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Abstract
We present a taxonomy for local distance functions

where most existing algorithms can be regarded as approx-
imations of the geodesic distance defined by a metric ten-
sor. We categorize existing algorithms by how, where and
when they estimate the metric tensor. We also extend the
taxonomy along each axis. How: We introduce hybrid al-
gorithms that use a combination of dimensionality reduc-
tion and metric learning to ameliorate over-fitting. Where:
We present an exact polynomial time algorithm to integrate
the metric tensor along the lines between the test and train-
ing points under the assumption that the metric tensor is
piecewise constant. When: We propose an interpolation
algorithm where the metric tensor is sampled at a number
of references points during the offline phase, which are then
interpolated during online classification. We also present a
comprehensive evaluation of all the algorithms on tasks in
face recognition, object recognition, and digit recognition.

1. Introduction

The K-nearest neighbor (K-NN) algorithm is a simple
but effective tool for classification. It is well suited for
multi-class problems with large amounts of training data,
which are relatively common in vision. Despite its simplic-
ity, K-NN and its variants are competitive with the state-of-
the-art on various vision benchmarks [29, 3, 14].

The key ingredient in K-NN is the choice of the distance
function or metric. The distance function captures the type
of invariances used for measuring similarity between pairs
of examples. These functions are often hand-constructed,
but recent approaches have tried to learn them from training
data [9, 25, 15, 14, 2]. Until recently, such methods focused
primarily on learning a single global metric.

The optimal distance measure for 1-NN is the probabil-
ity that the pair of examples belong to different classes [19].
The resulting function can be quite complex, and in part mo-
tivates the analysis of distance functions that vary across the
space of examples. For those motivated by psychophysical
studies, there also exists evidence that humans define cate-
gorical boundaries in terms of local relationships between
exemplars [21]. The last few years have seen an increased

interest in such local distance functions for nearest neigh-
bor classification [29, 6, 7, 20], though similar ideas were
explored earlier in the context of local discriminant anal-
ysis [13, 4] and locally weighted learning [1, 22]. Recent
approaches have also leveraged local metrics for gaussian
process regression [26] and multiple kernel learning [10].

Our first contribution is to present a taxonomy for local
distance functions. In particular, we show how most ex-
isting algorithms can be regarded as approximations of the
geodesic distance defined by a metric tensor. We catego-
rize existing algorithms in terms of how, where, and when
they estimate the metric tensor. See Table 1 for a summary.
In terms of how, existing algorithms obtain a metric either1

by dimensionality reduction such as principle components
analysis (PCA) or linear discriminant analysis (LDA) [8], or
by explicit metric-learning [2, 9, 15]. In terms of where, ex-
isting algorithms sample the metric tensor: (a) for the whole
space (“global”), (b) for each class (“per-class”) [15], (c) at
the training points (“per-exemplar”) [6, 7], or (d) at the test
point [13, 1]. In terms of when, existing algorithms ei-
ther estimate the metric tensor: (a) offline during training
or (b) online during classification.

Our second contribution is to extend the taxonomy along
each dimension. In terms of how, we introduce hybrid algo-
rithms that use a combination of dimensionality reduction
and metric learning to ameliorate over-fitting. In terms of
where, we consider algorithms to integrate the metric ten-
sor along the line between the test point and the training
point that it is being matched to. We present an exact poly-
nomial time algorithm to perform this integration under the
assumption that the metric tensor is piecewise constant. In
terms of when, we consider a combined online-offline al-
gorithm. In the offline training phase, a representation of
the metric tensor is estimated by sampling it at a number of
reference points In the online phase, the metric tensor is es-
timated by interpolating the samples at the reference points.

Our third contribution is to present a comprehensive
evaluation of the algorithms in our framework, both prior
and new. We show results on a diverse set of problems,

1Another approach is to define a distance function analytically based
on high level reasoning. An example is the tangent distance [24], where
the metric captures user-defined invariances in the data. We restrict our
analysis to situations where the metric is not user-defined in this way.
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Table 1. A summary of our taxonomy for local distance functions. Algorithms can be classified by how, when, and where they estimate
the metric tensor. We also propose a number of extensions to the taxonomy (marked in bold.)

How
Dim. Reduction/LDA

Metric Learning
Hybrid (Sec. 2.2.3)

Where
Whole Space Each Class Training Points Test Point Line Integral

When
Offline Global Per-Class Small DB Only N/A N/A
Online As Above As Above Per-Exemplar Lazy Too Slow
Interp. As Above As Above Sec. 2.4.3 Sec. 2.4.3 Sec. 2.3.5

including object recognition using face recognition using
MultiPIE [12], Caltech 101 [5], and digit recognition using
MNIST [18]. To spur further progress in this area and al-
low other researchers to compare their results with ours, we
will make the raw feature vectors, class membership data,
and training-test partitions of the data available on a website
with the goal of defining a standard benchmark.

2. Taxonomy and Algorithms
2.1. Background

We assume that we are working with a classification
problem defined in an K dimensional feature space RK .
Each test sample is mapped into this space by computing a
number of features to give a point x ∈ RK . Similarly, each
training sample is mapped into this space to give a point
point xi ∈ RK . Where appropriate, in this paper we denote
test points by x and training points by xi. We do not con-
sider problems where all that can be computed is the pair-
wise distance between a test samples and a training sample
Dist(x,xi). A number of local distance function and metric
learning algorithms have been proposed for this more gen-
eral setting [6, 7]. Note, however, that such general met-
rics often measure the distance between two images under
some correspondence of local features and that approximate
correspondence can be captured by a pyramid vector repre-
sentation [11]. Many, if not most, distance functions either
explicitly or implicitly embed data in a finite dimensional
vector space. Our work applies to this common case.

A Mahanobolis metric is a K × K symmetric, positive
definite matrix M . (In many cases the positive definite con-
dition is relaxed to just non-negativity in which case, strictly
speaking M is a psuedometric.) A metric defines the dis-
tance between a pair of test and training points x,xi ∈ RK

via:
DistM (x,xi) = (xi − x)TM(xi − x). (1)

The metric tensor is a generalization of a single constant
metric to a possibly different metric MT (x) at each point
in the space. Roughly speaking, MT (x) can be thought of
as defining a local distance function DistMT (x) at each x.

Given a piecewise differentiable curve c(λ), where λ ∈
[0, 1], the length of the curve is given by:

Length(c(λ)) =
∫ 1

0

[
dc
dλ

]T
MT (c(λ))

dc
dλ

dλ. (2)

The geodesic distance between a pair of test and training

points is the distance of the shortest curve between them:

DistGeo(x,xi) = min
c(0)=x,c(1)=xi

Length(c(λ)). (3)

If the metric tensor is (close to) zero within each class,
and has a large non-zero component across the boundary of
each class, then perfect classification can be obtained in the
absence of noise using the geodesic distance and just a sin-
gle training sample in each connected component of each
class. Estimating such an ideal metric tensor is impossible.
But at heart, we argue that all local distance function algo-
rithms are based on the hope that better classification can
be obtained by using such a spatially varying metric tensor
and an approximation to the geodesic distance.

2.2. How
2.2.1 Dimensionality Reduction Algorithms

Perhaps the simplest metric learning algorithms are the var-
ious linear dimensionality reduction algorithms. For exam-
ple, Principle Components Analysis (PCA) [8] projects the
data into a low-dimensional subspace and then measures
distance in the projected space. If P is the (orthonormal)
d×K dimensional PCA projection matrix, the correspond-
ing distance between a pair of test and training points:

||P (xi − x)||2 = (xi − x)TMPCA(xi − x) (4)

where MPCA = PTP is the corresponding metric. Rather
than an explicit projection, one can use a Mahanolobis dis-
tance [8] (the inverse of the sample covariance matrix.)

A more powerful approach is to learn a subspace that
preserves the variance between class labels using Linear
Discriminant Analysis (LDA) [8]. LDA has a large number
of variants. In this paper we consider a weighted form of
Regularized LDA [8] described below. We assume we are
given a set of triples {xi, yi, wi} consisting of data points,
class labels, and weights. We can interpret integer weights
as specifying the number of times an example appears in an
equivalent unweighted dataset. We search for the d × K
dimensional LDA basis V that maximizes:

arg max
V

tr(V T ΣBV ) s.t. V T (ΣW + λI)V = I (5)

ΣB =
1
C

∑
j

µ̄j µ̄
T
j , ΣW =

∑
i wix̄ix̄

T
i∑

i wi
, x̄i = xi − µyi

µ̄j = µj −
1
C

∑
j

µj , µj =

∑
{i:yi=j} wixi∑
{i:yi=j} wi



where C is the number of classes. This can be solved with
a generalized eigenvalue problem. In general, ΣW will of
rank K or higher, while the rank of ΣB is upper bounded
by C. If C < K we obtain use a bagged estimate of ΣB ob-
tained by averaging together covariance matrices estimated
from sub-sampled data [28]. The regularization parameter
λ enforces an isotropic Gaussian prior on ΣW that ensures
that the eigenvalue problem is well conditioned when ΣW

is low rank. We found this explicit regularization was es-
sential for good performance even when ΣW is full rank.
We used a fixed λ = 1 for all our experiments.

As defined in Equation (5), V is not guaranteed to be
orthonormal. We explicitly apply Gram-Schmidt orthonor-
malization to compute VG and define the LDA metric:
MLDA = V T

G VG where MLDA is a K ×K matrix of rank
d. An alternative approach [13] is to use the scatter matrices
directly to define a full-rank metric M = S−1

W SBS
−1
W . Em-

pirically, we found the low-rank metric MLDA to perform
slightly better, presumably due to increased regularization.

2.2.2 Metric Learning Algorithms

Recently, many approaches have investigated the problem
of learning a metric M that minimizes an approximate K-
NN error on a a training set of data and class label pairs
{xi, yi} [9, 25, 15, 14, 2]. Relevant Component Analysis
(RCA) [2] finds the basis V that maximizes the mutual in-
formation between xi and its projection V xi while requir-
ing that that distances between projected points from the
same class remain small. Neighborhood Component Anal-
ysis (NCA) [9] minimizes a probabilistic approximation of
the leave-one-out cross validation error. Recent approaches
minimize a hinge-loss approximation of the misclassifica-
tion error [15, 14, 25].

The state-of-the-art at the time of writing seems to be the
Large Margin Nearest Neighbor (LMNN) algorithm [15].
LMNN defines a loss function L that penalizes large dis-
tances between “target” points that are from the same class
while enforcing the constraint that, for each point i, “im-
poster” points k from different classes are 1 unit further
away than a target neighbors j. We define a generalization
that uses a weighted error similar to (5):

L(M) =
∑

{ij}∈Targ

wiDistM (xi,xj)+ (6)

C
∑

{ijk}∈Imp

wih(DistM (xi,xk)−DistM (xi,xj))

The constraint is enforced softly with a hinge loss function
h, making the overall objective function convex. It can be
solved with a semi-definite program (SDP). We used publi-
cally available LMNN code [15] in our experiments.

2.2.3 New Algorithm: Hybrid Approach

Some local distance function algorithms invoke multiple
metrics at various stages. For example, many local algo-
rithms require an initial global metric to produce a short list
of candidate training points which are then processed by a
more expensive local metric. More generally in our tax-
onomy below, many local algorithms use an initial global
metric to determining where in the space to estimate the
a local approximation to the metric tensor. An example are
interpolation algorithms which estimate the local metric at a
test point with a weighted combination of reference metrics
- here, a global metric produces the weight (see Sec 2.4.3).

The metric learning algorithm need not be the same in
the two stages. In this paper we consider a hybrid approach
where different metric learning algorithms are used in the
two steps. Specifically, we use LMNN to decide where
to estimate the metric tensor and populate a short list, and
Regularized LDA to estimate the local metric. The local
estimation of a metric is more dependent on regularization.
Empirically we found LMNN to be more powerful when
supplied with ample training data and LDA to be far easier
to regularize when estimating a local metric.

2.3. Where

2.3.1 Over the Whole Space: Global

The baseline approach is to assume that the metric tensor is
constant throughout the space and compute a single Global
metric for the whole space using all of the training data
MT (x) = MGlobal. If the metric tensor is a constant, then
the shortest path geodesic distance in Equation (3) is the dis-
tance along the direct path c(λ) = x + λ(xi − x) between
the points which simplifies to:

DistGlobal(x,xi) = (xi − x)TMGlobal(xi − x). (7)

2.3.2 For Each Class: Per-Class

Another alternative is to approximate the metric tensor with
a constant metric for each class, commonly referred to as a
Per-Class metric [15]:

MT (xi) = M j
Per−Class where j = Class(x)i. (8)

In particular, there is a different metric M j
PerClass for each

class j. One simple approach to learn M j
PerClass is to opti-

mize the weighted score from (5) or (6) where wi = 1 for
{i : yi = j} and 0 otherwise. When computing the dis-
tance from a test point x to a training point xi we assume
the metric tensor is constant along all paths from x to xi:

DistPC(x,xi) = (xi − x)TMClass(xi)
Per−Class(xi − x). (9)



In general metrics learned for each class may not be com-
parable, since they are trained independently. We make
LDA metrics comparable by normalizing each to have a unit
trace. In all our experiments, we learn a rank d = 50 class-
specific LDA metric. To normalize the LMNN metrics, we
follow the approach introduced in [7] and [15] and define a
generalization of (6) that learns metrics Mc for all classes
together:

L({Mc}) =
∑

{ij}∈Targ

DistMyi
(xi,xj)+ (10)

C
∑

{ijk}∈Imp

h(DistMyi
(xi,xk)−DistMyi

(xi,xj)).

2.3.3 At the Training Points: Per-Exemplar

Another approximation is to assume that the metric tensor
is constant within the neighborhood of each training sample
xi and use a Per-Exemplar metric [6, 7]:

MT (x) = Mxi
Per−Exemplar (11)

for points x close to xi. One simple approach to learn
Mxi

Per−Exemplar is to optimize (5) or (6) with wi = 1 and
0 otherwise. Again, these metrics may not be comparable.
As before, we trace-normalize the LDA metrics. In the-
ory, one can define an extension of (10) that simultaneously
learns all LMNN exemplar metrics. This is infeasible due
to the number on training exemplars, and so we indepen-
dently learn LMNN exemplar metrics. In practice, this still
performs well because the initial pruning step (creating a
shortlist) tends to select close-by exemplars whose metrics
are learned with similar data. Note that [7] is able to jointly
learn metrics by learning diagonal metrics on a subset of the
training data deemed “focal” exemplars.

When computing the distance from a test point x to a
training point xi we assume the metric tensor is constant
along all paths from x to xi and so use the metric of xi:

DistPE(x,xi) = (xi−x)TMxi
Per−Exemplar(xi−x). (12)

2.3.4 At the Test Point: Lazy

We can also estimate the metric tensor at the test point:

MT (x) = Mx
Lazy. (13)

This approach requires learning the metric at run time which
is why we refer to it as Lazy. The training set for the Lazy
algorithm consists of K training points xi close to the test
point x. In our experiments, we use a Global metric to de-
fine which points are the closest and set K = 50. We set
wi for these training points to be 1 and 0 otherwise, and op-
timize (5) or (6) to learn Mx

Lazy. We fix the rank d of the
LDA metric to the number of distinct classes present in the

K training neighbors. When computing the distance from
a test point x to a training point xi we assume the metric
tensor is constant along all paths from x to xi and use the
metric estimated at the test point x:

DistLazy(x,xi) = (xi − x)TMx
Lazy(xi − x). (14)

Examples of the Lazy algorithm are the local discriminant
adaptive algorithm of [13], the locally weighted learning
algorithm of [1], and the locally adpative metric algorithm
of [4]. These algorithms both use a global metric to select
the K nearest neighbors of a test point x which are then
classified locally.

2.3.5 New Algorithm: Integration Along a Line

Computing the geodesic distance in Equations (2) and (3) in
high dimensions in intractable. In 2D or 3D the space can be
discretized into a regular grid of vertices (pixels/voxels) and
then either an (approximate) distance transform or a short-
est path algorithm used to estimate the geodesic distance. In
higher dimensions, however, discretizing the space yields a
combinatorial explosion in the number of vertices to be con-
sidered. To avoid this problem, all of the above algorithms
assume that the metric tensor is locally (or globally) con-
stant and so can approximate the geodesic distance in with
the simple metric distance in Equation (1).

One way to obtain a better approximation of the geodesic
is to assume that the space it not curved locally and approx-
imate the minimum in Equation (3) with the integral along
the line between the test point x and the training point xi:

c(λ) = x + λ(xi − x). (15)

Substituting Equation (15) into Equation (2) and simplify-
ing yeilds the Line Integral distance:

DistLine(x,xi) = (xi−x)T
[∫ 1

0

MT (c(λ)) dλ
]

(xi−x).

(16)
Note that the line distance is an upper bound on the geodesic
distance:

DistGeo(x,xi) ≤ DistLine(x,xi). (17)

In Appendix A we present a polynomial time algorithm to
estimate the integral in Equation (16) exactly under the as-
sumption that the metric tensor is piecewise constant.

2.4. When

2.4.1 Offline

Offline algorithms compute the metric at train time, before
any test point are given. Therefore, in Table 1 only the
Global, Per-Class and Per-Exemplar algorithms could be
used offline. The Lazy and Line Integral approaches re-
quire the test point and so cannot be applied. The Global



approach is the most common [9, 25, 15, 14, 2], and also
the least computationally demanding. Given a dataset with
M training points in C classes in a K dimensional space,
just a single metric must be estimated and the storage re-
quirement is only O(K2). The Per-Class approach [15]
must estimate C metrics, and so requires storing O(CK2).
The Per-Exemplar approach has also been used in the past
[6, 7]. Since the number of training points M is typically
much larger than the number of classes, the storage cost
O(MK2) can make the application of this approach in an
offline fashion intractable for very large datasets including
ours. One can however, define an “online” Per-Exemplar
that first computes a short-list of exemplars for a test point
using a global metric. One can then learn metrics of each
short-listed exemplar on-the-fly, use them to re-rank the ex-
emplars, and discard them without any need for storage. We
include this algorithm in our experiments.

2.4.2 Online

Once the test point has been provided, all of the algorithms
in Table 1 could be applied. Recomputing the metrics used
by Global, Per-Class for each new test point would be re-
dundant and so in practice it makes little sense to apply
these algorithms. Recall that Per-Exemplar, even though
essentially an off-line algorithm, can only be practically im-
plemented on-line due to storage limitations. On the other
hand, the Lazy algorithm [13, 1] can only be applied during
classification of a specific test point. The Line Integral al-
gorithm could also be applied in an online fashion, however
due to the computational cost, the interpolation approach
described next is more practical.

2.4.3 New Algorithms: Interpolation

We expect the metric tensor MT (x) to vary smoothly over
the space x. This suggests that we can interpolate the ten-
sor from a sparse set of samples. Assume that a subset of
the training examples have been selected. We refer to these
points xRPi for i = 1, . . . , R as reference points. In our
experiments we chose the reference points at random, how-
ever, a more principled approach to distribute the reference
points uniformly could have been used.

Offline, local metrics M
xRPi
RP are computed for the ref-

erence points by optimizing (5) or (6) with wRPi = 1 and
0 otherwise. One could learn these metrics jointly but we
found independently learning this models sufficed. Online,
the local metrics M

xRPi
RP are interpolated to obtain the final

metric. One approach is a nearest neighbor (NN) interpola-
tion MT (x) = M

xRPi
RP where for all j = 1, . . . , R:

DistGlobal(x,xRPi) ≤ DistGlobal(x,xRPj ). (18)

Here we use a Global metric to define closeness to the ref-
erences points. Another approach would be to use that ref-

erence point’s own metric, as is done in Appendix A. We
saw similar performance in either case with a slight speed
up with Global. Another approach would be to use a smooth
weighted average of the metrics:

MT (x) =
R∑

i=1

wi(x)MxRPi
RP (19)

wi(x) =
e−

1
σDistGlobal(x,xRPi )∑R

j=1 e
− 1
σDistGlobal(x,xRPj )

. (20)

In our experiments, we varied σ between .01 and .001.
Given a fixed DistGlobal, we can compute wij = wj(xi).
Interpreting these values as the probability that training
point xi selects metric M

xRPj
RP , we can learn each M

xRPj
RP

so as to minimize expected loss by optimizing (5) and (6)
with weights wij . One could define a weighted version of
(10) that simultaneously learns all reference metrics. Since
this involves a sum over the cross product of all imposter
triples with all reference points, we chose not to do this.

Empirically we found that the smooth weighted average
metric in Equation (19) significantly outperformed the near-
est neighbor algorithm. The computational cost of comput-
ing the smooth weighted average metric in Equation (19) is
significantly more, however. Below, we describe a differ-
ent way of training the metrics at the reference points that
eliminates this difference.

We hypothesized that the smooth interpolation outper-
formed NN interpolation because the smoothing acted as an
additional regularizer. To achieve the same regularization
for NN interpolation, we applied a cross-validation step to
construct a regularized version of M

xRPi
RP

M
xRPj
CV =

1
Zj

∑
i 6=j

wi(x)MxRPi
RP (21)

where Zj is a normalization factor included to ensure the
sum of weights wi(x) for j 6= i is 1. We found NN inter-
polation with the above cross-validated metrics performed
similarly to the smooth interpolation, but was significantly
faster. As such, our interpolation results reported in our ex-
periments are generated with NN interpolation withM

xRPj
CV .

So far we have described the interpolation of the refer-
ence point metrics for the test point x. The same interpo-
lation could be performed anywhere in the feature space.
For example, it could be performed at the training points
xi. This leads to a space-efficient version of Per-Exemplar.
It can also be used along the lines between the test point x
and the training points xi an in the Line Integral algorithm
described in Section 2.3.5 and Appendix A.



Figure 1. Benchmark databases. Bottom Left: MultiPIE [12].
Right: Caltech 101 [5]. Top Left: MNIST [18].

3. Experiments
3.1. Databases and Evaluation Procedure

We compared the various algorithms on a diverse set of
problems (see Figure 1), including object recognition using
face recognition using MultiPIE [12], Caltech 101 [5], and
digit recognition using MNIST [18].

MultiPIE [12] is a larger version of the CMU PIE
database [23] that includes over 700,000 images of over
330 subjects collected over multiple sessions over around 6
months. We extract the face regions automatically in the 5
frontal-most cameras (-45 degrees to +45 degrees) using the
Viola-Jones face detector [27]. The face regions were then
resampled and normalized to 80×80 grayscale patches with
zero mean and unit variance. The patches were then pro-
jected into their first 254 principle components (95% of the
empirical variance.) Different sessions were used as train-
ing and testing data. We randomly generated 10 batches of
1000 examples as our test sets.

Caltech 101 [5] is a widely used benchmark for image
classification consisting of over 9,000 images from 101 ob-
ject categories. We base our results on the widely-used
single-cue baseline of spatial pyramid kernels [17]. We use
the publically available feature computation code from the
author’s website, which generates a sparse feature vector of
visual word histograms for each image. We project the vec-
tors such that 95% of the variance is captured, and then use
them in our local distance function framework. We follow
the established protocol of leave-one-out cross validation
with 30 training examples per class.

MNIST [18] is a well-studied dataset of 70,000 exam-
ples of digit images. We followed the pre-processing steps
outlined by [15]. The original 28× 28 dimensional images
were deskewed and projected into their leading 164 princi-
ple components which were enough to capture 95% of the
data variance. The normal MNIST train/test split [18] has
two problems. (1) The training data is very dense with error
rates around 1-2% making it hard to see any difference in
performance. (2) There is only one partition making it im-
possible to estimate confidence intervals. To rectify these

problems, we sub-sampled both the train and test data, in
10 batches of 1000 examples each.

To speed up run-time search, it is common to find a
short-list of neighbors of a test point using an efficient dis-
tance function, before scoring a more computationally de-
manding local function. Many previous approaches using a
per-exemplar distance [7, 6] do this so as to keep run-times
reasonable. We follow a similar approach for all our algo-
rithms. We score the local distance function over a set of 50
neighbors computed with the global metric.

To eliminate any dependence on a specific indexing
structure, both our recognition rate and timing results were
obtained using a brute-force linear scan. Preliminary re-
sults using a KD-tree to generate the short-list showed that
the relative performance of the algorithms was unaffected.
Also, for many algorithms the computation time is domi-
nated by the local computation anyway. The development
of efficient indexing structures specially tuned for local dis-
tance functions is left as an area for future work.

3.2. Results

We include the full results of our study in a set of web-
pages in the supplemental material. We include: (1) recog-
nition rates, (2) error rates, (3) percentage reduction in the
error rate, (4) computation times, and (5) standard devi-
ations of all of these measures. We include results for
(1) LDA, (2) LMNN metric learning, and (3) the hybrid al-
gorithm. A subset of the results are included in Table 2. Due
to respace restrictions, we only include recognition rate and
computation time results for all variants of the hybrid algo-
rithm because overall it performs the best.

3.3. Discussion of the Results

How: Comparing the results in Table 2 with those in
the supplemental material, overall we found that the hy-
brid algorithm outperforms LDA and LMNN metric learn-
ing. Metric-learning approaches such as LMNN tend to out-
perform simpler dimensionality reduction schemes such as
LDA when given enough data. Overfitting becomes more
of an issue when learning local metrics.

When: Overall, we found the best approach to be to
learn local metrics online at the test point, as in [13, 1] We
hypothesize two possible explanations. (1) Overfitting is
less of an issue when the metric is being estimated at the
test point. (2) Just a single metric is being used, avoiding
any need to learn multiple per-exemplar metrics in a way
such that they are comparable or normalized appropriately
[7, 15].

Where: In applications where the computational cost of
learning the metric online at the test point is too great, there
are two reasonable alternatives. (1) Use the interpolation
algorithm to estimate the metric at the test point. (2) Use a
per-class metric. Both of these algorithms perform slightly



MultiPIE Hybrid Recognition Rate Time (seconds)
Global Class Train Test Line

Offline 59.2 ± 1.9 65.6 ± 1.4 N/A N/A N/A

Online 59.2 ± 1.9 65.6 ± 1.4 68.9 ± 1.2 70.2 ± 1.4 N/A

Interp. 59.2 ± 1.9 65.6 ± 1.4 65.4 ± 1.5 65.4 ± 1.5 65.4 ± 1.5

Global Class Train Test Line

3.5 ± 0.0 12.6 ± 0.1 N/A N/A N/A

- - 1219 ± 12 63.3 ± 0.4 N/A

- - 14.3 ± 0.2 22.0 ± 0.1 184.5 ± 1.6

Caltech Hybrid Recognition Rate Time (seconds)
Global Class Train Test Line

Offline 51.1 ± 4.7 55.2 ± 4.9 N/A N/A N/A

Online 51.1 ± 4.7 55.2 ± 4.9 58.3 ± 3.2 60.1 ± 4.2 N/A

Interp. 51.1 ± 4.7 55.2 ± 4.9 53.0 ± 4.0 52.0 ± 3.9 52.6 ± 4.3

Global Class Train Test Line

0.1 ± 0.0 0.3 ± 0.0 N/A N/A N/A

- - 223.7 ± 29.0 11.3 ± 1.3 N/A

- - 0.7 ± 0.0 1.6 ± 0.1 40.3 ± 6.9

Sampled MNIST Hybrid Recognition Rate Time (seconds)
Global Class Train Test Line

Offline 92.4 ± 1.2 93.8 ± 0.9 N/A N/A N/A

Online 92.4 ± 1.2 93.8 ± 0.9 92.9 ± 0.8 93.7 ± 0.8 N/A

Interp. 92.4 ± 1.2 93.8 ± 0.9 92.6 ± 0.7 92.5 ± 0.7 92.6 ± 0.8

Global Class Train Test Line

0.1 ± 0.0 0.5 ± 0.0 N/A N/A N/A

- - 311.1 ± 3.1 15.7 ± 0.5 N/A

- - 3.1 ± 0.2 5.3 ± 0.2 97.8 ± 1.6

Table 2. Recognition rate and computation time results for all variants of the hybrid algorithm (Section 2.2.3.) We do not include timing
results for online/interpolated global/class metrics because an offline implementation is more efficient. The results for LDA and LMNN
metric learning, as well as error rates and percentage reduction in error rates, are included in the supplemental material. Overall, online
estimation of the metric tensor at the test point in our hybrid framework performed the best.

worse than online estimation at the test point, but are far
more efficient. For MNIST, a per-class metric slightly per-
formed the best, consistent with the results from [15].

We found that there was little to be gained by integrating
the metric tensor along the line between the training and test
points. While this is a negative result and therefore primar-
ily of theoretical interest, it is still important to show that
little can be gained by such an approach.

Regularization: Overall, we found the generalization
ability of the learned metrics to be a recurring key issue.
Local metrics are learned using a local subset of the train-
ing data, and so overfitting is a fundamental difficulty. As a
result, regularized LDA was often competitive with LMNN.
We obtained good results when using LMNN to train a
global model but found LDA was generally better at esti-
mating the local metrics (e.g. in the hybrid algorithm.)

Previous reported results: Our MultiPIE results are
comparable to those reported in [12], but are obtained auto-
matically without manually marked fiducial locations. Our
score of 60.1 on Caltech is comparable to the score of 62.2
we obtained by running the author’s code from [17], which
itself is slightly below the reported value of 64.6. We hy-
pothesize the chi-squared kernel from [17] performs a form
of local weighting. Our MNIST results are not directly
comparable to previous work because we use subsampled
data, but our class-specific learned-metric baseline produces
the state-of-the-art MNIST results on the full train/test split
[15]. We verified that the author’s code reproduced the re-
ported results, and ran the same code on random train/test
splits. Overall, though our benchmark results do not always
advance the state-of-the-art, our evaluation clearly reveals

the benefit of local approaches over global baselines.

4. Conclusion
We have presented a taxonomy of local distance func-

tions in terms of how, where, and when they estimate the
metric tensor and approximate the geodesic distance. We
have extended this taxonomy along all three axis. We per-
formed a thorough evaluation of the full combination of
algorithms on 3 large scale, diverse datasets. Overall, the
main conclusions are that the hybrid, online estimation of
the metric at the test point performs the best. Such a method
is straightforward to implement, reasonably efficient, and
provided a consistent improvement over global methods
across all our datasets. We will make all our feature vectors
and results freely available on a website to further research
in this field.
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A. Polynomial Time Line Integral Algorithm
We now present an exact polynomial-time algorithm to

compute the integral in Equation (16) along the line in
Equation (15) under the assumption that the metric tensor
is piecewise constant, and using the interpolation algorithm
in Section 2.4.3. This should be compared with the expo-
nential cost in the dimension of an (approximate) distance
transform that splits the space into a regular grid of voxels.

We assume that the metric tensor has been sampled at
the reference points to estimate M

xRPi
RP . We also assume

that the metric tensor is piecewise constant and its value at
any given point x is the value at the reference point which
is closest, as measured by that reference points metric:

MT (x) = M
xRPi
RP (22)

where for all j = 1, . . . , R:

(x− xRPi)
TM

xRPi
RP (x− xRPi) ≤

(x− xRPj )
TM

xRPj
RP (x− xRPj ). (23)

For any pair of reference points i and j we know that
the metric tensor is constant in the region defined by Equa-
tion (23); i.e. the space can be divided into a set of R(R −
1)/2 regions where the metric tensor is constant. This divi-
sion into regions is similar to the “anisotropic voronoi dia-
gram” of [16]. The voronoi diagram will actually have less
regions in the case where there is another reference point
xRPk that is closer than either xRPi or xRPj . This overseg-
mentation of the space does not affect the accuracy of the
estimate of the the integral in Equation (16).

To compute the integral in Equation (16) we need to
break the domain λ ∈ [0, 1] into the segments for which it
is constant. The boundaries of the regions in Equation (23)
are defined by the equalities:

(x− xRPi)
TM

xRPi
RP (x− xRPi) =

(x− xRPj )
TM

xRPj
RP (x− xRPj ) (24)

Equation (24) is a quadratic and in general the solution is
a quadratic hyper-surface. The intersection of this bound-
ary hypersurface and the line between the test and train-
ing points in Equation (16) can be computed by substituting
Equation (16) into Equation (24). The result is a quadratic
in the single unknown λ which can be solved to give either
0, 1 or 2 solutions in the range [0, 1].

Once all the solutions that lie in λ ∈ [0, 1] have been
computed, they can be sorted. This breaks the line in Equa-
tion (16) into a number of segements where the metric ten-
sor is constant on each one. The appropriate value of the
metric tensor is then computed for each such segment by
taking the midpoint of the segment and computing the clos-
est reference point using Equation (23). The lengths of all
the segments can then be computed and added up. In to-
tal, there can be at most 2R(R − 1)/2 intersection points.
Computing each one takes time O(K2). There are at most
1 + R(R − 1) segments of the line between the test and
training points. The search for the closest reference point
for each one takes O(RK2) because there are R reference
points and the cost of computing the distance to it is O(K2).
The total computation cost is therefore O(R3K2).


