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Local Distance Functions: A Taxonomy,
New Algorithms, and an Evaluation

Deva Ramanan and Simon Baker

Abstract—
We present a taxonomy for local distance functions where

most existing algorithms can be regarded as approximations of
the geodesic distance defined by a metric tensor. We categorize
existing algorithms by how, where, and when they estimate the
metric tensor. We also extend the taxonomy along each axis.
How: We introduce hybrid algorithms that use a combination
of techniques to ameliorate over-fitting. Where: We present an
exact polynomial time algorithm to integrate the metric tensor
along the lines between the test and training points under the
assumption that the metric tensor is piecewise constant. When:
We propose an interpolation algorithm where the metric tensor
is sampled at a number of references points during the offline
phase. The reference points are then interpolated during the
online classification phase. We also present a comprehensive
evaluation on tasks in face recognition, object recognition, and
digit recognition.

Index Terms— Nearest Neighbor Classification, Metric Learn-
ing, Metric Tensor, Local Distance Functions, Taxonomy,
Database, Evaluation

I. INTRODUCTION

The K-nearest neighbor (K-NN) algorithm is a simple but
effective tool for classification. It is well suited for multi-class
problems with large amounts of training data, which are relatively
common in computer vision. Despite its simplicity, K-NN and its
variants are competitive with the state-of-the-art on various vision
benchmarks [6], [23], [43].

A key component in K-NN is the choice of the distance
function or metric. The distance function captures the type
of invariances used for measuring similarity between pairs of
examples. The simplest approach is to use a Euclidean distance or
a Mahalanobis distance [14]. Recently, a number of approaches
have tried to learn a distance function from training data [5], [15],
[23], [24], [38]. Another approach is to define a distance function
analytically based on high level reasoning about invariances in the
data. An example is the tangent distance [37].

The optimal distance function for 1-NN is the probability that
the pair of examples belong to different classes [28]. The resulting
function can be quite complex, and generally can be expected
to vary across the space of examples. For those motivated by
psychophysical studies, there is also evidence that humans define
categorical boundaries in terms of local relationships between
exemplars [34]. The last few years have seen an increased interest
in such local distance functions for nearest neighbor classification
[12], [13], [30], [43], though similar ideas were explored earlier
in the context of local discriminant analysis [10], [19] and
locally weighted learning [3], [35]. Recent approaches have also
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leveraged local metrics for Gaussian process regression [39] and
multiple kernel learning [16].

Our first contribution is to present a taxonomy for local distance
functions. In particular, we show how most existing algorithms
can be regarded as approximations of the geodesic distance
defined by a metric tensor. We categorize existing algorithms
in terms of how, where, and when they estimate the metric
tensor. See Table I for a summary. In terms of how, most existing
algorithms obtain a metric either by dimensionality reduction such
as principle components analysis (PCA) or linear discriminant
analysis (LDA) [14], or by explicit metric-learning [5], [15], [24].
In terms of where, existing algorithms sample the metric tensor:
(a) for the whole space (“global”), (b) for each class (“per-class”)
[24], (c) at the training points (“per-exemplar”) [12], [13], or (d) at
the test point [3], [19]. In terms of when, existing algorithms
either estimate the metric tensor: (a) offline during training or
(b) online during classification.

Our second contribution is to extend the taxonomy along each
dimension. In terms of how, we introduce hybrid algorithms that
use a combination of dimensionality reduction and metric learning
to ameliorate over-fitting. In terms of where, we consider algo-
rithms to integrate the metric tensor along the line between the test
point and the training point. We present an exact polynomial time
algorithm to compute the integral under the assumption that the
metric tensor is piecewise constant. In terms of when, we consider
a combined online-offline algorithm. In the offline training phase,
a representation of the metric tensor is estimated by sampling it
at a number of reference points. In the online phase, the metric
tensor is estimated by interpolating the samples at the reference
points.

Our third contribution is to present a comprehensive evaluation
of the algorithms in our framework, both prior and new. We show
results on a diverse set of problems, including face recognition
using MultiPIE [18], object recognition using Caltech 101 [11],
and digit recognition using MNIST [27]. To spur further progress
in this area and allow other researchers to compare their results
with ours, we will make the raw feature vectors, class membership
data, and training-test partitions of the data available on a website
with the goal of defining a standard benchmark1.

II. TAXONOMY AND ALGORITHMS

We now present our framework for local distance functions.
We begin in Section II-A by describing the scenario and class
of functions that we consider. We introduce the metric tensor
and explain how it defines the geodesic distance. In Section II-B
we describe how the core distance functions can be learnt using
either dimensionality reduction or metric learning and extend
the framework to include hybrid algorithms. In Section II-C we

1Available at http://www.ics.uci.edu/˜dramanan/
localdist/
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TABLE I
A SUMMARY OF OUR TAXONOMY FOR LOCAL DISTANCE FUNCTIONS. ALGORITHMS CAN BE CLASSIFIED BY how, when, AND where

THEY ESTIMATE THE METRIC TENSOR. WE ALSO PROPOSE A NUMBER OF EXTENSIONS TO THE TAXONOMY (MARKED IN bold.)

How
Dim. Reduction/LDA

Metric Learning
Hybrid (Sec. II-B.3)

Where
Whole Space Each Class Training Points Test Point Line Integral

When
Offline Global Per-Class Small DB Only N/A N/A
Online As Above As Above Per-Exemplar Lazy Too Slow
Interp. As Above As Above Sec. II-D.3 Sec. II-D.3 Sec. II-E

describe how several well-known local distance functions can be
viewed as approximations to the geodesic distance by sampling
the metric tensor at the appropriate point(s). In Section II-C
we only consider algorithms that can (at least conceptually) be
applied before the test point is known. In Section II-D we consider
the time at which the metric tensor is estimated or sampled.
Besides offline algorithms, we consider online algorithms that
require the test point to be known before they can be applied. We
also extend the framework to algorithms that first estimate the
metric tensor at a number of reference points and then interpolate
them during online classification. In Section II-E we present a
polynomial time algorithm to integrate the metric tensor along
the lines between the test and training points.

A. Background

1) Problem Scenario: We assume that we are working with a
classification problem defined in a K dimensional feature space
RK . Each test sample is mapped into this space by computing
a number of features to give a point x ∈ RK . Similarly, each
training sample is mapped into this space to give a point xi ∈ RK .
Where appropriate, we denote the test point by x and the training
points by xi. We do not consider problems where all that can be
computed is the pairwise distance or kernel matrix between each
pair of test and training sample Dist(x,xi). A number of learning
algorithms have been proposed for this more general setting [12],
[13]. Note, however, that such general metrics often measure
the distance between two images under some correspondence
of local features and that approximate correspondence can be
captured by a pyramid vector representation [17]. An important
alternate class of models define similarity using a kernel function
or weighted combination of kernel functions [4], [9], [21], [40].
Mercer’s theorem guarantees that kernels implicitly embed data
points in a feature space [9]. This feature space is typically finite
dimensional. Example kernels commonly used in image matching
include the intersection kernel and pyramid match kernel [17],
[17], [29]. Notable exceptions include the Gaussian kernel. Many,
if not most, distance functions either explicitly or implicitly
embed data in a finite dimensional vector space. Our work applies
to this common case.

2) Set of Distance Functions Considered: We consider dis-
tance functions that can be written in the form:

DistM (x,xi) = (xi − x)TM(xi − x). (1)

where M is a K × K symmetric, positive definite matrix. The
set of functions defined by Equation (1) are metrics. In this
paper, we interchangeably refer to the functions of the form in
Equation (1) and the matrices M as metrics, even though not all
metrics can be written in that form. Most existing algorithms,

with the notable exceptions of [12], [13], consider the set of
metrics in Equation (1), or a subset of them. In many cases
the positive definite condition is relaxed to just non-negativity
in which case, strictly speaking M is a psuedometric. In other
cases, only diagonal M are considered.

3) The Metric Tensor: The metric tensor is a generalization of
a single constant metric of the form in Equation (1) to a possibly
different metric at each point in the space [1], [2]. The most
common use of the metric tensor is to define distances on a
manifold. In our case the manifold is RK which has a global
coordinate system. We therefore do not need to worry about
the coordinate transforms between the tensor representations, but
instead can represent it as a single matrix MT (x) at each point
x in the space. Roughly speaking, MT (x) can be thought of as
defining a local distance function or metric DistMT (x) at each
point in the space.

4) Geodesic Distance: Given a piecewise differentiable curve
c(λ), where λ ∈ [0, 1], the length of the curve is given by:

Length(c(λ)) =

Z 1

0

»
dc

dλ

–T
MT (c(λ))

dc

dλ
dλ. (2)

The geodesic distance between a pair of test and training points
is the distance of the shortest curve between them:

DistGeo(x,xi) = min
c(0)=x,c(1)=xi

Length(c(λ)). (3)

In Figure 1 we illustrate the metric tensor and the geodesic
distance between a test point and a training point. We visualize
the metrics sampled at grid points by displaying the isocontour of
equivalent distances, which in R2 are ellipses. The shortest path
between two points is not necessarily the straight line between
them, but in general is curved.

If the metric tensor is (close to) zero within each class, and
has a large non-zero component across the boundary of each
class, then theoretically perfect classification can be obtained
in the absence of noise using the geodesic distance and just
a single training sample in each connected component of each
class. Estimating such an ideal metric tensor would require a very
dense sampling of training data, in which case classification using
nearest neighbors and a Euclidean metric would work well. But
at heart, we argue that all local distance function algorithms are
based on the hope that better classification can be obtained for
typical training data densities by using a spatially varying metric
tensor and an approximation to the geodesic distance.

We now introduce our taxonomy and describe the possible
choices for a local distance function-based algorithm in terms of
how, when, and where it estimates the metric tensor and approx-
imates the geodesic distance. We demonstrate that the interpreta-
tion of local distance functions as approximating geodesics allows
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Train point

Test point

Fig. 1. An illustration of the geodesic distance defined by a
metric tensor. We visualize metrics sampled at grid points in R2

by displaying the isocontour of equivalent distances. The length of
a particular path between the red and black points is computed by
integrating the metric tensor along the path. The geodesic distance is
the minimum length path, over all such paths. The shortest path is
shown as the dotted curve above.

for a unification of many approaches under a general taxonomy,
as well as suggesting new algorithms.

B. How

The first component in our taxonomy is how the metric tensor
is estimated at any given point (or region) in the space in terms
of a number of training samples close to that point.

1) Dimensionality Reduction Algorithms: Perhaps the simplest
metric learning algorithms are the various linear dimensionality
reduction algorithms. For example, Principle Components Analy-
sis (PCA) [14] projects the data into a low-dimensional subspace
and then measures distance in the projected space. If P is the
(orthonormal) d × K dimensional PCA projection matrix, the
corresponding distance between a pair of test and training points:

||P (xi − x)||2 = (xi − x)TMPCA(xi − x) (4)

where MPCA = PTP is the corresponding metric. Rather than
an explicit projection, one can use a Mahalanobis distance [14]
(the inverse of the sample covariance matrix.)

A more powerful approach is to learn a subspace that preserves
the variance between class labels using Linear Discriminant
Analysis (LDA) [14]. LDA has a large number of variants. In
this paper we consider a weighted form of Regularized LDA
[14] described below. We assume we are given a set of triples
{xi, yi, wi} consisting of data points, class labels, and weights.
We can interpret integer weights as specifying the number of
times an example appears in an equivalent unweighted dataset. We
search for the d×K dimensional LDA basis V that maximizes:

arg max
V

tr(V T ΣBV ) s.t. V T (ΣW + λI)V = I (LDA)

ΣB =
1

C

X
j

µ̄j µ̄
T
j , ΣW =

P
i wix̄ix̄

T
iP

i wi
, x̄i = xi − µyi

µ̄j = µj −
1

C

X
j

µj , µj =

P
{i:yi=j} wixiP
{i:yi=j} wi

where C is the number of classes. This can be solved with a
generalized eigenvalue problem. Because the rank of ΣB is upper
bounded by C and generally C < K we use a bagged estimate of
ΣB obtained by averaging together covariance matrices estimated

from sub-sampled data [42]. The regularization parameter λ

enforces an isotropic Gaussian prior on ΣW that ensures that
the eigenvalue problem is well conditioned when ΣW is low
rank. We found this explicit regularization was essential for good
performance even when ΣW is full rank. We used a fixed λ = 1

for all our experiments.
As defined in Equation (LDA), V is not guaranteed to be or-

thonormal. We explicitly apply Gram-Schmidt orthonormalization
to compute VG and define the LDA metric: MLDA = V T

G VG

where MLDA is a K × K matrix of rank d. An alternative
approach [19] is to use the scatter matrices directly to define
a full-rank metric M = S−1

W SBS
−1
W . Empirically, we found the

low-rank metric MLDA to perform slightly better, presumably due
to increased regularization.

2) Metric Learning Algorithms: Recently, many approaches
have investigated the problem of learning a metric M that
minimizes an approximate K-NN error on a training set of data
and class label pairs {xi, yi} [5], [15], [23], [24], [38]. Relevant
Component Analysis (RCA) [5] finds the basis V that maximizes
the mutual information between xi and its projection V xi while
requiring that that distances between projected points from the
same class remain small. Neighborhood Component Analysis
(NCA) [15] minimizes a probabilistic approximation of the leave-
one-out cross validation error. Recent approaches minimize a
hinge-loss approximation of the misclassification error [23], [24],
[38].

The state-of-the-art at the time of writing appears to be the
Large Margin Nearest Neighbor (LMNN) algorithm [24]. LMNN
defines a loss function L that penalizes large distances between
“target” points that are from the same class while enforcing the
constraint that, for each point i, “imposter” points k from different
classes are 1 unit further away than target neighbors j. We define
a generalization that uses a weighted error similar to (LDA):

L(M) =
X

{ij}∈Targ

wiDistM (xi,xj)+ (LMNN)

C
X

{ijk}∈Imp

wih(DistM (xi,xk)−DistM (xi,xj)).

The constraint is enforced softly with a hinge loss function h,
making the overall objective function convex. It can be solved
with a semi-definite program (SDP). We used publicly available
LMNN code [24] in our experiments.

One limitation of the above approach is that an initial (Eu-
clidean) metric must be used define the target and imposter
neighbors. One might imagine an iterative procedure in which the
newly learned LMNN-metric is used to define new target/imposter
neighbors for a subsequent LMNN-learned metric. Weinberger
and Saul investigate such a multi-pass LMNN algorithm [24],
but observe that it tends to overfit for small-sized training data.
As such, we do not pursue it in our analysis.

3) New Algorithm: Hybrid Approach: Some local distance
function algorithms invoke multiple metrics at various stages. For
example, many local algorithms require an initial global metric
to produce a short list of candidate training points which are then
processed by a more expensive local metric. See Section III-A.1
for more details. More generally in our taxonomy below, many
local algorithms use a global metric to determine where in the
space to estimate the local approximation to the metric tensor.

The metric learning algorithm need not be the same in the
two stages. In this paper we consider a hybrid approach where



SUBMITTED TO THE IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

Test point

Per−class metrics
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Per−exemplar

Class2

Class3

metricGlobal

Class1

Fig. 2. An illustration of the “where” dimension of our taxonomy.
Besides using a single global metric, a separate metric can be used
for each class (“per-class”) or for each training example (“per-
exemplar”). In this figure and in Section II-C we restrict attention
to algorithms that can be applied before the test point is known. In
Section II-D.2 we consider algorithms that estimate the metric tensor
at the test point and in Section II-E we described an algorithm that
integrates the metric tensor along the lines between the test point and
the training points.

different metric learning algorithms are used in the two steps.
Specifically, we use LMNN to decide where to estimate the
metric tensor and populate a short list, and Regularized LDA
to estimate the local metric. The local estimation of a metric is
more dependent on regularization. Empirically we found LMNN
to be more powerful when supplied with ample training data and
LDA to be far easier to regularize when estimating a local metric.
Note that Hybrid learning does not apply for the Global setting
in our taxonomy, as only a single metric is learned.

C. Where: Offline Algorithms

We now begin to study the where dimension of our taxonomy.
In this section we only consider algorithms that can be applied
before the test point is known. Sections II-D.2 (Lazy) and II-E
(Line Integral) describe other options in the where dimension. We
illustrate the algorithms considered in this section in Figure 2.

1) Over the Whole Space: Global: The baseline approach is
to assume that the metric tensor is constant throughout the space
and compute a single Global metric for the whole space using all
of the training data MT (x) = MGlobal. If the metric tensor is a
constant, then the shortest path geodesic distance in Equation (3)
is the distance along the direct path c(λ) = x+λ(xi−x) between
the points which simplifies to:

DistGlobal(x,xi) = (xi − x)TMGlobal(xi − x). (5)

2) For Each Class: Per-Class: Another alternative is to ap-
proximate the metric tensor with a constant metric for each class,
commonly referred to as a Per-Class metric [24]:

MT (xi) = Mj
Per−Class where j = Class(x)i. (6)

In particular, there is a different metric Mj
PerClass for each class

j. One simple approach to learn Mj
PerClass is to optimize the

weighted score from (LDA) or (LMNN) where wi = 1 for {i :

yi = j} and 0 otherwise. When computing the distance from a
test point x to a training point xi we assume the metric tensor is
constant along all paths from x to xi:

DistPC(x,xi) = (xi − x)TM
Class(xi)
Per−Class(xi − x). (7)

Generally speaking, metrics learned for each class may not
be comparable, since they are trained independently. Similar
issues arise in multiclass learning because multiple one-versus-all

classifiers may not be directly comparable, although in practice,
such a strategy is often employed [33]. We make LDA metrics
comparable by normalizing each to have a unit trace. We fix
the rank d of the LDA metric to be the number of distinct
classes present amount the neighbors of the training examples
of class j. To normalize the LMNN metrics, we follow the
approach introduced in [13] and [24] and define a generalization
of Equation (LMNN) that learns metrics Mc for all the classes
together:

L({Mc}) =
X

{ij}∈Targ

DistMyi
(xi,xj)+ (8)

C
X

{ijk}∈Imp

h(DistMyi
(xi,xk)−DistMyi

(xi,xj)).

3) At the Training Points: Per-Exemplar: Another approxima-
tion is to assume that the metric tensor is constant within the
neighborhood of each training sample xi and use a Per-Exemplar
metric:

MT (x) = Mxi
Per−Exemplar (9)

for points x close to xi. An example of the Per-Exemplar
approach, used in a more general distance function, is [12],
[13]. A simple approach to learn Mxi

Per−Exemplar is to optimize
Equation (LDA) or (LMNN) with neighboring points weighted
by one (wi = 1) and far away points are weighted by (wi = 0).
As in LMNN, an initial metric must be used to construct these
neighbors. We found that a global metric, learned with either
LDA or LMNN (as dictated by the “How” taxonomy criterion),
outperformed a Euclidean metric for the purposes of identifying
neighbors.

Again, these local metrics may not be comparable. As before,
we trace-normalize the LDA metrics. In theory, one can define an
extension of Equation (8) that simultaneously learns all LMNN
exemplar metrics. This is infeasible due to the number on training
exemplars, and so we independently learn LMNN exemplar met-
rics. In practice, this still performs well because the initial pruning
step (creating a shortlist) tends to select close-by exemplars whose
metrics are learned with similar data.

When computing the distance from a test point x to a training
point xi we assume the metric tensor is constant along all paths
from x to xi and so use the metric of xi:

DistPE(x,xi) = (xi − x)TMxi
Per−Exemplar(xi − x). (10)

D. When

We now consider the when dimension of our taxonomy. We
first consider traditional algorithms, both offline and online. After-
wards we present an interpolation algorithm which estimates the
metric tensor at a number of reference points in an offline phase
and then interpolates these estimates in the online classification
phase.

1) Offline: Offline algorithms compute the metric at train time,
before any test points are given. In Table I only the Global, Per-
Class and Per-Exemplar algorithms could be used offline. The
Lazy and Line Integral approaches require the test point and so
cannot be applied. The Global approach is the most common
[5], [15], [23], [24], [38], and also the least computationally
demanding. Given a dataset with M training points in C classes
in a K dimensional space, just a single metric must be estimated
and the storage requirement is only O(K2). The Per-Class ap-
proach [24] must estimate C metrics, and so requires storing
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Lazy Smooth interpolation

Test points Reference points

NN−interpolation
Test point

Fig. 3. An illustration of the “when” dimension of our taxonomy.
Left: The Lazy algorithm estimates the metric tensor at the test point,
which shifts the computation online. An obvious drawback of the
Lazy approach is the computational cost. Middle: Our interpolation
algorithm precomputes the metric tensor at a small subset of reference
points. The online metric is computed by interpolating the metrics
at the reference points. We describe two approaches using radial
basis functions (Middle) and simple NN-interpolation. With proper
construction of the reference metrics, NN-interpolation can perform
similarly to Lazy with a reduction in computational cost. Right: NN-
interpolation carves up the vector space into an anisotropic Voronoi
diagram with quadratic boundaries between Voronoi cells [25].

O(CK2). Variants of the Per-Exemplar approach have been used
successfully in the past [12], [13]. Since the number of training
points M is typically much larger than the number of classes, the
storage cost O(MK2) can make the application of this approach
in an offline fashion intractable for very large datasets including
ours. One can, however, define an “online” Per-Exemplar that first
computes a short-list of exemplars for a test point using a global
metric. One can then learn metrics of each short-listed exemplar
on-the-fly, use them to re-rank the exemplars, and discard them
without any need for storage. We include this algorithm in our
experiments.

2) Online at the Test Point: Lazy: Once the test point has been
provided during the online classification phase, another option is
to estimate the metric tensor at the test point:

MT (x) = Mx
Lazy. (11)

See Figure 3(left) for an illustration. This approach requires
learning the metric at run time which is why we refer to it
as Lazy. The training set for the Lazy algorithm consists of S
training points xi close to the test point x. In our experiments,
we use a Global metric to define which points are the closest
and set S = 50. We set wi for these training points to be 1 and
0 otherwise, and optimize Equation (LDA) or (LMNN) to learn
Mx

Lazy. We fix the rank d of the LDA metric to the number
of distinct classes present in the S training neighbors. When
computing the distance from a test point x to a training point
xi we assume the metric tensor is constant along all paths from
x to xi and use the metric estimated at the test point x:

DistLazy(x,xi) = (xi − x)TMx
Lazy(xi − x). (12)

Examples of the Lazy algorithm are the local discriminant adap-
tive algorithm of [19], the locally weighted learning algorithm
of [3], and the locally adaptive metric algorithm of [10]. These
algorithms all use a global metric to select the S nearest neighbors
of a test point x which are then classified using a locally learnt
distance function. Zhang et al [43] use a similar approach, but
directly learn a local discriminant boundary using an SVM rather
than learning a local metric.

3) New Algorithms: Interpolation: We expect the metric tensor
MT (x) to vary smoothly. This suggests that we can interpolate
the metric tensor from a sparse set of samples. Assume that a

subset of the training examples has been selected. We refer to
these points xRPi for i = 1, . . . , R as reference points. We use
radial basis function interpolation to interpolate the metric tensor
in the remaining parts of the space [7]. In our experiments we
chose the reference points at random, however, a more principled
approach to distribute the reference points uniformly could have
been used.

Offline, local metrics MxRPi
RP are computed for the reference

points by optimizing Equation (LDA) or (LMNN) with wRPi = 1

and 0 otherwise. One could learn these metrics jointly but we
found independently learning the metrics sufficed. Online, the
local metrics MxRPi

RP are interpolated to obtain the final metric.
One approach is nearest neighbor (NN) interpolation:

MTNN (x) = M
xRPi
RP (13)

where i = argmin
j

DistGlobal(x,xRPj ).

Here we use a Global metric to define closeness to the refer-
ences points. Another approach would be to use that reference
point’s own metric, as is done in Section II-E. We saw similar
performance in either case with a slight speed up with Global.
Another approach would be to use a smooth weighted average
of the metrics obtained through radial basis function (RBF)
interpolation [7]:

MTRBF (x) =

RX
i=1

wi(x)M
xRPi
RP (14)

wi(x) =
e−

1
σDistGlobal(x,xRPi )PR

j=1 e
− 1
σDistGlobal(x,xRPj )

. (15)

In our experiments, we varied σ between .01 and .001, set by
cross validation. We used a fixed number of R = 500 reference
points and observed consistent behavior at both double and half
that amount . Given a fixed DistGlobal, we can compute wij =

wj(xi). Interpreting these values as the probability that training
point xi selects metric M

xRPj
RP , we can learn each M

xRPj
RP so as

to minimize expected loss by optimizing Equation (LDA) and
(LMNN) with weights wij . One could define a weighted version
of Equation (8) that simultaneously learns all reference metrics.
Since this involves a sum over the cross product of all imposter
triples with all reference points, we chose not to do this.

We found empirically at first that smoothly-interpolated metrics
MTRBF (x) significantly outperformed NN-interpolated metrics
MTNN (x) at the cost of considerable additional computation.
Subsequently we found a different way of training the metrics
at the reference points that largely eliminates this difference in
performance. We now describe this approach.

We hypothesized that the smooth interpolation outperformed
NN interpolation because the smoothing acted as an additional
regularizer. To achieve the same regularization effect for NN
interpolation, we applied a cross-validation step to construct a
regularized version of MxRPi

RP :

M
xRPj
CV =

1

Zj

X
i 6=j

wi(x)M
xRPi
RP (16)

where Zj is a normalization factor included to ensure the sum
of weights wi(x) for j 6= i is 1, and wi(x) is defined as in
Equation (15). MxRPi

CV is equivalent to the metric tensor computed
at x = xRPi using Equation (14) but limiting the summation
to include only the R − 1 other reference points. We found
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MTNN (x) computed with the above cross-validated metrics
performed similarly to MTRBF (x), but was significantly faster.
As such, our interpolation results reported in our experiments are
generated with NN interpolation with M

xRPj
CV .

So far we have described the interpolation of the reference
point metrics for the test point x. The same interpolation could be
performed anywhere in the feature space. For example, it could
be performed at the training points xi. This leads to a space-
efficient version of Per-Exemplar. Another use of the interpolation
algorithm is to compute the Line Integral of the metric tensor
between the train and test points. We now describe this algorithm.

E. New Algorithms: Integration Along the Line Between Train
and Test Points

Computing the geodesic distance in Equation (3) in high
dimensions is intractable. In 2D or 3D the space can be discretized
into a regular grid of vertices (pixels/voxels) and then either an
(approximate) distance transform or a shortest path algorithm used
to estimate the geodesic distance. In higher dimensions, however,
discretizing the space yields a combinatorial explosion in the
number of vertices to be considered. To avoid this problem, all of
the above algorithms assume that the metric tensor is locally (or
globally) constant and so can approximate the geodesic distance
with the simple metric distance in Equation (1).

One way to obtain a better approximation of the geodesic is to
assume that the space it not curved locally and approximate the
minimum in Equation (3) with the integral along the line between
the test point x and the training point xi:

c(λ) = x + λ(xi − x). (17)

Substituting Equation (17) into Equation (2) and simplifying
yields the Line Integral distance:

DistLine(x,xi) = (xi − x)T
"Z 1

0
MT (c(λ)) dλ

#
(xi − x). (18)

Note that the line distance is an upper bound on the geodesic
distance:

DistGeo(x,xi) ≤ DistLine(x,xi). (19)

We now present a polynomial time algorithm to estimate the
integral in Equation (18) exactly under the assumption that
the metric tensor is piecewise constant, and using the nearest-
neighbor interpolation algorithm in Section II-D.3.

We assume that the metric tensor has been sampled at the
reference points to estimate M

xRPi
RP . We also assume that the

metric tensor is piecewise constant and its value at any given
point x is the value at the reference point which is closest, as
measured by that reference points metric:

MT (x) = M
xRPi
RP (20)

where for all j = 1, . . . , R:

(x−xRPi)
TM

xRPi
RP (x−xRPi) ≤ (x−xRPj )

TM
xRPj
RP (x−xRPj ).

(21)
Equation (21) divides the space into an “anisotropic Voronoi
diagram” similarly to [25]. See Figure 3(right) for an illustration.
The Voronoi diagram is anisotropic because the metric is different
in each cell, whereas for a regular Voronoi diagram there is a
single global metric. Equation (21) defines R(R− 1)/2 boundary
surfaces, one between each pair of references points. There could,

xtest

xtrain

xRP1

xRP2

xRP3

B12

B23

B13

l123

l223

l112

l113

l=0

l=1

Fig. 4. An illustration of the computation of the exact polynomial
integration of the metric tensor along the line from the training
point to the test point under the assumption that the metric tensor is
piecewise constant. In this example there are three reference points
xRP1 , xRP2 , and xRP3 . The regions in space where the metric
tensor is constant are bounded by quadratic hypersurfaces, in this case
denoted B12, B23, and B13. The intersection of these hypersurfaces
and the line between the test point xtest and the training point xtrain

can be computed by solving a quadratic in the single unknown λ.
The solutions for λ that lie in the interval [0, 1] can be sorted and
then the integral approximated by adding up the length of the results
segments, after searching for the appropriate reference point to use
for each segment.

however, be an exponential number of cells as the addition of each
new boundary surface could divide all of the others into two or
more sub-cells.

To compute the integral in Equation (18) we need to break
the domain λ ∈ [0, 1] into the segments for which it is constant.
The boundaries of the regions in Equation (21) are defined by the
equalities:

(x−xRPi)
TM

xRPi
RP (x−xRPi) = (x−xRPj )

TM
xRPj
RP (x−xRPj ).

(22)
Equation (22) is a quadratic and in general the solution is a
quadratic hyper-surface. The intersection of this boundary hy-
persurface and the line between the test and training points in
Equation (18) can be computed by substituting Equation (18) into
Equation (22). The result is a quadratic in the single unknown λ
which can be solved to give either 0, 1 or 2 solutions in the range
[0, 1].

Once all the solutions that lie in λ ∈ [0, 1] have been computed,
they can be sorted. This breaks the line in Equation (18) into a
number of segments where the metric tensor is constant on each
one. The appropriate value of the metric tensor is then computed
for each such segment by taking the midpoint of the segment
and computing the closest reference point using Equation (21).
The lengths of all the segments can then be computed and added
up. In total, there can be at most 2R(R − 1)/2 intersection
points. Computing each one takes time O(K2). There are at most
1 +R(R− 1) segments of the line between the test and training
points. The search for the closest reference point for each one
takes O(RK2) because there are R reference points and the cost
of computing the distance to it is O(K2). The total computation
cost is therefore polynomial O(R3K2).
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Fig. 5. Example images extracted from the 3 databases that we used. Bottom
Left: MultiPIE [18]. Right: Caltech 101 [11]. Top Left: MNIST [27].

III. EXPERIMENTS

We now present our experimental results. We describe the
databases and how we sample them in Section III-A. We also
describe two implementation details. In Section III-A.1 we de-
scribe candidate pruning. In Section III-A.2 we describe indexing
structures. We describe the evaluation metrics and the result in
Section III-B. We include some of the results in the Appendix,
in tabular form following the taxonomy outlined in Figure I. The
complete set of results are included in the online supplemental
material at the author’s website. In Section III-C we analyze the
results in detail, plotting various interesting subsets.

A. Databases and Data Sampling

We compared the various algorithms on a diverse set of
problems, including face recognition using MultiPIE [18], object
recognition using Caltech 101 [11], and digit recognition using
MNIST [27]. In Figure 5 we include a number of example images
from each of the 3 databases.

MultiPIE [18] is a larger version of the CMU PIE database [36]
that includes over 700,000 images of over 330 subjects collected
in four sessions over six months. We extract the face regions
automatically in the five frontal-most cameras (-45 degrees to
+45 degrees) using the Viola-Jones face detector [41]. The face
regions were then resampled and normalized to 80×80 grayscale
patches with zero mean and unit variance. The patches were then
projected into their first 254 principle components (95% of the
empirical variance.) Different sessions were used as training and
testing data. We randomly generated 10 batches of 1000 examples
as our test sets.

Caltech 101 [11] is a widely used benchmark for image
classification consisting of over 9,000 images from 101 object
categories. We base our results on the widely-used single-cue
baseline of spatial pyramid kernels [26]. We use the publicly
available feature computation code from the author’s website,
which generates a sparse feature vector of visual word histograms
for each image. We project the vectors such that 95% of the
variance is captured, and then use them in our local distance
function framework. We follow the established protocol of leave-
one-out cross validation with 30 training examples per class.
Using the online implementation provided by the author, we
obtained an average classification rate of 62.18, slightly below
the reported value of 64.6. Recent work exploiting multiple cues

has improved this score [6], [21], [40], but we restrict ourselves
to this established baseline for our analysis.

MNIST [27] is a well-studied dataset of 70,000 examples of
digit images. We followed the pre-processing steps outlined by
[24]. The original 28 × 28 dimensional images were deskewed
and projected into their leading 164 principle components which
were enough to capture 95% of the data variance. The normal
MNIST train/test split [27] has two problems. (1) The training
data is very dense with error rates around 1-2% making it hard to
see any difference in performance. (2) There is only one partition
making it impossible to estimate confidence intervals. To rectify
these problems, we sub-sampled both the train and test data, in
10 batches of 1000 examples.

1) Candidate Pruning: Many of the algorithms in our taxon-
omy, though polynomial in space and time, can still be com-
putationally demanding. In all cases we apply a short-listing
approach similar to that used in previous work [3], [19], [43].
We first prune the large set of all candidate matches (the training
points) with a global metric. In Figure 6 we consider the effect
of varying the pruning threshold for three algorithms on the
MultiPIE experiments. We find the recognition performance of
our algorithms to be stable over a large range. Based on this
observation, we use a constant pruning threshold of 20 candidates.
These 20 candidates are then matched to the test point using the
various local algorithms.
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Fig. 6. We consider the effect of varying the pruning threshold on our
evaluation methodology. We plot the recognition rate obtained by Per-Class,
Lazy, and the Interpolation algorithm (using NN interpolation with cross-
validated reference metrics, as described in Section II-D.3) for several different
thresholds on the MultiPIE dataset. The recognition rate achieved by all three
algorithms is relatively stable for a wide range of thresholds. For large pruning
thresholds, the Lazy algorithm performs similar to a single Global metric
since the local metric is learned from a large set of neighbors. The best
performance is obtained by pruning to 20-40 candidates. Because a shorter
pruned list results in an overall speedup across all algorithms that we consider,
we fix the pruning threshold to 20 candidates in all experiments. Interpolation
algorithms maybe even more competitive for larger pruning thresholds.

2) Indexing Structures: The pruning strategy just described
above means that our algorithms generally require two nearest-
neighbor searches. The first search generates the short list of
candidates, while the second re-ranks the candidates to compute
the final K-NN label. For low to mid dimensional data, KD trees
[8] and other indexing structures based on randomized hashing
[20] are known to be effective and enable enable fast search.
Kulis, Jain, and Grauman describe methods of fast search for
learned global metrics [22]. In Figure 7 (left), we show that
the relative performance of the algorithms is unaffected by the
use of a KD tree. In Figure 7 (right) we show that the use of
such a structure can dramatically reduce the computation time,
although the effect is less for online algorithms such as “Lazy”
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that learn the metric during the classification phase. The practical
approach is therefore to use an indexing structure such as a KD
tree for the first search and a brute-force search for the second
search (where building a index structure would be more difficult
or impossible due to the varying metrics that in some cases are
only available online at classification time.) The development
of efficient indexing structures specially tuned for local distance
functions is left as an area for future work.
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Fig. 7. We consider the effect of efficient indexing structures on our
evaluation methodology. Using the MultiPIE dataset, we compare algorithms
that vary along the “Where” dimension using a brute-force NN search
versus a KD-tree based search. The KD-tree is only used during the initial
candidate pruning stage. As shown above, algorithms whose computationally
requirements are focused on the initial stage – such as Global or Per-Class –
can see a significant speed up at the cost of a small decrease in performance.
However, some of the algorithms we consider spend more computational
effort on the second stage of re-ranking, making the efficiency of the initial
indexing less prominent in the total computation time. An example is the
Lazy algorithm that learns a metric at test-time. For simplicity, we present all
timing results using a brute-force linear scan across all our experiments.

B. Evaluation Measures and Results

We obtain a final classification for each algorithm by applying
K-NN with K = 3 on the re-ranked shortlisted neighbors of a
test point. We computed a variety of evaluation measures. In
particular, we computed (1) recognition rates, (2) error rates,
(3) percentage reduction in the error rate from the global baseline,
and (4) computation times. For each measure, we computed both
the average values and the standard deviations across the sets of
test samples (10 for Multi-PIE and MNIST, and 30 for Caltech
101.) In the appendix we include a set of tables containing all of
the recognition rate and computation time results. We include the
full set of results for all four measures of performance in a set
of interactive webpages in the online supplemental material.

C. Analysis of the Results

We now discuss the results in the context of our taxonomy of
local distance functions. The criteria we consider for evaluation
are both accuracy and computational cost. We perform a greedy
exploration of our taxonomy, iteratively exploring dimensions
given the best performing algorithm encountered thus far.

1) Global: We begin by examining the performance of the
global metrics in Figure 8. We make a number of observations.
First, metric learning tends to outperform simpler approaches such
as PCA. Secondly, LDA-based metric learning is competitive with
more recent and sophisticated approaches such as LMNN [24].
We hypothesize that this may be due to overfitting, and discuss
this further below. Third, the various global metrics perform
similarly on MNIST. The MNIST training data is relatively dense.
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Fig. 8. A comparison of the global metrics. We find that LDA is competitive
with more sophisticated approaches such as LMNN-based metric learning
[24]. Our other experiments (see below) suggest that regularization is a key
issue for metric learning. We hypothesize that LDA is competitive because it
is easier to regularize than more sophisticated metric-learning approaches.

As the training data gets more dense we expect to see less
difference between the various metrics. However, we do see
improvements using local distance functions (see below).

2) Where: Given the success of LDA in Figure 8, for the
moment we fix our metric-learning algorithm to LDA and ex-
amine the “where” dimension of our taxonomy. We revisit this
choice in Section III-C.3. The results in Figure 9 show that Per-
Class metrics consistently outperform Global metrics across all
three datasets. The relative performance increase across MultiPIE,
Caltech, and MNIST is 8%, 10%, and 1% respectively. The large
improvement in Caltech is likely due to the large inter-class
variation, which is better captured by class-specific metrics. Our
results are consistent with recent results in the metric-learning
literature [4], [24], [40]. Interestingly, “per-exemplar” metrics
tend to do worse than per-class, with the notable exception
of Caltech. We believe that Caltech also contains a significant
amount of intra-class variation – at least relative to our other
datasets – and that this variation is better modeled by exemplar-
specific metrics. However in general, we find that it is difficult
to learn accurate per-exemplar metrics for the two following
reasons. First, per-exemplar metric learning estimates many more
metrics and so suffers from over-fitting due to the large number
of parameters to be learned. Secondly, it is difficult to ensure
that multiple metrics are appropriately normalized so that the
distances computed using them are comparable. The second of
these shortcomings are dealt with by directly learning a metric
at the Test point. Our experimental results in Figure 8 suggest
that such classic Lazy algorithms [3], [19] are competitive with,
or even outperform, more recent “per-class” and “per-exemplar”
approaches for local metric learning. We show an example of the
Lazy algorithm in Figure 10.

3) How: Given the success of the Lazy algorithm in Figure 12,
we focus on the Lazy algorithm and re-examine the choice of
the metric-learning algorithm. In Figure 11 we include results
for the “How” dimension of our taxonomy. We find that LMNN
noticeably under-performs LDA-based metric learning in the Lazy
setting. We hypothesize this is the case because the second-
stage metric is learned from a small set of shortlisted neighbors.
Discriminative learning approaches such as LMNN are known to
be more susceptible to overfitting [31]. LDA performs better with
less training data because of its underlying generative modeling
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Fig. 9. Results across the “where” dimension of our taxonomy using LDA-
based metric learning. We see that per-exemplar (Train) does not always
outperform per-class even though it is a strictly more flexible model. We
hypothesize two reasons. First, per-exemplar requires many more metrics and
so tends to overfit the large number of parameters to be estimated. Second, it
is difficult to ensure the multiple metrics are normalized appropriately so that
distances computed using them are fairly comparable. The latter point is not
an issue when a single metric is used centered at the test point, equivalent
to classic “Lazy” approaches to learning [3], [19]. For LDA-based metric
learning, the Lazy approach performed the best for all three datasets.

1−NN

Lazy

50−NN

NN

Test

Fig. 10. Why does Lazy local metric-learning work well? We consider an
example from the MultiPIE database. We show a test image and its 50-NN,
ordered by distance, under a global LDA metric. The 50-NN tend to have
the same expression and pose as the test point. However, the 1-NN happens
to be incorrectly labeled. A local metric computed from these 50-NN will
be tailored to this specific expression and pose. This is in contrast to both a
global and class-specific metric which must attempt to be invariant to these
factors. This makes the Lazy local metric better suited for disambiguating
classes near this test point. We show the correctly classified NN using the
Lazy metric in the bottom left.

assumptions and because it is straightforward to regularize. Our
novel hybrid algorithm exploits the strengths of each approach,
using LMNN for the initial global search where more training data
is available, and LDA for local metric-learning where training data
is sparse.

4) When: Our experimental analysis to this point suggests that
the Hybrid Lazy algorithm performs the best. One drawback of
Lazy learning is its run-time cost. For certain applications, this
may be impractical. We examine tradeoffs between recognition
rate and run-time in Figure 12. Comparing the best off-line
approach (Per-class) with the best on-line approach (Lazy), we
see that Lazy tends to perform better but can be orders of
magnitude slower. This is especially true of LMNN-based metric-
learning, which requires solving a semi-definite program (SDP)
for each test point. Our novel interpolation algorithm shifts
the metric learning computation offline, only requiring online
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Fig. 11. Results across the “how” dimension of our taxonomy for the
Lazy algorithm. Lazy requires two metrics - one to produce an initial short
list of neighbors, and a second used to rerank the candidates in the short
list. We show that a hybrid approach which uses LMNN for the first stage
and LDA for the second works the best. We hypothesize that this is the
case because discriminative metric-learning suffers less from overfitting in
the global regime, where plenty of data is available. LDA performs better
when learning metrics from a smaller set of local data because LDA is easier
to regularize and enjoys some resistance to overfitting due its underlying
generative nature [31].

interpolation. Interpolated metrics, while not performing as well
as Lazy metrics, are considerably faster. Note that for metric-
learning, the interpolated metrics generally perform better than
the Lazy algorithm. A likely explanation is that as interpolation
provides additional regularization.

5) Line Integral: We now revisit the “where” dimension of our
taxonomy, focusing on our novel line-integral algorithm under
our novel hybrid learning scheme. See Figure 13 for the results.
We make two observations. In hybrid learning, per-exemplar
metrics are competitive with per-class metrics, presumably due
to the increased regularization from local LDA. Secondly, our
Line Integral algorithm, while clearly outperforming the global
baseline, does not do as well as Lazy. Consider a simplified
scenario in which the line connecting a test and training point
only passed through two metrics centered at those two points.
In this case, the line integral distance would be a weighted
average of the distances computed by the Per-Exemplar and Lazy
algorithms. Our results show that the integral distance performs
worse than either of those algorithms. Empirically we find that
the line passes through many more metrics, and we hypothesize
that these additional metrics are polluting the weighted average
computed by the algorithm. While this is a negative result and
therefore primarily of theoretical interest, it is still important to
show that little can be gained by such an approach.
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Fig. 13. We revisit the “where” dimension of our taxonomy using our hybrid
algorithm, including results for our novel Line integral algorithm. While the
Line integral approach consistently outperforms a single Global metric, it is
outperformed by simpler approaches such as per-class and Lazy. We hence
view this algorithm as primarily of theoretical interest.
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Fig. 12. Results for the “when” dimension of our taxonomy for both metric-learning (top) and our hybrid algorithm (bottom). On the left we show recognition
rates, while on the right we show run-times for classification. In the above graphs “off-line” refers to Per-class metric learning, which we generally find to be
a good choice for off-line metric learning. We write “on-line” to refer to the Lazy algorithm that estimates the metric at the test point. We show results for our
novel “interpolation” algorithm that approximates Lazy while still shifting computation off-line. In LMNN metric-learning, interpolation tends to outperform
the on-line Lazy algorithm, probably due to increased regularization. In Hybrid learning, where overfitting is less of an issue, interpolated metrics perform
similarly to, or slightly worse than, their Lazy counterparts. Iterpolated metrics are significantly faster in either case, and dramatically so for Metric Learning.
We attribute the success of the off-line algorithm in MNIST to its lack of intra-class variation (eliminating the need for a more flexible “on-line” Lazy metric
estimation).

6) Previous Reported Results: Our MultiPIE results are com-
parable to those reported in [18], but are obtained automatically
without manually marked fiducial locations. Our score of 60.1

on Caltech is comparable to the score of 62.2 we obtained by
running the author’s code from [26], which itself is slightly below
the reported value of 64.6. We hypothesize the chi-squared kernel
from [26] performs a form of local weighting. Our MNIST results
are not directly comparable to previous work because we use
subsampled data, but our class-specific learned-metric baseline
produces the state-of-the-art MNIST results on the full train/test
split [24]. We verified that the author’s code reproduced the
reported results, and ran the same code on random train/test splits.
Overall, though our benchmark results do not always advance the
state-of-the-art, our evaluation clearly reveals the benefit of local
approaches over global baselines.

IV. CONCLUSION

We have presented a taxonomy of local distance functions in
terms of how, where, and when they estimate the metric tensor
and approximate the geodesic distance. We have extended this tax-
onomy along all three axis. We performed a thorough evaluation
of the full combination of algorithms on three large scale, diverse
datasets. Overall, the main conclusions are that the Hybrid, Lazy
estimation of the metric at the test point performs the best. One

issue with the Hybrid, Lazy algorithm is the computational cost.
If high efficiency is vital, the Interpolation version of the Lazy
algorithm and the Per-Class algorithm provide good alternatives,
with Per-Class consistently outperforming Interpolation for hybrid
metric-learning.

Overall, we found the generalization ability of the learned
metrics to be a recurring key issue. Local metrics are learned
using a small subset of the training data, and so overfitting is a
fundamental difficulty. As a result, regularized LDA was often
competitive with LMNN. We obtained good results when using
LMNN to train a global model but found LDA was generally
better at estimating the local metrics (especially in the hybrid
algorithm.)

A. Future work

We see interesting future directions both in terms of improving
the recognition rate and in terms of reducing the computational
cost. One possible direction is to to extend our taxonomy to
kernel-based NN classification, eliminating the requirement for a
finite dimensional vector-space embedding of data. Casting such
a formulation in a SVM-based hinge-loss framework, it might
be possible to improve the run-time speed by only matching to
a sparse set of support training examples. Recent work [4] has
suggested an addition to the “Where” dimension of our taxonomy
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by assuming that groups of classes share the same metric. Such an
approach has the potential to reduce overfitting. Finally, another
possible direction is to extend efficient indexing structures, such
as KD trees, to local metrics.
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APPENDIX

TABULATION OF RESULTS

In Tables II-IV we include all the recognition rate and compu-
tation time results. Table II includes results for LDA. Table III
includes the results for LMNN. Table IV includes the results for
the Hybrid algorithm. The full set of results, including the error
rate and percentage reduction in the error rate results, are included
in a set of interactive webpages in the supplemental material.
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TABLE II
RECOGNITION RATE AND COMPUTATION TIME RESULTS FOR OUR TAXONOMY USING LDA-BASED METRIC-LEARNING. WE DO NOT INCLUDE TIMING

RESULTS FOR ONLINE/INTERPOLATED GLOBAL/CLASS METRICS BECAUSE AN OFFLINE IMPLEMENTATION IS MORE EFFICIENT. WE MARK THE

BEST-PERFORMING ALGORITHM FOR EACH DATASET IN BOLD. TEST-TIME METRIC ESTIMATION, OR LAZY LEARNING, TENDS TO DO WELL OVERALL,
WHILE CLASS-BASED METRIC LEARNING SCORES MARGINALLY BETTER IN MNIST.

MultiPIE LDA Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 59.9 ± 1.3 64.8 ± 1.2 N/A N/A N/A
Online 59.9 ± 1.3 64.8 ± 1.2 62.2 ± 1.1 65.3 ± 1.4 N/A
Interp 59.9 ± 1.3 64.8 ± 1.2 64.3 ± 1.2 64.3 ± 1.1 64.4 ± 1.2

Where
Global Class Train Test Line

5.0 ± 0.9 15.9 ± 2.5 N/A N/A N/A
- - 1159 ± 173 59.0 ± 5.9 N/A
- - 19.6 ± 3.4 28.3 ± 3.7 281.4 ± 40.0

Caltech LDA Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 49.6 ± 4.8 54.6 ± 4.0 N/A N/A N/A
Online 49.6 ± 4.8 54.6 ± 4.0 55.5 ± 2.4 59.6 ± 4.9 N/A
Interp 49.6 ± 4.8 54.6 ± 4.0 51.6 ± 3.5 50.5 ± 3.4 51.4 ± 3.1

Where
Global Class Train Test Line

0.1 ± 0.1 0.3 ± 0.0 N/A N/A N/A
- - 208.1 ± 12.9 10.9 ± 0.9 N/A
- - 0.6 ± 0.1 1.4 ± 0.1 31.1 ± 3.1

Sampled MNIST LDA Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 92.4 ± 0.9 93.7 ± 1.0 N/A N/A N/A
Online 92.4 ± 0.9 93.7 ± 1.0 92.8 ± 0.8 93.6 ± 0.9 N/A
Interp 92.4 ± 0.9 93.7 ± 1.0 92.7 ± 0.7 92.5 ± 0.7 92.6 ± 0.7

Where
Global Class Train Test Line

0.1 ± 0.0 0.6 ± 0.1 N/A N/A N/A
- - 375.3 ± 19.1 19.5 ± 1.4 N/A
- - 3.9 ± 0.5 7.2 ± 1.2 114.7 ± 8.4

TABLE III
RECOGNITION RATE AND COMPUTATION TIME RESULTS FOR ALL VARIANTS OF OUR TAXONOMY FOR THE METRIC-LEARNING APPROACH. TEST-TIME

METRIC ESTIMATION, OR LAZY LEARNING, DOES NOT DO WELL BECAUSE METRIC-LEARNING TENDS TO OVERFIT. IN THIS CASE, AN ONLINE

IMPLEMENTATION OF PER-EXEMPLAR TENDS TO PERFORM WELL, WHILE PER-CLASS AGAIN DOES WELL ON MNIST. WE SHOW THAT OUR HYRBRID

ALGORITHM OUTPERFORMS THESE RESULTS IN TABLE IV.
MultiPIE Metric Learning Recognition Rate Time (seconds)

Where
Global Class Train Test Line

W
he

n Offline 59.2 ± 1.9 60.2 ± 1.8 N/A N/A N/A
Online 59.2 ± 1.9 60.2 ± 1.8 68.8 ± 1.3 61.2 ± 1.5 N/A
Interp 59.2 ± 1.9 60.2 ± 1.8 66.2 ± 1.5 66.1 ± 1.5 66.1 ± 1.6

Where
Global Class Train Test Line

3.6 ± 0.3 12.9 ± 0.6 N/A N/A N/A
- - 1222 ± 9 1175 ± 32 N/A
- - 14.6 ± 0.8 22.4 ± 0.9 184.6 ± 8.7

Caltech Metric Learning Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 51.1 ± 4.7 51.7 ± 3.7 N/A N/A N/A
Online 51.1 ± 4.7 51.7 ± 3.7 58.2 ± 3.1 53.7 ± 4.0 N/A
Interp 51.1 ± 4.7 51.7 ± 3.7 53.6 ± 4.4 53.7 ± 4.4 53.8 ± 4.5

Where
Global Class Train Test Line

0.1 ± 0.0 0.3 ± 0.0 N/A N/A N/A
- - 222.4 ± 26.2 256.7 ± 16.3 N/A
- - 0.8 ± 0.2 1.7 ± 0.1 39.9 ± 6.8

Sampled MNIST Metric Learning Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 92.4 ± 1.2 94.4 ± 0.8 N/A N/A N/A
Online 92.4 ± 1.2 94.4 ± 0.8 92.8 ± 0.7 93.1 ± 1.2 N/A
Interp 92.4 ± 1.2 94.4 ± 0.8 93.5 ± 0.8 93.5 ± 0.8 93.5 ± 0.8

Where
Global Class Train Test Line

0.1 ± 0.0 0.6 ± 0.0 N/A N/A N/A
- - 310.2 ± 3.7 672.3 ± 15.4 N/A
- - 3.0 ± 0.0 5.2 ± 0.1 98.1 ± 0.9
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TABLE IV
RECOGNITION RATE AND COMPUTATION TIME RESULTS FOR ALL VARIANTS OF THE HYBRID ALGORITHM (SECTION II-B.3.) OVERALL, ONLINE

ESTIMATION OF THE METRIC TENSOR AT THE TEST POINT IN OUR HYBRID FRAMEWORK TENDED TO PERFORM THE BEST ACROSS TABLES II-IV.
PER-CLASS PERFORMED BEST FOR MNIST, CONSISTENT WITH PREVIOUS REPORTED RESULTS [24].

MultiPIE Hybrid Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 59.2 ± 1.9 65.6 ± 1.4 N/A N/A N/A
Online 59.2 ± 1.9 65.6 ± 1.4 68.9 ± 1.2 70.2 ± 1.4 N/A
Interp 59.2 ± 1.9 65.6 ± 1.4 65.4 ± 1.5 65.4 ± 1.5 65.4 ± 1.5

Where
Global Class Train Test Line

3.5 ± 0.0 12.6 ± 0.1 N/A N/A N/A
- - 1219 ± 12 63.3 ± 0.4 N/A
- - 14.3 ± 0.2 22.0 ± 0.1 184.5 ± 1.6

Caltech Hybrid Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 51.1 ± 4.7 55.2 ± 4.9 N/A N/A N/A
Online 51.1 ± 4.7 55.2 ± 4.9 58.3 ± 3.2 60.1 ± 4.2 N/A
Interp 51.1 ± 4.7 55.2 ± 4.9 53.0 ± 4.0 52.0 ± 3.9 52.6 ± 4.3

Where
Global Class Train Test Line

0.1 ± 0.0 0.3 ± 0.0 N/A N/A N/A
- - 223.7 ± 29.0 11.3 ± 1.3 N/A
- - 0.7 ± 0.0 1.6 ± 0.1 40.3 ± 6.9

Sampled MNIST Hybrid Recognition Rate Time (seconds)
Where

Global Class Train Test Line

W
he

n Offline 92.4 ± 1.2 93.8 ± 0.9 N/A N/A N/A
Online 92.4 ± 1.2 93.8 ± 0.9 92.9 ± 0.8 93.7 ± 0.8 N/A
Interp 92.4 ± 1.2 93.8 ± 0.9 92.6 ± 0.7 92.5 ± 0.7 92.6 ± 0.8

Where
Global Class Train Test Line

0.1 ± 0.0 0.5 ± 0.0 N/A N/A N/A
- - 311.1 ± 3.1 15.7 ± 0.5 N/A
- - 3.1 ± 0.2 5.3 ± 0.2 97.8 ± 1.6
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