
Finding and Tracking People from the Bottom Up

Deva Ramanan and D. A. Forsyth
Computer Science Division

University of California, Berkeley
Berkeley, CA 94720

ramanan@cs.berkeley.edu, daf@cs.berkeley.edu

Abstract

We describe a tracker that can track moving people in
long sequences without manual initialization. Moving peo-
ple are modeled with the assumption that, while configura-
tion can vary quite substantially from frame to frame, ap-
pearance does not. This leads to an algorithm that firstly
builds a model of the appearance of the body of each indi-
vidual by clustering candidate body segments, and then uses
this model to find all individuals in each frame. Unusually,
the tracker does not rely on a model of human dynamics to
identify possible instances of people; such models are un-
reliable, because human motion is fast and large accelera-
tions are common. We show our tracking algorithm can be
interpreted as a loopy inference procedure on an underlying
Bayes net. Experiments on video of real scenes demonstrate
that this tracker can (a) count distinct individuals; (b) iden-
tify and track them; (c) recover when it loses track, for ex-
ample, if individuals are occluded or briefly leave the view;
(d) identify the configuration of the body largely correctly;
and (e) is not dependent on particular models of human mo-
tion.

1. Introduction

A practical person tracker should: track accurately for
long sequences; self-start; track independent of activity; be
robust to drift; track multiple people; track through brief
occlusions; and be computationally efficient. It should also
avoid background subtraction; we want to track people who
happen to stand still on backgrounds that happen to move.

The literature on human tracking is too large to review
in detail. Tracking people is difficult, because people can
move very fast. One can use the configuration in the current
frame and a dynamic model to predict the next configura-
tion; these predictions can then be refined using image data
(see, for example, [9, 13, 3]). Particle filtering uses multi-
ple predictions — obtained by running samples of the prior

through a model of the dynamics — which are refined by
comparing them with the local image data (the likelihood)
(see, for example [14, 3]). The prior is typically quite dif-
fuse (because motion can be fast) but the likelihood function
may be very peaky, containing multiple local maxima which
are hard to account for in detail. For example, if an arm
swings past an “arm-like” pole, the correct local maximum
must be found to prevent the track from drifting. Anneal-
ing the particle filter is one way to attack this difficulty [6].
An alternative is to apply a strong model of dynamics [14],
at the considerable cost of needing to choose the motion
model before one can detect or track people. An attractive
alternative is to ignore dynamics and find people in each
frame independently, using such cues as local motion [15]
or appearance [11].

As far as we know, no current person tracker meets all
our criteria. This is most likely because of difficulties with
data association [2]; only a small part of the abundant im-
age data contains any information about the person and one
may need to determine which part this is. Particle filters
do data association only implicitly which explains their at-
traction. One may use a variety of templates encoding the
appearance of the person being tracked (e.g. [12, 16]). To
date, these templates have been learned in advance of track-
ing, and so cannot use properties like the color of clothing,
which change from instance to instance.

People tend not to change “appearance” (color and tex-
ture of clothing, etc.) from frame to frame. We describe
a people tracker which builds models of the people to be
tracked from the video sequence and then tracks them. This
has considerable advantages: First, knowing the appearance
model of each body part greatly constrains our search and
so simplifies data association. Second, we can prevent drift,
recover from occlusion relatively easily, and count individ-
uals. We show examples that suggest our tracker meets our
criteria.
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Figure 1. Description of algorithm for a torso-arm person model for 3 frames. We search for can-
didates in (a), enforce constant appearance by clustering the patches in (b). By connecting good
clusters with valid kinematics, we learn the appearance of the torso and arm, which we use to find
new candidates in (c).

2 Algorithm

2.1 General approach

We model a 2D view of the human body as a puppet of
colored, textured rectangles [7], such as those in Fig.7. We
use the 9 segment tree model of [10], consisting of the torso
plus the left/right upper/lower arms/legs (Fig.2-c). We look
for candidate body segments in each frame of a sequence
and group them to form a sequence of likely puppet config-
urations.

Our fundamental assumption is that coherence in appear-
ance is a stronger cue to body configuration than dynamics
because body segments may move very fast but it takes time
to change clothes. This suggests the following 2 part strat-
egy. We first learn the appearance of each rectangle in our
puppet, and then find likely puppet configurations in each
frame which link up over time.

We learn an appearance for each body segment in our
puppet model by the following:
Detect candidate body segments with detuned detectors.
Cluster the resulting image patches associated with each
candidate to identify segments that look similar over time.
Prune clusters whose members have unlikely dynamics.

2.2 Learning appearance

We model segments as cylinders and generate candidates
by convolving each frame with a template that responds to
parallel lines of contrast (at a variety of orientations and
scales), suppressing the non-maximum responses. We ex-
pect our local detectors to suffer from false positives and
missed detections, such as those shown in Fig.1-(a).

We create a feature vector for each candidate segment
capturing its appearance; we use a normalized color his-
togram (in Lab space) of the associated image patch. We
represent the histogram with projections onto the L, a, and
b axis, using 10 bins for each projection. We could extend

our 30 dimensional feature vector by incorporating further
cues such as image texture, but this appears unnecessary for
clustering.

We learn appearance by clustering the candidate feature
vectors for each body segment, as in Fig.1. Since we do
not know the number of people in our sequence a priori (or
for that matter, the number of segment-like objects in the
background), typical parametric methods such as k-means
or gaussian mixture models prove difficult.

We opted for a modified mean-shift procedure [4], a non-
parametric density estimation technique. We interpret our
candidate segments as points lying in a 30 dimensional fea-
ture space. We find the mean position of all points within
a hypersphere, recenter the hypersphere around the new
mean, and repeat until convergence. When encountering
multiple points from the same frame, we only use the point
closest to the current hypersphere center to calculate the
new mean. We initialize this procedure at each original
feature point, and denote all points which converge to the
same position as belonging to the same cluster. We prune
those clusters whose members violate our bounded-velocity
motion model or which stay completely still (Fig.1-(b)), ar-
guing that both behaviors are not body segment-like.

The claim that we should only concern ourselves with
segments that are coherent over time and that move (a no-
tion we call foreground enhancement) is markedly different
from traditional background subtraction since it is used to
learn appearance and not to find people. Once the appear-
ance is known, we can track people who stand still (so long
as they move at some point).

2.3 Finding (multiple) people using appearance

We connect up the remaining clusters which best obey
our kinematic constraints to learn the appearance of each
body segment. If more than one torso and arm cluster linked
up in Fig.1-(b), we could have learned multiple appearance
models for different people. Hence tracking multiple people
follows naturally from our algorithm.



We can use the learned appearance to build better seg-
ment detectors; we now know the arm is a brown rectan-
gle, rather than just two parallel edges. We search for new
candidates using the medoid image patch of the valid clus-
ters from Fig.1-(b) as a template. We link up those candi-
dates which obey our velocity constraints into the final track
in Fig.1-(c). We currently make the simplifying assump-
tion that all people in a sequence have different appearance
templates, although instancing a single appearance template
multiple times is straightforward.

3 Probabilistic model

We now motivate our algorithm by introducing a
probabilistic graphical model. The relevant variables from
Fig.2-(a):

Cseg – Constant underlying appearance feature vector
P i

seg – Position (and orientation) of segment in frame i
Imi

seg – Collection of observed feature vectors for each
image patch in frame i

Imi
seg represents a stack of image patches from each po-

sition in an image, indexed by the given image position.
One of those patches is the true segment patch, while the
others are background (which we omit from Fig.2-(a) for
simplicity). P i

seg can be interpreted as a pointer to the cor-
rect patch, such that

Imi
seg(P

i
seg)

is distributed as
φseg(Cseg)

In our case, the appearance model φseg(Cseg) is an
Epanechnikov (triangle) kernel centered at Cseg . Our
graphical model explicitly makes obvious the data asso-
ciation issue at hand; since we do not observe P i

seg, we
do not know where in the image to look for a segment,
and hence must consider all the possible image patches in
Imi

seg. In turn, we see that inference is complicated by the
fact that P i

seg variables from across frames are dependent
on each other; our segments must move with a specific mo-
tion model. Since we would like to track people perform-
ing a variety of activities, we limit ourselves to a bounded-
velocity motion model.

We can simplify our model by turning to the undirected
case in Fig.2-b. Note that since we observe Imi

seg, we
only use a 2-dimensional slice of the 3-dimensional “ta-
ble” Pr(Imi

seg|P i
seg, C

i
seg). Hence the image observations

specify a potential between P i
seg and Cseg (this is the stan-

dard moralization that results from conversion of a directed
graphical model to an undirected one). Note that both
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Figure 2. Graphical model. The model in (a)
encodes the fact that each image instance of a
segment has the same appearance (encoded
inCseg), but appears in different places. In (b),
the undirected form of the model. A complete
person model (c) contains additional kine-
matic dependencies. We show the full imag-
ing model for a limited torso and arm subset
in (d).

our appearance model φseg(Cseg) and our image observa-
tions Imi

seg are now implicitly represented in the potentials
ψi(Cseg, P

i
seg), while our motion model lives in the poten-

tial ψlink(P i
seg, P

i−1

seg ).
Our model becomes more complicated for the full hu-

man body, consisting of 9 segments with additional kine-
matic constraints between them (Fig.2-c). Although [10]
learns these potentials from training data, we construct them
by hand assuming a fully deformable connected kinematic
model. We show the full model for a two-segment (torso
and arm) subset in Fig.2-d.

Local segment detectors fit into our model as an addi-
tional potential ψseg(Cseg); we favor rectangles in our pup-
pet with a specific edge profile (we might also favor rect-
angles with skin-colored pixels). Hence our initial segment
detection step prunes away those image patches with a low
ψseg potential.

Note that most people trackers model the appearance as
changing over time by replacing the constant Cseg with a



temporally varying copy, Ci
seg , in each frame plate. Al-

though this alternative model is fully Markovian and might
appear to make inference simpler, the constant appearance
assumption proves key for data association. We quickly
prune away those parts of the image which do not look like
our underlying appearance model.

3.1 Tracking as inference

Finding an optimal track given a video sequence now
corresponds to finding the maximum a posteriori (MAP)
estimate of both the Cseg and P i

seg nodes from Fig.2-d.
Exact inference is difficult for two reasons; one, the graph
contains large induced cliques and two, the domains of the
nodes are typically large (they are discretized versions of
underlying continuous quantities).

If our model was a tree, we could find the MAP esti-
mate by dynamic programming, also known as max product
belief propagation (BP). This is in fact true for any model
lacking undirected cycles (which we will also refer to as
trees, with a slight abuse of terminology). However, we can
still apply the updates to nodes in a cyclic graph, pretend-
ing that the local neighborhood of each node is a tree. Many
researchers have found loopy max product BP and its more
common sum product variant to be empirically successful
[5]. In particular, fixed points are guaranteed to yield so-
lutions which are optimal within a large neighborhood of
alternative assignments [8].

Applying these updates asynchronously, we can interpret
this procedure as performing inference on a set of embed-
ded trees within the model (similar to [17]). The algorithm
described in section 2 performs approximate inference on
Fig.2-(d) using the trees in Fig.3. We cluster to learn a
torso appearance in Fig.3-(a), learn an arm appearance in
(b), connect up the kinematically valid clusters in (c), and
enforce our velocity bounds in (d) to create our approximate
MAP estimate.

3.2 Clustering as loopy inference

Although clustering may not seem like inference on trees
(a) and (b) in Fig.3, it is an approximate procedure to obtain
likely values of Cseg . Assume messages are initialized to
’1’. Passing max product messages on trees (a) and (b) is
equivalent to finding values ofCseg and P i

seg that maximize
ψ1(Cseg, P

1

seg)ψ2(Cseg, P
2

seg) . . . ψk(Cseg, P
k
seg), where

the image information is implicit in the ψi’s (whence the
subscript).

Now this corresponds to choosing a Cseg and a set of
P i

seg such that all the image segments identified by P i
seg

look like Cseg . If both variables were defined over small,
discrete domains, all we’d be doing is dynamic program-
ming; for each value of Cseg , we’d choose the best P i

seg for
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Figure 3. A set of trees for loopy inference
on Fig.2-(d). Parts (a) and (b) correspond
to the learning and application of torso and
arm appearance templates. Part (c) corre-
sponds to selecting an arm and torso cluster
which obey our kinematic constraints. Part
(d) corresponds to the application of the mo-
tion model.

each i, form the product, and then choose the Cseg with the
best product. This search is not easy for continuous or large
domains (e.g. [1]).

However, we know that we are looking for, in essence, a
point in the domain of Cseg such that there are many image
segments that look like that point. Now assume we have
a detuned but usable segment detector. It will detect many,
but not all, instances of the relevant segment and some back-
ground, too. The instances of the relevant segment will look
like one another. This means that, by clustering the repre-
sentations of the segment appearances, we are obtaining a
reasonable approximation to the true max marginal of Cseg .
In particular, finding local modes of Cseg using a Parzen’s
window estimate with a kernel φseg is equivalent to the
mean-shift algorithm. In fact, using a more sophisticated
appearance kernel φseg reduces to using a weighted mean
in each iteration of the mean-shift procedure. We possess
no formal information on the quality of the approximation.

Likewise, inferring the max marginal of P i
seg from trees

(a) and (b) in Fig.3 can be approximated by querying the
ith image using the inferred appearance Cseg . Hence the
second phase of our algorithm where we use the inferred
appearance to build new segment detectors also falls from
this loopy framework.

3.3 Algorithm details

Our algorithm infers with a single pass through each link
in our model, rather than repeatedly passing messages un-



til convergence. We experimented with various orderings
of the trees in Fig.3. For example, we could apply tree (d)
immediately after inferring on trees (a) and (b). This sug-
gests a procedure more sophisticated that our initial one;
rather than naively pruning a cluster if it contains invalid
dynamics, we can extract a sequence of dynamically valid
segments from it (and then prune it if the sequence is too
small). This is in practice what we do.

Alternatively, inferring on tree (c) before tree (b) equates
to only searching for candidate arms near the clustered tor-
sos (i.e., we can use a truncated version of our kinematic
potential ψkin(P i

tor, P
i
arm) to limit our search space for

arms given the found torsos). We use the following order-
ing; first, we learn the torso appearance template by cluster-
ing candidate torsos, and then use it to find a dynamically
valid torso track. Next we do the same for lower limbs only
searching for candidates near the found torsos. Finally, we
repeat the procedure for upper limbs. We found this or-
dering sensible since it reflected the quality of our initial
segment detectors (upper limbs are hard to detect, so we
constrain their position by first detecting torsos and lower
limbs).

We update our appearance kernel φseg to reflect the clus-
tered segments; after selecting the correct segment clusters
from Fig.1-(b), we set φseg to be a gaussian with the sample
mean and variance of the corresponding cluster. We assume
the left and right limbs have the same appearance, and as
such only learn a single appearance for both.

For long sequences, we only cluster the firstK out of the
total N frames.

4 Experimental results

Typically, a primary criterion for evaluating the perfor-
mance of a tracker is the number of successive frames a
person can be tracked. However, this is a poor measure be-
cause people may become occluded or leave the view. A
better measure is whether a tracker finds a person given one
is present and does not find a person given one is absent
[15]. We extend this analysis to the detection of individual
segments.

In Table 1, we show such results for four different se-
quences. “Jumping Jacks” and “Walk” were both taken in-
doors while the subjects were simultaneously motion cap-
tured. Ground truth for those sequences was obtained by
registering the motion capture data with the video. The se-
quence lengths are N = 100 and 288, respectively, captured
at 15 frames per second. The appearance templates were
learned using the firstK = 75 and 150 frames. “Street Pass”
and “Weave Run” were both taken outdoors, and ground
truth was hand-labeled for a random subset of frames. For
these sequences, we clustered the first K = 200 and 150
out of the total of N = 380 and 300 frames, captured at 30

frames per second. We define a “detection” to occur when
the estimated and ground truth segment overlap. Our torso
detection rates in Table 1 are quite good, similar to those in
[15]. However, one key difference is that we do not need
activity specific motion models to obtain them. Detecting
the limbs proves to be more difficult, especially in the more
challenging outdoor sequences. We show example frames
from each sequence and discuss additional results below.

Sequence
Torso Arms Legs

D FA D FA D FA

J. Jacks 94.6 0.00 87.4 0.56 91.8 0.19
Walking 99.5 0.41 84.3 0.41 68.2 1.01

Street Pass 100 0.00 66.7 0.93 42.4 3.02
Weave Run 92.9 0.00 23.3 2.89 63.0 1.92

Table 1. Tracker performance on various se-
quences. Our tracker will work on long se-
quences if our learned appearance models
are sufficiently general. As such, we measure
percentage detections (D) and false alarms
(FA) of segments. Our torso rates are quite
good, while rates for limbs suffer in the chal-
lenging outdoor sequences. In general, the
appearance models learned from the data are
tight, allowing for very little false positives.

Self-starting: None of these tracks were hand initial-
ized. However, we do optimize thresholds for the segment
detectors and the bandwidth for the mean-shift procedure
for the sequences shown. More sophisticated segment de-
tection and clustering algorithms may eliminate the need for
tweaking.

Multiple activities: In Fig.4, we see frames from the
two indoor sequences; “Jumping Jacks” and “Walk”. In
both top rows, we show the original edge-based candidates
which cluster together. That is, we have pruned away those
candidates not in the optimal cluster, but we have yet to use
the learned appearance template to search the image again.
Note when limbs are close to the body or surrounded by a
weak-contrast background, few candidates were found due
to weak edges. In the bottom rows, we search for limbs
using an appearance template (learned using surrounding
frames when limbs were clearly defined) and now track over
traditionally difficult kinematic configurations and back-
ground conditions. Note that the activities in both these
sequences are quite different; trying to track a walking per-
son with a jumping jack motion model (and vice-versa) may
prove very difficult. However, our weak bounded-velocity
motion model proved broad enough to track both.

Lack of background subtraction: In Fig.5, we exam-
ine our foreground enhancement claim on the ‘Street Pass”
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Figure 4. Self-starting tracker on “Jumping Jacks” (left) and “Walk” (right) sequences. Recall our
algorithm has two basic phases; we learn appearance by clustering candidates, and then find people
using appearance. Both top rows show the original edge candidates which clustered together; both
bottom rows show the final tracks. In frames where the limbs are close to the body or surrounded by
a weak-contrast background, we find additional segments using the learned appearance templates.

sequence, which contains multiple moving objects. We still
learn fairly accurate appearance models, although varying
lighting conditions often result in poor matches (as in the
high missed detection rates for arms and legs in Table 1).
By using a metric more robust to lighting changes, the ap-
pearance models learned in the clustering and the segments
found may be more accurate. Alternatively, one might add
explicit illumination variables to Cseg to deal with temporal
changes in brightness.

Multiple people, recovery from occlusion and error
In Fig.7, we see frames from the “Weave Run” sequence, in
which three figures are running in a weave fashion. In the
top row, we see two tracks crossing. When the two figures
lie on top of each other, we correctly disambiguate who is
in front, and furthermore, recover the interrupted track of
the occluded figure. In the bottom row, a track finds a false
arm in the background but later recovers. We also see a new
track being born, increasing the count of tracked people to
three.

4.1 Discussion

Our algorithm (1) learns segment appearances by cluster-
ing, (2) finds assemblies in each frame using the appearance
and finally (3) links up the temporally consistent assemblies
into a track.

More generally, this approach reduces tracking to the
problem of inference on a dynamic Bayes net. Other ap-
proximate inference algorithms may yet prove more suc-
cessful. However, our approximations exploit the close link

between tracking and learning appearance. Note we are
able to learn appearance due to the underlying constancy
of segment image patches; other features commonly used
for tracking such as edges [11] or motion vectors [15] do
not exhibit this phenomenon. Similarly, we can extend our
framework to other features that might be constant over
time, such as texture.

How many frames does one need to cluster to obtain a
working appearance model? Certainly with more frames
we would expect better localization of segments (by having
a lower variance estimate of appearance), but the question
of the number of frames needed to detect the correct seg-
ments is rather interesting. We evaluate appearance model
performance versus the number of K frames used for learn-
ing in Fig.6 for the “Walk” sequence. We also show results
for models learned with local detectors augmented with a
skin classifier.

Since we are using the first K frames to build a model
which we hope will generalize for the entire N frame se-
quence, we also use Fig.6 to examine the generalizability
of our model as a function of K. We plot performance of
the learned appearance templates on the the first K training
frames in (a) and (b), while we look at the performance on
the entire N frame sequence in (c) and (d). Note that the
performance is virtually identical for either measure. This
suggests that our model of stationary appearance is indeed
appropriate; after the first 60 frames, we pretty much know
the segment appearances in the next 222. Because we have
learned accurate appearance models, we should be able to
track for arbitrarily long.
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Figure 5. Self-starting tracker on “Street Pass” sequence containing multiple moving objects. Both
rows are select frames from the final track. The learned appearance templates are also shown on the
right. We denote individual tracks by a token displayed above the figure. The tracker successfully
learns the correct number of appearance models, and does not mistake the moving car for a new
person. We are also able to recover from partial and complete occlusion, as well as from errors in
configuration (which Markovian state models would typically fail on).

Let us now consider how the quality of the low-level
segment detectors affects the learned appearance templates.
Both detectors in Fig.6 happen to perform well for small
K since our subject is initially against a uncluttered back-
ground. As we increase K and our subject walks into
the room, our edge detectors pick up extraneous back-
ground candidates which cluster into poor appearance mod-
els. However, both perform well as K is increased suffi-
ciently. This result suggests that high-level clustering can
compensate for poor low-level detection, given we cluster
over enough frames.
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Figure 6. Appearance model performance for “Walk” sequence. We plot performance for models
constructed with edge and edge+skin based detectors for varyingK frames. In (a) and (b) we consider
the performance of the models on the K training frames. In (c) and (d) we look at performance on
the entire sequence. Our models perform similarly on both the training and test frames, so they
seem to generalize well. For small K, both detectors fortuitously learn a good model due to a lack of
background clutter. As K increases, background clutter leads our edge detectors to construct poor
appearance models. For large K, clustering yields working models irrespective of the detectors.

Recovery from error
Track error

Correct track occluded

Birth of new track

Recovery from occlusion

Figure 7. Self-starting tracker on ”Weave Run”. We show a subset of frames illustrating one figure
passing another, with the learned appearance templates below. Note the correct figure is occluded,
and furthermore the track is recovered once it reappears. An earlier incorrect arm estimate is also
fixed (this would prove difficult assuming a drifting appearance model). Finally, we show a new track
being born, increasing the count of found people to three.


