse)

1050-part baseline[24] 1 - - 91.4 0.0234
146-part baseline[24] 7.2 - - 82.0 0.0256
99-shared baseline[24] 10.6 - - 81.5 0.0281
Our Model 7.2 93 8 91.6 0.0236
Our Model 22.2 30 8 89.3 0.0247
Our Model 24.3 30 4 89.9 0.0256

Table 2: We compare our results in facial detection, pose estimation, and landmark localization with the baseline in [24]. We
compare against baseline models with different amounts of sharing. We show the results for different number of basis filters
ns and different subspace dimensions nk. We achieve almost the same performance, in both pose estimation and landmark
localization, with a 7-20X reduction in model size.

0 5 10 15 20 25
80

85

90

95

100

Reduction in the number of parameters

A
cc

ur
ac

y
of

 p
os

e
es

tim
at

io
n

Baseline
ours

0 5 10 15 20 25
0.023

0.0235

0.024

0.0245

0.025

0.0255

0.026

Reduction in the number of parameters

M
ea

n
sq

ua
re

d
er

ro
r

in
 la

nd
m

ar
k

lo
ca

liz
at

io
n

Baseline
ours

Figure 7: Facial pose estimation and landmark localization
on MultiPIE. We compare to two versions of the baseline
model from [24], tuned for 1 mixture per part or 7 view-
based mixtures per part. On the left, we plot pose estima-
tion accuracy (higher is better). On the right, we plot land-
mark localization error (lower is better). For an equivalent
number of parameters, our model greatly outperforms the
baseline. We also closely match baseline performance with
a 24X reduction in model size.

ply our steerable representation on the part filters and not
the root filters, since the former are all equivalent in size.
Across all categories, the size of the part vocabulary can be
written as np = 480, nxy = 36, nf = 32. We explore a
steerable model with ns = 60, nf = 32, since we found
that a shared feature basis hurts in the multi-category sce-
nario. Our models are 3X smaller and faster with a near
equivalent performance (Table 3 and Fig. 9). Our parameter
reduction would be greater if we also implemented steerable
root filters; we are currently pursuing extensions for such

0.01 0.02 0.03 0.04 0.05
0

0.2

0.4

0.6

0.8

1

Average localization error as fraction of face size

F
ra

ct
io

n
of

 th
e

nu
m

. o
f t

es
tin

g
fa

ce
s

Baseline (1050−part)
Baseline (146−shared)
n

s
=93, n

k
=8

n
s
=30, n

k
=8

Figure 8: We evaluate landmark localization accuracy with
cumulative error plots. We plot the fraction of test im-
ages for which landmark localization error is below a given
value. We compare against baseline models with vocabular-
ies of 1050 and 146 parts. Our model gives roughly equiv-
alent performance with a 7-20X reduction in model size.

variable-size filter banks.
Conclusion: We describe a method for learning steer-

able deformable part models, based on the observation that
part templates can be written as linear filter banks. We
show how can leverage existing SVM-solvers to learn steer-
able representations using rank-constraints. We demon-
strate impressive results on three diverse problems in recog-
nition, showing improvements up to 10X-100X in size and
speed. When we compare our steerable models with base-
lines tuned for equivalent sizes, our models always dom-

Category plane bicycle bird boat bottle bus car cat chair cow
voc-rel4[5] 29.6 57.3 10.1 17.1 25.2 47.8 55.0 18.4 21.6 24.7
Our Baseline 27.1 57.1 10.2 13.9 22.5 47.3 52.2 17.4 17.8 23.8
Our Model 29.7 56.6 10.2 15.3 23.1 48.7 53.8 15.7 19.9 22.2
Category table dog horse mbike person plant sheep sofa train tv total
voc-rel4[5] 23.3 11.2 57.6 46.5 42.1 12.2 18.6 31.9 44.5 40.9 31.8
Our Baseline 20.4 6.8 56.1 43.5 42.3 12.0 18.5 32.5 39.0 39.7 30.0
Our Model 20.5 4.3 56.0 46.0 40.4 12.3 18.6 30.1 40.4 41.4 30.3

Table 3: Average precision for different object categories in PASCAL 2007 dataset. The first row contains the results reported
in the released code of [5] without any post-processing. We reimplemented the code to allow for easier modification. Our
reimplementation is shown in the second row. The third row is the steerable variant of our reimplementation, tuned for
ns = 60 and 3X reduction in the number of parameters. Our performance slightly increases while yielding a smaller and
faster model.

(a) Baseline (np=480) (b) Our model (ns=60)

Figure 9: On the left, we show the result of our implementa-
tion of the car model from [6]. On the right, we show our
learned model reconstructed from 60 steerable basis filters,
shared across all 20 object categories. Our model looks and
performs similar, but is 3X smaller and faster at run-time.

inate in performance, suggesting that they are more natu-
ral representations. Finally, we demonstrate that steerable
structure can be shared across different object categories.

Acknowledgements: Funding for this research was
provided by NSF Grant 0954083 and ONR-MURI Grant
N00014-10-1-0933.
References

[1] E. Adelson and J. Bergen. Spatiotemporal energy models for
the perception of motion. J. Opt. Soc. Am. A, 2(2), 1985.

[2] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In ICCV, pages
1365–1372. IEEE, 2009.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for
human detection. In CVPR, pages I: 886–893, 2005.

[4] P. Felzenszwalb, R. Girshick, and D. McAllester. Cascade
object detection with deformable part models. In CVPR,
pages 2241–2248. IEEE, 2010.

[5] P. F. Felzenszwalb, R. B. Girshick, and D. McAllester.
Discriminatively trained deformable part models, release 4.
http://www.cs.brown.edu/ pff/latent-release4/.

[6] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ra-
manan. Object detection with discriminatively trained part
based models. IEEE TPAMI, 32(9), 2010.

[7] S. Fidler, M. Boben, and A. Leonardis. Learning hierar-
chical compositional representations of object structure. In
Object categorization: computer and human perspectives.
Cambridge, 2009.

[8] W. Freeman and E. Adelson. The design and use of steerable
filters. IEEE TPAMI, 13(9):891–906, 1991.

[9] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker.
Multi-pie. Image and Vision Computing, 28(5), 2010.

[10] I. Kotsia and I. Patras. Support tucker machines. In CVPR,
2011.

[11] R. Manduchi, P. Perona, and D. Shy. Efficient deformable
filter banks. Signal Processing, IEEE Transactions on,
46(4):1168–1173, 1998.

[12] P. Ott and M. Everingham. Shared parts for deformable part-
based models. In CVPR, pages 1513 –1520, june 2011.

[13] M. Pedersoli, A. Vedaldi, and J. Gonzàlez. A coarse-to-fine
approach for fast deformable object detection. In CVPR,
2011.

[14] P. Perona. Deformable kernels for early vision. IEEE TPAMI,
17(5):488–499, 1995.

[15] H. Pirsiavash, D. Ramanan, and C. Fowlkes. Bilinear Clas-
sifiers for Visual Recognition. NIPS, 2009.

[16] D. Ramanan. Learning to parse images of articulated bodies.
NIPS, 19:1129, 2007.

[17] M. Sadeghi and A. Farhadi. Recognition using visual
phrases. In CVPR, 2011.

[18] J. Sivic and A. Zisserman. Video google: Efficient visual
search of videos. Toward Category-Level Object Recogni-
tion, 2006.

[19] A. Torralba, K. P. Murphy, and W. T. Freeman. Sharing vi-
sual features for multiclass and multiview object detection.
IEEE TPAMI, 29(5):854–869, 2007.

[20] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun.
Large margin methods for structured and interdependent out-
put variables. JMLR, 6(2):1453, 2006.

[21] L. Wolf, H. Jhuang, and T. Hazan. Modeling appearances
with low-rank svm. In CVPR, 2007.

[22] Y. Yang and D. Ramanan. Articulated pose estimation using
flexible mixtures of parts. In CVPR, 2011.

[23] L. Zhu, Y. Chen, A. Torralba, W. Freeman, and A. Yuille.
Part and appearance sharing: Recursive compositional mod-
els for multi-view multi-object detection. Pattern Recogni-
tion, 2010.

[24] X. Zhu and D. Ramanan. Face detection, pose estimation,
and landmark estimation in the wild. CVPR, 2012.

