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Abstract

We consider the machine vision task of pose estimation from static images, specif-
ically for the case of articulated objects. This problem is hard because of the large
number of degrees of freedom to be estimated. Following a established line of
research, pose estimation is framed as inference in a probabilistic model. In our
experience however, the success of many approaches often lie in the power of the
features. Our primary contribution is a novel casting of visual inference as an it-
erative parsing process, where one sequentially learns better and better features
tuned to a particular image. We show quantitative results for human pose estima-
tion on a database of over 300 images that suggest our algorithm is competitive
with or surpasses the state-of-the-art. Since our procedure is quite general (it does
not rely on face or skin detection), we also use it to estimate the poses of horses
in the Weizmann database.

1 Introduction

We consider the machine vision task of pose estimation from static images, specifically for the case
of articulated objects. This problem is hard because of the large number of degrees of freedom to
be estimated. Following a established line of research, pose estimation is framed as inference in a
probabilistic model. Most approaches tend to focus on algorithms for inference, but in our expe-
rience, the low-level image features often dictate success. When reliable features can be extracted
(through say, background subtraction or skin detection), approaches tend to do well. This depen-
dence on features tends to be under-emphasized in the literature – one does not want to appear to
suffer from “feature-itis”. In contrast, we embrace it. Our primary contribution is a novel casting
of visual inference as an iterative parsing process, where one sequentially learns better and better
features tuned to a particular image. Since our approach is fairly general (we do not use any skin or
face detectors), we also apply it to estimate horse poses from the Weizmann dataset [1].

Another practical difficulty, specifically with pose estimation, is that of reporting results. It is com-
mon for an algorithm to return a set of poses, and the correct one is manually selected. This is
because the posterior of body poses is often multimodal, a single MAP/mode estimate won’t sum-
marize it. Inspired by the language community, we propose a perplexity-based measure for evalua-
tion. We calculate the probability of observing the actual pose under the distribution returned by our
algorithm. With such an evaluation procedure, we can quantifiable demonstrate that our approach
improves the state-of-the-art.

Related Work: Human pose estimation from static images is a very active research area. Most
approaches tend to use a people-specific features, such as face/skin/hair detection [6, 3]. Our work
relies on the conditional random field (CRF) notion of deformable matching in [9]. Our approach is
related to those that simultaneously estimate pose and segment an image [7, 10, 4, 5], since we learn
low-level segmentation cues to build part-specific region models. However, we compute no explicit
segmentation.



Figure 1: The curse of edges? Edges are attractive because of their invariance – they fire on dark
objects in light backgrounds and vice-versa. But without a region model, it can be hard to separate
the figure from the background. We describe an iterative algorithm for pose estimation that learns
a region model for each body part and for the background. Our algorithm is initialized by the edge
maps shown; we show results for these two images in Fig.7 and Fig.8.

1.1 Overview

Assume we are given an image of a person, who happens to be a soccer player wearing a white shirt
on a green playing field (Fig. 2). We want to estimate the figure’s pose. Since we do not know the
appearance of the figure or the background, we must use a feature invariant to appearance (Fig.1).
We match an edge-based deformable model to the image to obtain (soft) estimates of body part posi-
tions. In general, we expect these estimates to be poor because the model can be distracted by edges
in the background (e.g., the hallunicated leg and the missed arm in Fig. 2). The algorithm uses the
estimated body part positions to build a rough region model for each body part and the background –
it might learn that the torso is white-ish and the background is green-ish. The algorithm then builds
a region-based deformable model that looks for white torsos. Soft estimates of body position from
the new model are then used to build new region models, and the process is repeated.

As one might suspect, such an iterative procedure is quite sensitive to its starting point – the edge-
based deformable model used for initialization and the region-based deformable model used in the
first iteration prove crucial. As the iterative procedure is fairly straightforward (Fig.3), most of this
paper deals with smart ways of building the deformable models.
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Figure 2: We build a deformable pose model based on edges. Given an image I , we use a edge-
based deformable model (middle) to compute body part locations P(L|I). This defines an initial
parse of the image into several body part regions right. It is easy to hallucinate extra arms or legs
in the negatives spaces between actual body parts (the extra leg). When a body part is surrounded
by clutter (the right arm), it is hard to localize. Intuitively, both problems can be solved with low-
level segmentation cues. The green region in between the legs is a poor leg candidate because of
figure/ground cues – it groups better with the background grass. Also, we can find left/right limb
pairs by appealing to symmetry – if one limb is visible, we can build a model of its appearance, and
use it to find the other one. We operationalize both these notions by our iterative parsing procedure
in Fig.3.

2 Edge-based deformable model

Our edge-based deformable model is an extension of the one proposed in [9]. The basic probabilistic
model is a tree-structured conditional random field (CRF). Let the location of each part li be param-
eterized by image position and orientation [xi, yi, θi]. We will assume parts are oriented patches of
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Figure 3: Our iterative parsing procedure. We define a parse to be a soft labeling of pixels into
a region type (bg,torso,left lower arm, etc.). We use the initial parse from Fig.2 to build a region
model for each part. We learn foreground/background color histogram models. To exploit symmetry
in appearance, we learn a single color model for left/right limb pairs. We then label each pixel using
the color model (middle right). We then use these masks as features for a deformable model that
re-computes P(L|I). This in-turn defines a new parse, and the procedure is repeated.
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Figure 4: The result of our procedure. Given P(L|I) from the final iteration, we obtain a clean parse
for the image. We can also compute L̂MAP (the most likely pose), and can sample directly from
P(L|I).

fixed size, where (xi, yi) is the location of the top of the patch. We denote the configuration of a K
part model as L = (l1 . . . lK).

We can write the deformable model as a log-linear model

P(L|I) ∝ exp

 ∑
i,j∈E

ψ(li − lj) +
∑

i

φ(li)

 (1)

(2)

Ψ(li − lj) corresponds to a spatial prior on the relative arrangement of part i and j. For efficient
inference, we assume the edge structure E is a tree; each part is connected to at most one parent.
Unlike most approaches that assume gaussian shape priors [9, 2], we parameterize our shape model
with discrete binning (Fig.5).

ψ(li − li) =αT
i bin(li − lj) (3)

Doing so allows us to capture more intricate distributions, at the cost of having more parameters
to fit. We write bin(·) for the vectorized count of spatial and angular histogram bins (a vector of
all zeros with a single one for the occupied bin). Here αi is a model parameter that favors certain
(relative) spatial and angular bins for part i with respect to its parent.



Figure 5: We record the spatial configuration of an arm given the torso by placing a grid on the
torso, and noting which bin the arm falls into. We center the grid at the average location of arm in
the training data. We likewise bin the angular orientations to define a spatial distribution of arms
given torsos.

Φ(li) corresponds to the local image evidence for a part, which we define as

φ(li) =βT
i fi(I(li)) (4)

We write fi(I(li)) for feature vector extracted from the oriented image patch at location li. In
general, fi() might be part-specific; it could return a binary vector of skin pixels for the the head. In
our case, fe

i returns a binary vector of edges for all parts. We can visualize βi in Fig.6.

Inference: The basic machinery we use for inference is message-passing (the sum-product algo-
rithm). Since E is a tree, we first pass “upstream” messages from part i to its parent j

We compute the message from part i to j as

mi(lj) ∝
∑
lj

ψ(li − lj)ai(li) (5)

ai(li) ∝ φ(li)
∏

k∈kidsi

mk(li) (6)

Message passing can be performed exhaustively and efficiently with convolutions. If we temporarily
ignore orientation and think of li = (xi, yi), we can represent messages as 2D images. The image ai

is obtained by multiplying together response images from the children of part i and from the imaging
model φ(li). φ(li) can be computed by convolving the edge image with the filter βi. mi(lj) can be
computed by convolving ai with a spatial filter extending over the bins from Fig.5 (with coefficients
equal to αi). At the root, the image ai is the true conditional marginal P(li|I). When li is 3D, we
perform 3D convolutions. We assume αi is separable so convolutions can be performed separately
in each dimension. This means that in practice, computing φ(li) is the computational bottleneck,
since that requires convolving the edge image repeatedly with rotated versions of filter βi.

Starting from the root, we can pass messages downstream from part j to part i (again with convolu-
tions)

P(li|I) ∝ ai(li)
∑
lj

ψ(li − lj)P(lj |I) (7)

For numerical stability, we normalize images to 1 as they are computed. By keeping track of the
normalization constants, we can also compute the partition function (which is needed for computing
the evaluation score in Sec. 5).

Learning: We learn the filters αi and βi by CRF parameter estimation, as in [9]. We label training
images with body part locations L, and find the filters that maximize P(L|I) for the training set.
This objective function is convex and so we tried various optimization packages, but found simple
stochastic gradient ascent to work well. We define the model learned from the edge feature map fe

i
as Θe = {αe

i , β
e
i }.

3 Building a region model

One can use the marginals (for say, the head) to define a soft labeling for the image into head/non-
head pixels. One can do this by repeatedly sampling a head location (according to P(li|I)) and then



rendering a head at the given location and orientation. Let the rendered appearance for part i be an
image patch si; we use a simple rectangular mask. In the limit of infinite samples, one will obtain
an image

pi(x, y) =
∑

xi,yi,θi

P(xi, yi, θi|I)sθi
i (x− xi, y − yi) (8)

We call such an image a parse for part i (the images on the right from Fig. 2). It is readily computed
by convolving P(li|I) with rotated versions of patch si. Given the parse image pi, we learn a color
histogram model for part i and “its” background.

P(fgi(k)) ∝
∑
x,y

pi(x, y)δ(im(x, y) = k) (9)

P(bgi(k)) ∝
∑
x,y

(1 − pi(x, y))δ(im(x, y) = k) (10)

We use the part-specific histogram models to label each pixel as foreground or background with a
likelihood ratio test (as shown in Fig.3). To enforce symmetry in appearance, we learn a single color
model for left/right limb pairs.

4 Region-based deformable model

After an initial parse, our algorithm has built an initial region model for each part (and its back-
ground). We use these models to construct binary label images for part i: P(fgi(im)) > P(bgi(im)).
We write the oriented patch features extracted from these label images as fr

i (for “region”-based).
We want to use these features to help re-estimate the pose in an image – we using training data to
learn how to do so. We learn model parameters for a region-based deformable model Θr by CRF
parameter estimation, as in Sec.2.

When learning Θr from training data, defining fr
i is tricky – should we use the ground-truth part

locations to learn the color histogram models? Doing so might be unrealistic – it assumes at “run-
time”, the edge-based deformable model will always correctly estimate part locations. Rather, we
run the edge-based model on the training data, and use the resulting parses to learn the color his-
togram models. This better mimics the situation at run-time, when we are faced with a new image
to parse.

When applying the region-based deformable model, we have already computed the edge responses
φe(li) = βe

i
T fe(I(li)) (to train the region model). With little additional computational cost, we

can add them as an extra feature to the region-based map fr
i . One might think that the region-

features eliminate the need for edges – once we know that a person is wearing a white shirt in a
green background, why bother with edges? If this was the case, one would learn a zero weight for
the edge feature when learning βr

i from training data. We learn roughly equal weights for the edge
and region features, indicating both cues are complementary rather than redundant.

Given the parse from the region-based model, we can re-learn a color model for each part and the
background (and re-parse given the new models, and iterate). In our experience, both the parses and
the color models empirically converge after 1-2 iterations (see Fig. 3).

5 Results

We have tested our parsing algorithm on two datasets. Most people datasets are quite small, limited
to tens of images. We have amassed a dataset of 305 images of people in interesting poses (which
will be available on the author’s webpage). It has been collected from previous datasets of sports
figures and personal pictures. To our knowledge, it is the largest labeled dataset available for human
pose recognition. We also have tested our algorithm on the Weizmann dataset of horses [1].

Evalutation: Given an image, our parsing procedure returns a distribution over poses P(L|I). Ide-
ally, we want the true pose to have a high probability, and all other poses to have a low value. Given
a set of T test images each with a labeled ground-truth pose L̂t, we score performance by computing
− 1

T

∑
t log P(L̂t|It). This is equivalent to standard measures of perplexity (up to a log scale) [11].



Figure 6: We visualize the part models for our deformable templates – light areas correspond to pos-
itive βi weights, and dark corresponds to negative. It is crucial to initialize our iterative procedure
with a good edge-based deformable model. Given a collection of training images with labeled body
parts, one could build an edge template for each part by averaging (left) – this is the standard maxi-
mum likelihood (ML) solution. As in [9], we found better results by training βe

i with a conditional
random field (CRF) model (middle). The CRF edge templates seem to emphasize different features,
such as the contours of the head, lower arms, and lower torso. The first re-parsing from Fig.3 is also
very crucial – we similarly learn region-based part templates βr

i with a CRF (right). These tem-
plates focus more on region cues rather than edges. These templates appear more sophisticated than
rectangle-based limb detectors [8, 9] – for example, to find upper arms and legs, it seems important
to emphasize the edge facing away from the body.

Log-probability of images given model
Iter 0 Iter 1 Iter2

PeopleAll 62.33 55.60 57.39
HorsesAll 51.81 47.76 45.80

Comparison with previous work
Previous Iter 0 Iter 1

USCPeople 55.85 45.77 41.49

Table 1: Quantitative evaluation. For each image, our parsing procedure returns a distribution of
poses. We evaluate our algorithm by looking at a perplexity-based score [11] – the negative log
probability of the ground truth pose given the estimated distribution, averaged over the test set. On
the left, we look at the large datasets of people and horses (each with 300 images). Iter0 corresponds
to the distribution computed by the edge-based model, while Iter1 and Iter2 show the results after our
iterative parsing with a region-based model. For people, we achieve the best performance after one
iteration of the region-based model. For horses, we do better after two iterations. To compare with
previous approaches, we look at performance on the 20 image dataset from USC [9, 6]. Compared
to [9], our model does better at explaining the ground-truth data.

People: We learned a model from the first 100 training images (and their mirror-flipped versions).
We learn both Θe and Θr from the same training data. We have evaluated results on the 205 re-
maining images. We show sample image in Fig.7. We localize some difficult poses quite well, and
furthermore, the estimated posterior P(L|I) oftentimes reflects actual ambiguity in the data (ie, if
multiple people are present). We quantitatively evaluate results in Table 1. We also compare with a
state-of-the-art algorithm from [9], and show better performance on dataset used in that work.

Horses: We learn a model from the first 20 training images, and test it on the remaining 280 images.
In general, we do quite well. The posterior pose distribution often captures the non-rigid deforma-
tions in the body. This suggests we can use the uncertainty in our deformable matching algorithm
to recover extra information about the object. Looking at the numbers in Table 1, we see that the
parses tend do significantly better at capturing the ground-truth poses. We also see that this dataset
is easier overall than our set of 305 people poses.

Discussion: We have described an iterative parsing approach to pose estimation. Starting with an
edge-based detector, we obtain an initial parse and iteratively build better features with which to
subsequently parse. We hope this approach of learning image-specific features will prove helpful in
other vision tasks.
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