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Abstract
This paper describes a system that can annotate a video sequence with:
a description of the appearance of each actor; when the actor is in view;
and a representation of the actor’s activity while in view. The system does
not require a fixed background, and is automatic. The system works by
(1) tracking people in 2D and then, using an annotated motion capture
dataset, (2) synthesizing an annotated 3D motion sequence matching the
2D tracks. The 3D motion capture data is manually annotated off-line
using a class structure that describes everyday motions and allows mo-
tion annotations to be composed — one may jump while running, for
example. Descriptions computed from video of real motions show that
the method is accurate.

1. Introduction
It would be useful to have a system that could take large volumes of video data of people
engaged in everyday activities and produce annotations of that data with statements about
the activities of the actors. Applications demand that an annotation system: is wholly auto-
matic; can operate largely independent of assumptions about the background or the number
of actors; can describe a wide range of everyday movements; does not fail catastrophically
when it encounters an unfamiliar motion; and allows easy revision of the motion descrip-
tions that it uses. We describe a system that largely has these properties. We track multiple
figures in video data automatically. We then synthesize 3D motion sequences matching
our 2D tracks using a collection of annotated motion capture data, and then apply the an-
notations of the synthesized sequence to the video.

Previous work is extensive, as classifying human motions from some input is a matter of
obvious importance. Space does not allow a full review of the literature; see [1, 5, 4, 9, 13].
Because people do not change in appearance from frame to frame, a practical strategy is to
cluster an appearance model for each possible person over the sequence, and then use these
models to drive detection. This yields a tracker that is capable of meeting all our criteria,
described in greater detail in [14]; we used the tracker of that paper. Leventon and Freeman
show that tracks can be significantly improved by comparison with human motion [12].

Describing motion is subtle, because we require a set of categories into which the motion
can be classified; except in the case of specific activities, there is no known natural set of
categories. Special cases include ballet and aerobic moves, which have a clearly established
categorical structure [5, 6]. In our opinion, it is difficult to establish a canonical set of
human motion categories, and more practical to produce a system that allows easy revision
of the categories (section 2).

Figure 1 shows an overview of our approach to activity recognition. We use 3 core compo-
nents; annotation, tracking, and motion synthesis. Initially, a user labels a collection of 3D
motion capture frames with annotations (section 2). Given a new video sequence to anno-
tate, we use a kinematic tracker to obtain 2D tracks of each figure in sequence (section 3).
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Figure 1: Our annotation system consists of 3 main components; annotation, tracking,
and motion synthesis (the shaded nodes). A user initially labels a collection of 3D mo-
tion capture frames with annotations. Given a new video sequence to annotate, we use a
kinematic tracker to obtain 2D tracks of each figure in sequence. We then synthesize 3D
motion sequences which look like the 2D tracks by lifting tracks to 3D and matching them
to our annotated motion capture library. We accept the annotations associated with the
synthesized 3D motion sequence as annotations for the underlying video sequence.

We then synthesize 3D motion sequences which look like the 2D tracks by lifting tracks
to 3D and matching them to our annotated motion capture library (section 4). We finally
smooth the annotations associated with the synthesized 3D motion sequence (section 5),
accepting them as annotations for the underlying video sequence.

2. Obtaining Annotated Data

We have annotated a body of motion data with an annotation system, described in detail
in [3]; we repeat some information here for the convenience of the reader.

There is no reason to believe that a canonical annotation vocabulary is available for every-
day motion, meaning that the system of annotation should be flexible. Annotations should
allow for composition as one can wave while walking, for example. We achieve this by
representing each separate term in the vocabulary as a bit in a bit string. Our annotation
system attaches a bit string to each frame of motion. Each bit in the string represents anno-
tation with a particular element of the vocabulary, meaning that elements of the vocabulary
can be composed arbitrarily.

Actual annotation is simplified by using an approach where the user bootstraps a classifier.
One SVM classifier is learned for each element of the vocabulary. The user annotates a
series of example frames by hand by selecting a sequence from the motion collection; a
classifier is then learned from these examples, and the user reviews the resulting annota-
tions. If they are not acceptable, the user revises the annotations at will, and then re-learns
a classifier. Each classifier is learned independently. The classifier itself uses a radial basis
function kernel, and uses the joint positions for one second of motion centered at the frame
being classified as a feature vector. Since the motion is sampled in time, each joint has
a discrete 3D trajectory in space for the second of motion centered at the frame. In our
implementation, we used a public domain SVM library (libsvm [7]). The out of margin
cost for the SVM is kept high to force a good fit within the capabilities of the basis function
approximation.

Our reference collection consists of a total of 7 minutes of motion cap-
ture data. The vocabulary that we chose to annotate this database con-
sisted of: run, walk, wave, jump, turn left, turn right, catch,
reach, carry, backwards, crouch, stand, and pick up. Some of these
annotations co-occur: turn left while walking, or catch while jumping and
running. Our approach admits any combination of annotations, though some combina-
tions may not be used in practice: for example, we can’t conceive of a motion that should
be annotated with both stand and run. A different choice of vocabulary would be appro-
priate for different collections. The annotations are not required to be canonical. We have
verified that a consistent set of annotations to describe a motion set can be picked by asking
people outside our research group to annotate the same database and comparing annotation
results.



3. Kinematic Tracking
We use the tracker of [14], which is described in greater detail in that paper. We repeat
some information here for the convenience of the reader. The tracker works by building
an appearance model of putative actors, detecting instances of that model, and linking the
instances across time.

The appearance model approximates a view of the body as a puppet built of colored,
textured rectangles. The model is built by applying detuned body segment detectors to
some or all frames in a sequence. These detectors respond to roughly parallel contrast
energies at a set of fixed scales (one for the torso and one for other segments). A detector
response at a given position and orientation suggests that there may be a rectangle there.
For the frames that are used to build the model, we cluster together segments that are
sufficiently close in appearance — as encoded by a patch of pixels within the segment —
and appear in multiple frames without violating upper bounds on velocity. Clusters that
contain segments that do not move at any point of the sequence are then rejected. The next
step is to build assemblies of segments that lie together like a body puppet. The torso is
used as a root, because our torso detector is quite reliable. One then looks for segments that
lie close to the torso in multiple frames to form arm and leg segments. This procedure does
not require a reliable initial segment detector, because we are using many frames to build a
model — if a segment is missed in a few frames, it can be found in others. We are currently
assuming that each individual is differently dressed, so that the number of individuals is
the number of distinct appearance models. Detecting the learned appearance model in the
sequence of frames is straightforward [8].

4. 3D Motion Synthesis
Once the 2D configuration of actors has been identified, we need to synthesize a sequence
of 3D configurations matching the 2D reports. Maintaining a degree of smoothness — i.e.
ensuring that not only is a 3D representation a good match to the 2D configuration, but also
links well to the previous and future 3D representations — is a needed because the image
detection is not perfect. We assume that camera motion can be recovered from a video
sequence and so we need only to recover the pose of the root of the body model — in our
case, the torso — with respect to the camera.

Representing Body Configuration: We assume the camera is orthographic and is oriented
with the y axis perpendicular to the ground plane, by far the most important case. From
the puppet we can compute 2D positions for various key points on the body (we use the
left-right shoulder, elbow, wrist, knee, ankle and the upper & lower torso). We represent
the 2D key points with respect to a 2D torso coordinate frame. We analogously convert the
motion capture data to 3D key points represented with respect to the 3D torso coordinate
frame.

We assume that all people are within an isotropic scaling of one another. This means that
the scaling of the body can be folded in with the camera scale, and the overall scale is
be estimated using corresponding limb lengths in lateral views (which can be identified
because they maximize the limb lengths). This strategy would probably lead to difficulties
if, for example, the motion capture data came from an individual with a short torso and long
arms; the tendency of ratios of body segment lengths to vary from individual to individual
and with age is a known, but not well understood, source of trouble in studies of human
motion [10].

Our motion capture database is too large for us to use every frame in the matching process.
Furthermore, many motion fragments are similar — there is an awful lot of running —
so we vector quantize the 11,000 frames down to k = 300 frames by clustering with
k-means and retaining only the cluster medoids. Our distance metric is a weighted sum
of differences between 3D key point positions, velocities, and accelerations ([2] found
this metric sufficient to ensure smooth motion synthesis). The motion capture data are
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Figure 2: In (a), the variables under discussion in camera inference. M is a representation
of figure in 3D with respect to its root coordinate frame, m is the partially observed vector
of 2D key points, t is the known camera position and T is the position of the root of the 3D
figure. In (b) a camera model for frame i where 2D keypoints are dependent on the camera
position, 3D figure configuration, and the root of the 3D figure. A simplified undirected
model in (c) is obtained by marginalizing out the observed variables yielding a single
potential on M i and T i. In (d), the factorial hidden Markov model obtained by extending
the undirected model across time. As we show in the text, it is unwise to yield to the
temptation to cut links between T ’s (or M ’s) to obtain a simplified model. However, our
FHMM is tractable, and yields the triangulated model in (e).

represented at the same frame rate as the video, to ensure consistent velocity estimates.

Modeling Root Configuration: Figure 2 illustrates our variables. For a given frame, we
have unknowns M , a vector of 3D key points and T , the 3D global root position. Known
are m, the (partially) observed vector of 2D key points, and t, the known camera position.
In practice, we do not need to model the translations for the 3D root (which is the torso); our
tracker reports the (x, y) image position for the torso, and we simply accept these reports.
This means that T reduces to a single scalar representing the orientation of the torso along
the ground plane. The relative out of image plane movement of the torso (in the z direction)
can be recovered from the final inferred M and T values by integration — one sums the
out of plane velocities of the rotated motion capture frames.

Figure 2 shows the directed graphical model linking these variables for a single frame.
This model can be converted to an undirected model — also shown in the figure — where
the observed 2D key points specify a potential between Mi and Ti. Write the potential
for the ith frame as ψviewi

(Mi, Ti). We wish to minimize image error, so it is natural
to use backprojection error for the potential. This means that ψviewi

(Mi, Ti) is the mean
squared error between the visible 2D key points mi and the corresponding 3D keypoints
Mi rendered at orientation Ti. To handle left-right ambiguities, we take the minimum error
over all left-right assignments. To incorporate higher-order dynamic information such as
velocities and accelerations, we add keypoints from the two preceding and two following
frames when computing the mean squared error.

We quantize the torso orientation Ti into a total of c = 20 values. This means that the
potential ψviewi

(Mi, Ti) is represented by a c × k table (recall that k is the total number
of motion capture medoids used, section 4).

We must also define a potential linking body configurations in time, representing the conti-
nuity cost of placing one motion after another. We write this potential as ψlink(Mi,Mi+1).
This is a k × k table, and we set the (i, j)’th entry of this table to be the distance between
the j’th medoid and the frame following the i’th medoid, using the metric used for vector
quantizing the motion capture dataset (section 4).

Inferring Root Configuration: The model of figure 2-(d) is known as a factorial hid-
den Markov model (FHMM) where observations have been marginalized out and is quite
tractable. Exact inference requires triangulating the graph (figure 2-(e)) to make explicit
additional probabilistic dependencies [11].The maximum clique size is now 3, making in-
ference O(k2cN) (where N is the number of total frames). Furthermore, the triangulation
allows us to explicitly define the potential ψtorso(Mi, Ti, Ti+1) to capture the dependency
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Figure 3: Unfamiliar configurations can either be annotated with ’null’ or with the closest
match. We show smoothed annotation results for a sequence of jumping jacks (sometimes
known as star jumps) from two such annotation systems. In the top row, we show the
same two frames run through each system. The MAP reconstruction of the human figure
obtained from the tracking data has been reprojected back to the image, using the MAP
estimate of camera configuration. In the bottom, we show signals representing annota-
tion bits over time. The manual annotator records whether or not the figure is present,
front faceing, in a closed stance, and/or in an extended stance. The automatic
annotation consists of a total of 16 bits; present, front faceing, plus the 13 bits from
the annotation vocabulary of Sec.2. In first dotted line, corresponding to the image above
it, the manual annotator asserts the figure is present, frontally faceing, and about
to reach the extended stance. The automatic annotator asserts the figure is present,
frontally faceing, and walking and waveing, and is not standing, not jumping, etc.
The annotations for both systems are reasonable given there are no corresponding cate-
gories available (this is like describing a movement that is totally unfamiliar). On the left,
we freely allow ’null’ annotations (where no annotation bit is set). On the right, we dis-
courage ’null’ annotations as described in Sec.6. Configurations near the closed stance
are now labeled as standing, a reasonable approximation.

of torso angular velocity on the given motion. For example, we expect the torso angular
velocity of a turning motion frame to be different from a walking forward frame. We set
a given entry of this table to be the squared error between the sampled angular velocity
(Ti+1 − Ti, shifted to lie between −π . . . π) and the actual torso angular velocity of the
medoid Mi.

We scale the ψviewi
(Mi, Ti), ψlink(Mi,Mi+1), and ψtorso(Mi, Ti, Ti+1) potentials by

empirically determined values to yield satisfactory results. These scale factors are weight
the degree to which the final 3D track should be continuous versus the degree to which
it should match the 2D data. In principle, these weights could be set optimally by a de-
tailed study of the properties of our tracker, but we have found it simpler to set them by
experiment.

We find the maximum a posteriori (MAP) estimate of Mi and Ti by a variant of dynamic
programming defined for clique trees [11]. Since we implicitly used negative log likeli-
hoods to define the potentials (the squared error terms), we used the min-sum variant of the
max-product algorithm.

Possible Variants: One might choose to not enforce consistency in the root orientation Ti

between frames. By breaking the links between the Ti variables in figure 2-(a), we could
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Figure 4: We show annotation results for a walking sequence from three versions of our
system using the notation of Fig.3. Null matches are allowed. On the left, we infer the 3D
configuration M i (and associated annotation) independently for each frame, as discussed
in Sec.4. In the center, we model temporal dependencies when inferring M i and its corre-
sponding annotation. On the right, we smooth the annotations, as discussed in Sec.5. Each
image is labeled with an arrow pointing in the direction the inferred figure is facing, not
moving. By modeling camera dependencies, we are able to fix incorrect torso orientations
present in the left system (i.e., the first image frame and the automatic left faceing and
right faceing annotation bits). By smoothing the annotations, we eliminate spurious
stand’s present in the center. Although the smoothing system correctly annotates the
last image frame with backward, the occluded arm incorrectly triggers a wave, by the
mechanism described in Sec.5.

reduce our model to a tree and make inference even simpler — we now have an HMM.
However, this is simplicity at the cost of wasting an important constraint — the camera
does not flip around the body from frame to frame. This constraint is useful, because
our current image representation provides very little information about the direction of
movement in some cases. In particular, in a lateral view of a figure in the stance phase of
walking it is very difficult to tell which way the actor is facing without reference to other
frames — where it may not be ambiguous. We have found that if one does break these
links, the reconstruction regularly flips direction around such frames.

5. Reporting Annotations

We now have MAP estimates of the 3D configuration {M̂i} and orientation {T̂i} of the
body for each frame. The simplest method for reporting annotations is to produce an anno-
tation that is some function of {M̂i}. Recall that {M̂i} is one of the medoids produced by
our clustering process (section 4). It represents a cluster of frames, all of which are similar.
We could now report either the annotation of the medoid, the annotation that appears most
frequently in the cluster, the annotation of the cluster element that matches the image best,
or the frequency of annotations across the cluster.

The fourth alternative produces results that may be useful for some kinds of decision-
making, but are very difficult to interpret directly — each frame generates a posterior prob-
ability over the annotation vocabulary — and we do not discuss it further here. Each of the
first three tends to produce choppy annotation streams (figure 4, center). This is because
we have vector quantized the motion capture frames, meaning that ψlink(Mi,Mi+1) is a
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Figure 5: Smoothed annotations of 3 figures from a video sequence of the three passing a
ball back and forth using the conventions of figure 3. Null matches are allowed. The dashed
vertical lines indicate annotations corresponding to the frames shown. The automatic an-
notations are largely accurate: the figures are correctly identified, and the direction in
which the figures are facing are largely correct. There is some confusion between run
and walk, and throws appear to be identified as waves and reaches. Generally, when
the figure has the ball (after catching and before throwing, as denoted in the manual
annotations), he is annotated as carrying, though there is some false detection. There
are no spurious crouches, turns, etc.
fairly rough approximation of a smoothness constraint (because some frames in one cluster
might link well to some frames in another and badly to others in that same cluster). An
alternative is to smooth the annotation stream.

Smoothing Annotations: Recall that we have 13 terms in our annotation vocabulary, each
of which can be on or off for any given frame. Of the 213 possible bit strings, we observe
a total of 32 in our set of motions. Clearly, we cannot smooth annotation bits directly,
because we might very likely create bit strings that never occur. Instead, we regard each
observed annotation string as a codeword.

We can model the temporal dynamics of codewords and their quantized observations using
a standard HMM. The hidden state is the code word, taking on one of l (= 32) values,
while the observed state is the cluster, taking on one of k (= 300) values. This model is
defined by a l × l matrix representing codeword dynamics and a l × k matrix representing
the quantized observation. Note that this model is fully observed in the 11,000 frames of
the motion database; we know the true code word for each motion frame and the cluster
to which the frame belongs. Hence we can learn both matrices through straightforward
multinomial estimation. We now apply this model to the MAP estimate of {M̂i}, inferring
a sequence of annotation codewords (which we can later expand back into annotation bit
vectors).

Occlusion:When a limb is not detected by the tracker, the configuration of that limb is not
scored in evaluating the potential. In turn, this means that the best configuration consistent
with all else detected is used, in this case with the figure waving (figure 4). In an ideal
closed world, we can assume the limb is missing because its not there; in practice, it may
be due to a detector failure. This makes employing “negative evidence” difficult.

6. Experimental Results
It is difficult to evaluate results simply by recording detection information (say an ROC
for events). Furthermore, there is no meaningful standard against which one can compare.
Instead, we lay out a comparison between human and automatic annotations, as in Fig.3,
which shows annotation results for a 91 frame jumping jack (or star jump) sequence. The



top 4 lower case annotations are hand-labeled over the entire 91 frame sequence. Generally,
automatic annotation is successful: the figure is detected correctly, oriented correctly (this
is recovered from the torso orientation estimates Ti), and the description of the figure’s
activities is largely correct.

Fig.4 compares three versions of our system on a 288 frame sequence of a figure walking
back and forth. Comparing the annotations on the left (where configurations have been
inferred without temporal dependency) with the center (with temporary dependency), we
see temporal dependency in inferred configurations is important, because otherwise the
figure can change direction quickly, particularly during lateral views of the stance phase
of a walk (section 4). Comparing the center annotations with those on the right (smoothed
with our HMM) shows that annotation smoothing makes it possible to remove spurious
jump, reach, and stand labels — the label dynamics are wrong.

We show smoothed annotations for three figures from one sequence passing a ball back
and forth in Fig.5; the sequence contains a lot of fast movement. Each actor is correctly
detected, and the system produces largely correct descriptions of the actor’s orientation and
actions. The inference procedure interprets a run as a combination of run and walk. Quite
often, the walk annotation will fire as the figure slows down to turn from face right
to face left or vice versa. When the figures use their arms to catch or throw, we see
increased activity for the similar annotations of catch, wave, and reach.

When a novel motion is encountered, we want the system to either respond by (1) rec-
ognizing it cannot annotate this sequence, or (2) annotate it with the best match possible.
We can implement (2) by adjusting the parameters for our smoothing HMM so that the
’null’ codeword (all annotation bits being off) is unlikely. In Fig.3, system (1) responds to
a jumping jack sequence (star jump, in some circles) with a combination of walking and
jumping while waveing. In system (2), we see an additional standing annotation for
when the figure is near the closed stance.
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