
UNIVERSITY OF CALIFORNIA,
IRVINE

Long-Term Tracking by Decision Making

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Computer Science

by

James Supančič, III

Dissertation Committee:
Deva Ramanan, Chair

Charless Fowlkes
Alexander Ihler

2017

c© 2017 James Supančič, III

DEDICATION

To my family

ii

CONTENTS

Page

LIST OF FIGURES vi

LIST OF TABLES ix

ACKNOWLEDGMENTS x

CURRICULUM VITAE xi

ABSTRACT OF THE DISSERTATION xiii

1 Decisions in Long-Term Tracking 1

2 Model-Based Hand Pose Estimation 7
2.1 Introduction . 7
2.2 Testing Data . 9
2.3 Training Data . 13

2.3.1 libhand training set: . 16
2.4 Methods . 18

2.4.1 Taxonomy . 18
2.4.2 Architectures . 20
2.4.3 Volumetric exemplars . 21

2.5 Protocols . 23
2.5.1 Evaluation . 25
2.5.2 Annotation . 26
2.5.3 Interpretation . 32

2.6 Results . 33

3 Models for Egocentric Hand Pose 45
3.1 Introduction . 45

3.1.1 Related work . 47
3.2 Training data . 50
3.3 Formulation . 53

3.3.1 Perspective-aware depth features . 53
3.3.2 Global pose classification . 56
3.3.3 Joint feature extraction and classification 58

3.4 Experiments . 58

iii

3.5 Conclusions . 63

4 Models for Hand Grasps 64
4.1 Introduction . 64
4.2 Related Work . 67
4.3 GUN-71: Grasp UNderstanding Dataset . 68

4.3.1 Data capture . 69
4.4 Synthetic (training) data generation . 70
4.5 Recognition pipeline . 72

4.5.1 Segmentation . 72
4.5.2 Fine-grained classification . 75

4.6 Experiments . 76
4.7 Conclusions . 81

5 Self-Paced Learning for Tracking 84
5.1 Introduction . 84

5.1.1 Related work . 87
5.2 Approach . 88

5.2.1 Learning appearance with a SVM . 88
5.2.2 Tracking as shortest-paths . 90
5.2.3 Selecting good frames . 91

5.3 Algorithm . 92
5.3.1 Online (causal) tracker . 92
5.3.2 Offline tracker . 93

5.4 Implementation . 94
5.5 Results . 95

5.5.1 Diagnostics . 98
5.5.2 Conclusion . 100

6 Learning to Make Decisions 102
6.1 Introduction . 102
6.2 Related Work . 105
6.3 POMDP Tracking . 108
6.4 Interactive Training and Evaluation . 111
6.5 Implementation . 114
6.6 Experiments . 120

6.6.1 Comparative Evaluation . 122
6.6.2 System Diagnostics . 125

7 Multiple-Object Tracking with Sensored Annotation 128
7.1 Introduction . 128
7.2 Related Work . 131

7.2.1 Literature Review . 131
7.2.2 Theoretical Background . 135

7.3 Dataset, Task, and Evaluation . 139

iv

7.4 Preliminary Analysis . 141
7.5 Methods . 142

7.5.1 Hallucinating Better Detections . 142
7.5.2 Hallucinating Better Identifications 143
7.5.3 Extensions to TINF . 144
7.5.4 Implementing Deep Detection and Occlusion Prediction 150

7.6 Analysis . 151
7.7 Conclusion . 155

8 Conclusions 158

Bibliography 160

v

LIST OF FIGURES

Page

1.1 Overview . 2
1.2 Appearance model based tracking . 3
1.3 Tracking and Updating . 4

2.1 NN Memorization . 12
2.2 Hand pose variation . 12
2.3 Our new hand pose test data . 14
2.4 libhand joints . 17
2.5 Volumetric Hamming distance . 24
2.6 Scanning windows v. volumes . 24
2.7 Our error criteria for hand pose . 27
2.8 Required precision per discrete hand pose 27
2.9 Hand pose annotation procedure . 29
2.10 Hand annotator disagreements . 30
2.11 Characteristic hand pose results . 31
2.12 Egocentric versus 3rd person hand pose . 35
2.13 Min versus max hand joint error . 35
2.14 Complex backgrounds challenge hand pose estimators 37
2.15 Risks of multi-phase approaches . 38
2.16 Synthetic hand data versus accuracy . 41
2.17 Quantitative evaluation hand pose estimation only joint articulation 41
2.18 Quantitative evaluation hand pose estimation with viewpoint variation . . . 42
2.19 Quantitative evaluation of egocentric hand pose estimation 42
2.20 Quantitative evaluation hand pose estimation in cluttered scenes 43
2.21 Challenges of synthetic data . 44

3.1 Egocentric workspaces . 46
3.2 Egocentric data synthesis . 48
3.3 Examples of synthetic egocentric training images 49
3.4 Volume quantization for egocentric pose estimation 53
3.5 Binarized volumetric feature . 54
3.6 Egocentric pose classifiers . 57
3.7 Distribution of weights in our egocentric pose classifiers 57
3.8 Volumetric feature evaluation . 59
3.9 Analyzing egocentric pose clusters . 61

vi

3.10 Good detections . 62
3.11 Hard cases . 62

4.1 Kinematic pose versus grasp . 65
4.2 GUN-71: Grasp Understanding dataset . 69
4.3 Contact point and forces . 71
4.4 Egocentric hand segmentation . 73
4.5 RGB Deep feature + SVM for grasp classification 77
4.6 Commonly confused grasps . 79
4.7 Force and contact points prediction . 80

5.1 Self-paced learning selects reliable frames . 86
5.2 Multiple-hypothesis tracking with dynamic programming 89
5.3 SVM objective versus response for frame selection 91
5.4 Curriculum learning for tracking . 96
5.5 Test data and qualitative comparison . 96
5.6 Offline self-paced learning converges to accurate tracking 98
5.7 Self-paced learning demonstrates quantitative improvements 100

6.1 Streaming training & evaluation . 103
6.2 Decisions in tracking . 105
6.3 Tracker architecture . 107
6.4 Final reinforcement learning algorithm . 113
6.5 Our p-tracker’s test time pipeline . 115
6.6 Implementing Q as a CNN . 117
6.7 Our Q-CNN’s schematics . 118
6.8 OTB-2013 dataset . 120
6.9 New Internet dataset . 121
6.10 OTB-2013 results . 121
6.11 VOT-2016 results . 122
6.12 Results on Internet videos . 122
6.13 Occlusion Frequency . 123
6.14 Diagnostic experiments . 124
6.15 Training p-track . 126
6.16 Interpreting p-track’s policy . 127

7.1 Our new dataset for IAMOT . 129
7.2 Our sensor network . 133
7.3 Target Identity-aware Network-Flow (TINF) Tracker 138
7.4 Translation variant detection . 138
7.5 Detection performance versus tracking performance 144
7.6 Appearance feature quality versus tracking performance 146
7.7 Our improved head detector . 146
7.8 Our detector’s deep architecture . 147
7.9 Occlusion impacts detection . 147
7.10 Segmentation mutex . 148

vii

7.11 Mutual-exclusion may be considered harmful 152
7.12 IAMOT simulation results . 157

viii

LIST OF TABLES

Page

2.1 Hand pose testing data sets . 10
2.2 Hand pose training data sets . 17
2.3 Synthetic hand distribution . 17
2.4 Summary of hand pose estimation methods 18
2.5 Cross-dataset generalization of hand pose estimation 37

4.1 Object manipulation datasets . 83
4.2 Grasp classification results . 83
4.3 View selection . 83
4.4 Grasp classification for different sized taxonomies 83

5.1 Comparison of methods . 101
5.2 Diagnostic analysis . 101
5.3 Mean Center Displacement Error (MCDE) comparison 101

6.1 Tracking datasets . 112

7.1 Single vs. Multiple Object Trackers . 132
7.2 Public datasets for IAMOT . 132
7.3 Diagnostic analysis . 156
7.4 IAMOT vs. k-SOT — human experiments 156

ix

ACKNOWLEDGMENTS

Foremost, I thank my adviser, Prof. Deva Ramanan. I am immensely grateful for his sup-
port and patience. He helped me understand the big picture, how individual approaches to
computer vision relate with each other. From him, I learned to approach problems scientifi-
cally and to appreciate the value of theory and writing. Wherever you find my dissertation
anything but incomprehensible, you have him to thank.

I also thank the many great teachers I’ve had throughout the years. In particular, I’m grateful
to Profs. Charless Fowlkes and Alexander Ihler for guiding my research. I’m very grateful
to Gregory Rogez, for his crucial guidance and collaboration. I also thank my high-school
math & science teacher, Scott Bucher, and my art & music instructor, Joshua Rivera.

Next, I thank my friends and lab mates. I’m grateful to Yi, Dennis, Songfan, Xiangxin,
Hamed, Chaitanya, and Golnaz for their mentorship. Thank you to Sam, Bailey, Shaofei,
Carl, Maryam, Peiyun, Mohsen, Julian, Raul and Phuc for your friendship and company
during the nights and weekends. And, I’m grateful to Shu, Minhaeng, and Zhe for bringing
new ideas and energy to our lab.

Finally, I thank my family. First, I thank my grandparents for their love, support and
inspiration. I give thanks to my parents for their support, love, and for pushing me when I
felt like quitting. And to my little brothers, thank you for entertaining and distracting me,
only when it was appropriate.

Thanks to Lars Otten for providing the LATEX template for this thesis [163].

Funding for this research was provided by NSF Grant 0954083, ONR-MURI Grant N00014-
10-1-0933, the Intel Science and Technology Center - Visual Computing, and he European
Commission FP7 Marie Curie IOF grant “Egovision4Health” (PIOF-GA-2012-328288).

x

CURRICULUM VITAE

James Supančič, III

EDUCATION

Doctor of Philosophy in Computer Science 2017
University of California, Irvine Irvine, California

Master of Science in Computer Science 2015
University of California, Irvine Irvine, California

Bachelor of Science in Information and Computer Science 2012
University of California, Irvine Irvine, California

RESEARCH EXPERIENCE

Graduate Research Assistant 2012–2017
University of California, Irvine Irvine, California

Research Associate 2016
Disney Research Pittsburgh, Pennsylvania

Research Intern 2015
Microsoft Research Redmond, Washington

TEACHING EXPERIENCE

Teaching Assistant 2013–2014
University Of California, Irvine Irvine, California

xi

REFEREED JOURNAL PUBLICATIONS

Depth-based hand pose estimation: data, methods, and
challenges

2017

International Journal of Computer Vision

REFEREED CONFERENCE PUBLICATIONS

Self Paced Learning for Long-Term Tracking 2013
Computer Vision and Pattern Recognition

First-Person Pose Recognition using Egocentric
Workspaces

2015

Computer Vision and Pattern Recognition

Understanding Everyday Hands in Action from RGB-D
Images

2015

International Conference on Computer Vision

Depth-based hand pose estimation: data, methods, and
challenges

2015

International Conference on Computer Vision

Tracking as Online Decision-Making: Learning a Policy
from Streaming Videos with Reinforcement Learning

2017

International Conference on Computer Vision

Why Can’t We All Just Get Along? Effective Identity-
Aware Multi-Object Tracking from Sensored Annota-
tion?

2017

International Conference on Computer Vision

SOFTWARE

Deep Hand Pose https://github.com/jsupancic/deep_hand_pose

A re-implementation of several deep learning based hand-pose estimation systems.

SPLTT https://github.com/jsupancic/SPLTT-Release

An implementation for our Self-Paced Learning Long-Term Tracker.

libhand-public https://github.com/jsupancic/libhand-public

A hand renderer for generating synthetic depth images.

xii

https://github.com/jsupancic/deep_hand_pose
https://github.com/jsupancic/SPLTT-Release
https://github.com/jsupancic/libhand-public

ABSTRACT OF THE DISSERTATION

Long-Term Tracking by Decision Making

By

James Supančič, III

Doctor of Philosophy in Computer Science

University of California, Irvine, 2017

Deva Ramanan, Chair

Cameras can naturally capture sequences of images, or videos, and for computers to un-

derstand videos, they must track to connect the past with the present. We focus on two

problems which challenge current state-of-the-art trackers. First, we address the challenge

of long-term occlusion. For this challenge, a tracker must know when it has lost track and

how to reinitialize tracking when the target reappears. We tackle reinitialization by building

good appearance models for humans and hands, with a particular emphasis on robustness

and occlusion. For the second challenge, appearance variation, the tracker must know when

and how to re-learn (or update) an appearance model. Common solutions to this challenge

encounter the classic problem of drift: aggressively learning putative appearance changes

allows small errors to compound, as elements of the background environment pollute the ap-

pearance model. We propose two solutions. First, we consider self-paced learning, wherein

a tracker begins by learning from frames it finds easy. As the tracker becomes better at

recognizing the target, it begins to learn from harder frames. We also develop a data-driven

approach in which we train a tracking policy to decide when and how to update an appear-

ance model. To take this direct approach to learning when to learn, we exploit large-scale

Internet data through reinforcement learning. We interpret the resulting policy and con-

clude with extensions for tracking multiple objects. By solving these tracking challenges, we

advance applications in augmented reality, vehicle automation, healthcare, and security.

xiii

Chapter 1

Decisions in Long-Term Tracking

James Steven Supančič III

Tracking poses an important problem in computer vision; trackers estimate their targets’

latent states (which may represent location, pose, appearance, etc.) over time, by ob-

serving video frames. Tracking is a fundamental task; we must track objects over time to

understand how the past connects to the present. But in general, a vast number of latent

states exist. That is, one state exists for every combination of position, pose, appearance,

etc. Thus, computers cannot calculate (or even represent) the probability of every possible

latent state. Therefore, practical state-of-the-art trackers only evaluate a finite number of

candidate states [240, 241, 135, 129, 154, 54, 242, 98, 168, 216, 121, 249, 131]. Such trackers

decide which states to explicitly compute, and which to omit.

Reinitialization and updates: This dissertation focuses on two such decisions. First,

trackers must decide which locations they’ll evaluate. Generally trackers evaluate locations

near the target’s most likely location in the previous frame. But in cases of long-term

occlusion, the target may travel a great distance unseen. So, trackers sometimes prefer to

1

Figure 1.1: Dissertation overview: We first focus on tracker reinitialization, using hand-
pose estimation as an illustrative example (Chapter 2). Previous work focused on hand
gesture recognition in clean scenes; we examine harder settings, where the hand may be
occluded by clutter (Chapter 3) or held objects (Chapter 4). Second, we tackle tracking when
appearance models must be updated at test time (Chapter 5). By formulating tracking as
a decision making process, we develop a theoretical framework for developing (and training,
from data) tracking algorithms which update at test time (Chapter 6). Finally, we use
sensored annotation to collect large & detailed tracking data. Our new sensored data allows
us to study and advance identity-aware multiple object tracking (Chapter 7).

evaluate locations globally distributed across the entire frame. We refer to this decision,

that is when to globally evaluate the appearance model, as reinitialization. Second, trackers

cannot compute (or represent) the likelihood of every possible target appearance model. So,

they must decide how to update their appearance model, while tracking.

Organization: Beginning with a good appearance model makes these decisions easier.

For example, a good appearance model tells the tracker when something occludes the target.

When the target is occluded, the tracker should reinitialize. So, we first focus on good

models for reinitialization, using hand tracking as our illustrative example. In subsequent

chapters, we’ll consider how to update appearance models. Fig. 1.1 gives an overview of this

dissertation.

Tracker reinitialization: Tracking systems exploit consistency in their target’s states.

An airplane cannot fly faster than a certain speed; a person can only articulate their hand

2

Figure 1.2: Appearance model based tracking: A tracker must infer its target’s true, but
latent, state (location, pose, appearance etc.). To update its previous estimate of the target’s
latent state, the tracker must interpret observations (i.e., video frames) using an appearance
model; in fact, a tracker cannot interpret new observations without an appearance model.
The importance of building better appearance models will be a recurring theme of this
dissertation.

joints so fast. But, we cannot always depend on consistency with the previous state. Long-

term occlusions present a major challenge in that we cannot reliably estimate the target’s

state while it’s occluded. So, when a target first reappears, we must rely more on the

current frame than our uncertain estimate of the target’s previous state. Consider tracking

the pose of a human hand which becomes occluded. Because hand pose changes rapidly and

frequently, the pose before the occlusion might not provide good evidence for the pose after

the occlusion. Instead, even when tracking, good single-frame appearance models are crucial

because they rapidly identify occlusions and re-appearances (Fig. 1.2).

Single-frame hand tracker reinitialization: Recent model-based hand trackers have

demonstrated impressive results [160]. However, they almost never recover after occlusions.

In Chapter 2 we survey the state of single-frame hand-pose estimation. We found that,

even for single-frame hand-pose estimation, almost every dataset and method focused on

uncluttered scenes where the hand was the front-most object. We introduce new and more

challenging test data, evaluate existing and new methods on our new data, and discuss

the most salient conclusions. In particular, we discovered that prior work limited itself to

3

Figure 1.3: Tracking and Updating: For many tracking tasks, it becomes necessary for
the tracker to update its appearance model at test time. But when updating a test time, a
tracker does not have access to ground-truth. Appearance updates during tracking failures
inevitably lead to further failures. To mitigate this, a tracker can decide if it has lost track
(i.e., failed) and conclude how to update its appearance model.

uncluttered 3rd person scenes. To advance the field of hand-pose estimation, we posit a need

for our new & more challenging datasets.

Reinitialization in egocentric scenes: We build the first training and test datasets for

depth-based egocentric hand-pose estimation. In the egocentric setting, our system estimates

the user’s hand pose from a head (or chest) mounted depth camera. This setting enables

many exciting applications, especially augmented reality interfaces where a depth camera

can be integrated with a head-mounted display. Our approach (Chapter 3) obtains state-of-

the-art robustness in cluttered egocentric scenes. To teach a user a new skill, or coach them

at a game, we need our augmented reality system to understand how the user is holding

tools or other objects. In Chapter 4 we explore jointly recognizing hand pose and object

manipulation. But, by building models offline, before tracking, we limit our tracker; it cannot

recognize new objects that were not seen prior to test-time tracking.

Online updates for learning appearance: To track a new object, a tracker must learn

and update an appearance model online, during tracking (Fig. 1.3). This problem of tracking

novel objects is often called “model-free tracking” because a tracker does not initialize with

4

an appearance model for the new object. In fact, state-of-the-art trackers exploit online

learning and updates [242, 166, 249, 95, 240, 82, 136, 216, 98] to mitigate a variety of

challenges: Instance specific models work better than generic models [101], but we may not

see the test time individuals at train time; a camera auto-focus will initialize with only a

single view of the target [111] but must adapt to other viewpoints as the target rotates; or, an

individual target might change their appearance by putting on sunglasses [25]. But, online

updates do not use “ground truth”, rather they use labels produced by the tracker. This

leads to the classic problem of drift: small errors in tracking accumulate in the appearance

model until the tracker fails. In Chapter 5 we propose a tracking algorithm which uses

self-paced learning to avoid updating the appearance model with erroneous data.

Deciding when to update: While deciding when to update the appearance model has

a big impact on tracker performance, it has received almost no serious attention in recent

literature [242]. In Chapter 6 we specifically study the model update decision. We begin

with standard heuristic decision rules and conclude by training decision rules using empirical

data. Virtually no single-object trackers use data to learn when to update their models.

One reason for this is that few fully annotated videos exist, because annotating a video

requires much more effort than annotating an image. We propose an interactive tracking

and learning algorithm. With only weak supervision, our algorithm uses the tracker to

improve annotation and uses the annotation to improve the tracker. Our iterative algorithm

produces good trackers by learning from weakly annotated data. But, weak annotation lacks

precision and detail. So, to collect more precise and detailed data for training trackers, we

resort to sensored annotation.

Sensored annotation: We collect a massive new dataset for Identity-Aware Multiple-

Object Tracking (IAMOT) with pixel-level annotations. To do so, we use a sophisticated

data capture setup which integrates Ultra-Wide Band (UWB) tags with color and depth

5

cameras to obviate manual annotation. We refer to our use of sensors to automatically obtain

pixel-level identity labels as “sensored annotation”, as opposed to manual annotation. In

Chapter 7, we use sensored annotation to (1) gain new insights into the IAMOT problem and

(2) improve state-of-the-art IAMOT systems. First, we demonstrate (perhaps surprisingly)

that running k-Single-Object Trackers (k-SOT) outperformed two state-of-the-art IAMOT

systems. Our analysis concludes that IAMOT only works when the appearance models are

sufficiently good. Second, using our large dataset with pixel-level annotations, we build a

new IAMOT which outperforms all prior work.

Conclusions: One crucial theme recurs throughout this research: long-term trackers

benefit greatly from (1) self-reinitialization after occlusions or failures and (2) learning bet-

ter appearance models. By formulating tracking as a decision making problem, we develop

principled approaches to improving reinitialization and appearance model updates. We im-

prove appearance models for hands, by developing new and more challenging scenarios for

both training and testing (Chapters 2, 3, 4). Using decision heuristics (both hand-designed

and learned from data) we help model-free trackers build better appearance models (Chap-

ter 5, 6). Finally, sensored annotation helps us improve both reinitialization and appearance

updates in IAMOT (Chapter 7). Throughout our work, the decision making perspective

provides theoretical guidance for this array of practical improvements to long-term track-

ing. And, improving long-term tracking will enable a multitude of exciting applications in

augmented reality, vehicle automation, healthcare, and security.

6

Chapter 2

Model-Based Hand Pose Estimation

James Steven Supančič III, Grégory Rogez, Yi Yang,

Jamie Shotton & Deva Ramanan

2.1 Introduction

In the previous chapter, we discussed the importance of reinitialization in long-term hand

tracking. We choose to focus on hand tracking because it empowers many practical ap-

plications, for example sign language recognition [99], visual interfaces [144], and driver

analysis [158]. Recently introduced consumer depth cameras have spurred a flurry of new

advances [179, 99, 44, 125, 144, 251, 220, 228, 176, 211]. In this chapter we will evalu-

ate single-frame hand-pose estimation methods. We can reinitialize trackers after long-term

occlusions, using the best single-frame method.

Motivation: Recent single-frame methods have demonstrated impressive results. But dif-

fering (often in-house) test sets, varying performance criteria, and annotation errors impede

reliable comparisons [155]. Indeed, a recent meta-level analysis of object tracking papers

7

reveals that it is difficult to trust the “best” reported method in any one paper [166]. In the

field of object recognition, comprehensive benchmark evaluation has been vital for progress

[62, 52, 57]. Our goal is to similarly diagnose the state of affairs, and to suggest future

strategic directions, for depth-based hand pose estimation.

Contributions: Foremost, we contribute the most extensive evaluation of depth-based

hand pose estimators to date. We evaluate 13 state-of-the-art hand-pose estimation systems

across 4 test sets under uniform scoring criteria. Additionally, we provide a broad survey of

contemporary approaches, introduce a new test set that addresses prior limitations, and pro-

pose a new baseline for pose estimation based on nearest-neighbor (NN) exemplar volumes.

Surprisingly, we find that NN exceeds the accuracy of most existing systems (Fig. 2.1). We

organize our discussion along three axes: test data (Sec. 2.2), training data (Sec. 2.3), and

model architectures (Sec. 2.4). We survey and taxonomize approaches for each dimension,

and also contribute novelty to each dimension (e.g. new data and models). After explicitly

describing our experimental protocol (Sec. 2.5), we end with an extensive empirical analysis

(Sec. 2.6).

Preview: We foreshadow our conclusions here. When hands are easily segmented or de-

tected, current systems perform quite well. However, hand “activities” involving interactions

with objects/surfaces are still challenging (motivating the introduction of our new dataset).

Moreover, in such cases even humans perform imperfectly. For reasonable error measures,

annotators disagree 20% of the time (due to self and inter-object occlusions and low reso-

lution). This has immediate implications for test benchmarks, but also imposes a challenge

when collecting and annotating training data. Finally, our NN baseline illustrates some

surprising points. Simple memorization of training data performs quite well, outperforming

most existing systems. Variations in the training data often dwarf variations in the model

8

architectures themselves (e.g. , decision forests versus deep neural nets). Thus, our analysis

offers the salient conclusion that “it’s all about the (training) data”.

Prior work: Our work follows in the rich tradition of benchmarking [57, 53, 192] and

taxiomatic analysis [198, 55]. In particular, Erol et al. [55] reviewed hand pose analysis in

2007. Contemporary approaches have considerably evolved, prompted by the introduction

of commodity depth cameras. We believe the time is right for another look. We do extensive

cross-dataset analysis, by training and testing systems on different datasets [229]. Human-

level studies in benchmark evaluation [140] inspired our analysis of human-performance.

Finally, our NN-baseline is closely inspired by non-parametric approaches to pose estima-

tion [199]. In particular, we use volumetric depth features in a 3D scanning-window (or

volume) framework, similar to [208]. But, our baseline does not need SVM training or

multi-cue features, making it simpler to implement.

2.2 Testing Data

Test scenarios for depth-based hand-pose estimation have evolved rapidly. Early work eval-

uated on synthetic data, while contemporary work almost exclusively evaluates on real data.

However, because of difficulties in manual annotation (a point that we will revisit), evalua-

tion was not always quantitative - instead, it has been common to show selected frames to

give a qualitative sense of performance [51, 28, 160, 170]. We fundamentally assume that

quantitative evaluation on real data will be vital for continued progress.

Test set properties: We have tabulated a list of contemporary test benchmarks in Ta-

ble 2.1, giving URLs on our website1. We refer the reader to the caption for a detailed

1http://www.ics.uci.edu/~jsupanci/#HandData

9

http://www.ics.uci.edu/~jsupanci/#HandData

Dataset Chal. Scn. Annot. Frms. Sub. Cam. Dist. (mm)
ASTAR [251] A 1 435 435 15 ToF 270-580
Dexter 1 [210] A 1 3,157 3,157 1 Both 100-989

MSRA-2014 [176] A 1 2,400 2,400 6 ToF 339-422
ICL [220] A 1 1,599 1,599 1 Struct 200-380

FORTH [160] AV 1 0 7,148 5 Struct 200-1110
NYU [228] AV 1 8,252 8,252 2 Struct 510-1070

HandNet [244] AV 1 202,198 202,198 10 Struct 200-650
MPG-2014 [231] AV 1 2,800 2,800 1 Struct 500-800
FingerPaint [200] AV 1 113,800 113,800 5 ToF 400-700
CVAR-EGO [157] AV 2 2,166 2,166 1 ToF 60-650

MSRA [215] AV 1 76,375 76,528 9 ToF 244-530
KTH [170] AVC 1 NA 46,000 9 Struct NA
LISA [158] AVC 1 NA 3,100 1 Struct 900-3780

UCI-EGO [185] AVC 4 364 3,640 2 ToF 200-390
Ours AVC 10+ 23,640 23,640 10 Both 200-1950

Challenges (Chal.): A-Articulation V-Viewpoint C-Clutter

Table 2.1: Testing data sets: We group existing benchmark test sets into 3 groups
based on challenges addressed - articulation, viewpoint, and/or background clutter. We
also tabulate the number of captured scenes, number of annotated versus total frames,
number of subjects, camera type (structured light versus time-of-flight), and distance of
the hand to camera. We introduce a new dataset (Ours) that contains a significantly larger
range of hand depths (up to 2m), more scenes (10+), more annotated frames (24K), and
more subjects (10) than prior work.

summary of specific dataset properties. Per dataset, Fig. 2.2 visualizes the pose-space cov-

ered using multi-dimensional scaling (MDS). We embed both the camera viewpoint angles

and joint angles (in a normalized coordinate frame that is centered, scaled and rotated to the

camera viewpoint). We conclude that previous datasets make different assumptions about

articulation, viewpoint, and perhaps most importantly, background clutter. Such assump-

tions are useful because they allow researchers to focus on particular aspects of the problem.

However it is crucial to make such assumptions explicit [229], which much prior work does

not. We do so below.

Articulation: Many datasets focus on pose estimation with the assumption that detection

and overall hand viewpoint is either given or limited in variation. Example datasets include

10

MSRA-2014 [176], A-Star [251], and Dexter [210]. While these test sets focus on estimating

hand articulation, not all test sets contain the same amount of pose variation. For example, a

sign language test set will exhibit a small number of discrete poses. To quantify articulation,

we fit a multi-variate Gaussian distribution to a test set’s finger joint angles. Then we

compute the differential entropy for the test set’s distribution:

h(Σ) = .5 log
(
(2πe)N det(Σ)

)
(2.1)

where Σ is the covariance of the test set’s joint angles and N is the number of joint angles

in each pose vector. This analysis suggests that our proposed test set contains greater pose

variation (entropy, h = 89) than the ICL (h = 34), NYU (h = 82), FORTH (h = 65) or A-

STAR (h = 79) test sets. We focus on ICL [220] as a representative example for experimental

evaluation because it has been used in multiple prior published works [220, 44, 155].

Art. and viewpoint: Other test sets have focused on both viewpoint variation and artic-

ulation. FORTH [160] provides five test sequences with varied articulations and viewpoints,

but these are unfortunately unannotated. The CVAR-EGO [157] dataset provides highly

precise joint annotations but contains fewer frames and only one subject. In our experi-

ments, we analyze the NYU dataset [228] because of its wide pose variation (see Fig. 2.2),

larger size, and accurate annotations (see Sec. 2.3).

Art. + View. + Clutter: The most difficult datasets contain cluttered backgrounds that

are not easy to segment away. These datasets tend to focus on “in-the-wild” hands perform-

ing activities and interacting with nearby objects and surfaces. The KTH Dataset [170]

provides a rich set of 3rd person videos showing humans interacting with objects. Un-

fortunately, annotations are not provided for the hands (only the objects). Similarly, the

LISA [158] dataset provides cluttered scenes captured inside vehicles. However, joint po-

11

Figure 2.1: NN Memorization: We evaluate a broad collection of hand pose estimation
algorithms on different training and test sets under consistent criteria. Test sets which con-
tained limited variety, in pose and range, or which lacked complex backgrounds were notably
easier. To aid our analysis, we introduce a simple 3D exemplar (nearest-neighbor) baseline
that both detects and estimates pose suprisingly well, outperforming most existing systems.
We show the best-matching detection window in (b) and the best-matching exemplar in
(c). We use our baseline to rank dataset difficulty, compare algorithms, and show the im-
portance of training set design. We provide a detailed analysis of which problem types are
currently solved, what open research challenges remain, and provide suggestions for future
model architectures.

Figure 2.2: Pose variation: We use MDS (multi-dimensional scaling) to plot the pose
space covered by a set of hand datasets with compatible joint annotations. We split the pose
space into two components and plot the camera viewpoint angles (a) and finger joint angles
(b). For each test set, we plot the convex hull of its poses. In terms of joint angle coverage,
most test sets are similar. In terms of camera viewpoint, some test sets consider a smaller
range of views (e.g. , ICL and A-STAR). We further analyze various assumptions made by
datasets in the text.

12

sitions are not annotated, only coarse gesture. The UCI-EGO [185] dataset provides

challenging sequences from an egocentric perspective with joint level annotations, and so is

included in our benchmark analysis.

Our test set: Our empirical evaluation will show that in-the-wild hand activity is still

challenging. To push research in this direction, we have collected and annotated our own

test set of real images (labeled as Ours in Table 2.1, examples in Fig. 2.3). As far as we are

aware, our dataset is the first to focus on hand pose estimation across multiple subjects and

multiple cluttered scenes. This is important, because any practical application must handle

diverse subjects, scenes, and clutter.

2.3 Training Data

Here we discuss various approaches for generating training data (ref. Table 2.2). Real

annotated training data has long been the gold standard for supervised learning. However,

the generally accepted wisdom (for hand pose estimation) is that the space of poses is too

large to manually annotate. This motivates approaches to leverage synthetically generated

training data, discussed further below.

Real data + manual annotation: Arguably, the space of hand poses exceeds what can

be sampled with real data. Our experiments identify a second problem: perhaps surprisingly,

human annotators often disagree on pose annotations. For example, in our test set, human

annotators disagree on 20% of pose annotations (considering a 20mm threshold) as plotted

in Fig. 2.20. These disagreements arise from limitations in the raw sensor data, either due

to poor resolution or occlusions. We found that low resolution consistently corresponds to

annotation ambiguities, across test sets. See Sec. 2.5.2) for further discussion and examples.

13

(a) (b)

(c) (d)

Figure 2.3: Our new test data challenges methods with clutter (a), object manipulation
(b), low-res (c), and various viewpoints (d). We collected data in diverse environments (8 of-
fices, 4 homes, 4 public spaces, 2 vehicles, and 2 outdoors) using time-of-flight (Intel/Creative
Gesture Camera) and structured-light (ASUS Xtion Pro) depth cameras. Ten (3 female and
7 male) subjects were given prompts to perform natural interactions with objects in the
environment, as well as display 24 random and 24 canonical poses.

14

These ambiguities are often mitigated by placing the hand close to the camera [251, 220,

176, 157]. As an illustrative example, we evaluate the ICL training set [220].

Real data + automatic annotation: Data gloves directly obtain automatic pose anno-

tations for real data [251]. However, they require painstaking per-user calibration. Magnetic

markers can partially alleviate calibration difficulties [244] but still distort the hand shape

that is observed in the depth map. When evaluating depth-only systems, colored mark-

ers can provide ground-truth through the RGB channel [200]. Alternatively, one could use

a “passive” motion capture system. We evaluate the larger NYU training set [228] that

annotates real data by fitting (offline) a skinned 3D hand model to high-quality 3D mea-

surements. Finally, integrating model fitting with tracking lets one leverage a small set of

annotated reference frames to annotate an entire video [157].

Quasi-synthetic data: Augmenting real data with geometric computer graphics models

provides an attractive solution. For example, one can apply geometric transformations (e.g. ,

rotations) to both real data and its annotations [220]. If multiple depth cameras are used

to collect real data (that is then registered to a model), one can synthesize a larger set of

varied viewpoints [211, 228]. Finally, mimicking the noise and artifacts of real data is often

important when using synthetic data. Domain transfer methods [44] learn the relationships

between a small real dataset and large synthetic one.

Synthetic data: Another hope is to use data rendered by a computer graphics system.

Graphical synthesis sidesteps the annotation problem completely: precise annotations can

be rendered along with the features. One can easily vary the size and shape of synthesized

training hands, a fact which allows us to explore how user-specific training data impacts

accuracy. Our experiments (ref. Sec. 5.5) verify that results may be optimistic when the

training and test datasets contain the same individuals, as non-synthetic datasets commonly

15

do (ref. Table 2.2). When synthesizing novel exemplars, it is important define a good

sampling distribution. A common strategy for generating a sampling distribution is to

collect pose samples with motion capture data [35, 64]. The UCI-EGO training set [185]

synthesizes data with an egocentric prior over viewpoints and grasping poses.

2.3.1 libhand training set:

To further examine the effect of training data, we created a massive custom training set

of 25,000,000 RGB-D training instances with the open-source libhand model (some exam-

ples are shown in Fig. 2.7). We modified the code to include a forearm and output depth

data, semantic segmentations, and keypoint annotations. We emphasize that this synthetic

training set is distinct from our new test dataset of real images.

Synthesis parameters: To avoid omitting possible but unlikely poses from our synthetic

training set, we do not use motion capture data. Instead, we take a brute-force approach

based on rejection-sampling. We uniformly and independently sample joint angles (from

a bounded range), and throw away invalid samples that yield self-intersecting 3D hand

poses. Specifically, using the libhand joint identifiers shown in Fig. 2.4, we generate poses

by uniformly sampling from bounded ranges, as shown in Table. 2.3.

Quasi-Synthetic backgrounds: Hand synthesis engines commonly under-emphasize the

importance of image backgrounds [237, 160, 228]. For methods operating on pre-segmented

images [99, 210, 176], this is likely not an issue. However, for active hands “in-the-wild”,

the choice of synthetic backgrounds, surfaces, and interacting objects becomes important.

Moreover, some systems require an explicit negative set (of images not containing hands) for

training. To synthesize a robust background/negative training set, we take a quasi-synthetic

approach by applying random affine transformations to 5,000 images of real scenes, yielding

16

Dataset Generation Viewpoint Views Size Subj.
ICL [220] Real + manual annot. 3rd Pers. 1 331,000 10
NYU [228] Real + auto annot. 3rd Pers. 3 72,757 1

HandNet [244] Real + auto annot. 3rd Pers. 1 12,773 10
UCI-EGO [185] Synthetic Egocentric 1 10,000 1

libhand [237] Synthetic Generic 1 25,000,000 1

Table 2.2: Training data sets: We broadly categorize training datasets by the method
used to generate the data and annotations: real data + manual annotations, real data
+ automatic annotations, or synthetic data (and automatic annotations). Most existing
datasets are viewpoint-specific (tuned for 3rd-person or egocentric recognition) and limited
in size to tens of thousands of examples. NYU is unique in that it is a multiview dataset
collected with multiple cameras, while ICL contains shape variation due to multiple (10)
subjects. To explore the effect of training data, we use the public libhand animation
package to generate a massive training set of 25 million examples.

Figure 2.4: libhand joints: We use the above joint identifiers to describe how we sample
poses (for libhand) in table 2.3. See http://www.libhand.org/ for more details on the
joints and their parameters.

Description Identifiers bend side elongation
Intermediate and Distal Joints F1:4,2:3 U(−π

2

r
, π

7
r) 0 0

Proximal-Carpal Joints F1:4,4 U(−π
2

r
, π

7
r) U(−π

8

r
, π

8
r) 0

Thumb Metacarpal F5,4 U(−1r, .5r) U(−.7r, 1.2r) U(.8r, 1.2r)
Thumb Proximal F5,3 U(−1r,−.6r) U(−.2r, .5r) 0

Wrist Articulation P1 U(−1r, 1r) U(−.5r, .8r) 0

Table 2.3: Synthetic hand distribution: We render synthetic hands with joint angles
sampled from the above uniform distributions. bend refers to the natural extension-retraction
of the finger joints. The proximal-carpal, wrist and thumb joints are additionally capable of
side-to-side articulation. We do not consider a third type of articulation, twist, because
it would be extremely painful and result in injury. We model anatomical differences by
elongating some bones fanning out from a joint. Additionally, we apply an isotropic global
metric scale factor sampled from the range U(2

3
, 3

2
). Finally, we randomize the camera

viewpoint by uniformly sampling tilt, yaw and roll from U(0, 2π).

17

http://www.libhand.org/

Method Approach Model-drv. Data-drv. Detection Implementation FPS
Simulate [144] Tracker (simulation) Yes No Initialization Published 50
NiTE2 [175] Tracker (pose search) No Yes Initialization Public > 60
Particle Swarm Opt. (PSO) [160] Tracker (PSO) Yes No Initialization Public 15
Hough Forest [251] Decision forest Yes Yes Decision forest Ours 12
Random Decision Forest (RDF) [99] Decision forest No Yes - Ours 8
Latent Regression Forest (LRF) [220] Decision forest No Yes - Published 62
DeepJoint [228] Deep network Yes Yes Decision forest Published 25
DeepPrior [155] Deep network No Yes Scanning window Ours 5000
DeepSegment [59] Deep network No Yes Scanning window Ours 5
Intel PXC [87] Morphology (convex detection) No No Heuristic segment Public > 60
Cascades [185] Hierarchical cascades No Yes Scanning window Provided 30
Ego. WS. [183] Multi-class SVM No Yes Whole volume classif. Provided 275
EPM [261] Deformable part model No Yes Scanning window Ours 1/2
Volumetric Exemplars Nearest neighbor (NN) No Yes Scanning volume Ours 1/15

Table 2.4: Summary of methods: We broadly categorize the pose estimation systems
that we evaluate by their overall approach: decision forests, deep models, trackers, or others.
Though we focus on single-frame systems, we also evaluate trackers by providing them man-
ual initialization. Model-driven methods make use of articulated geometric models at test
time, while data-driven models are trained beforehand on a training set. Many systems
begin by detecting hands with a Hough-transform or a scanning window/volume search.
Finally, we made use of public source code when available, or re-implemented the system
ourselves, verifying our implementation’s accuracy on published benchmarks. ‘Published’ in-
dicates that published performance results were used for evaluation, while ‘public’ indicates
that source code was available, allowing us to evaluate the method on additional test sets.
We report the fastest speeds (in FPS), either reported or our implementation’s.

a total of 1,000,0000 pseudo-synthetic backgrounds. We found it useful to include human

bodies in the negative set because faces are common distractors for hand models.

2.4 Methods

Next we survey existing approaches to hand pose estimation (summarized in Table 2.4).

We conclude by introducing a novel volumetric nearest-neighbor (NN) baseline.

2.4.1 Taxonomy

Trackers versus detectors: We focus our analysis on single-frame methods. For com-

pleteness, we also consider several tracking baselines [160, 175, 87] needing ground-truth

initialization. Manual initialization may provide an unfair advantage, but we will show

18

that single-frame methods are still nonetheless competitive, and in most cases, outperform

tracking-based approaches. One reason is that single-frame methods essentially “reinitialize”

themselves at each frame, while trackers cannot recover from an error.

Discrete versus continuous pose: We further concentrate our analysis on the contin-

uous pose regression problem. Historically however, much prior work tackled the problem

from a discrete gesture classification perspective [149, 175, 174, 159]. Yet, these perspectives

are closely related because one can tackle continuous pose estimation using a large number of

discrete classes. As such, we evaluate several discrete classifiers in our benchmark [152, 183].

Data-driven versus model-driven: Historic attempts to estimate hand pose optimized

a geometric model to fit observed data [51, 28, 213]. Recently, Oikonomidis et al. [160]

demonstrated hand tracking using GPU accelerated Particle Swarm Optimization (PSO).

However, such optimizations remain notoriously difficult due to local minima in the objective

function. As a result, model driven systems have historically found their successes mostly

limited to the tracking domain, where initialization constrains the search space [210, 144,

176]. For single image detection, various fast classifiers and regressors have obtained real-

time speeds [99, 87, 155, 156, 221, 215, 130, 239]. Most of the systems we evaluate fall into

this category. When these classifiers are trained with data synthesized from a geometric

model, they can be seen as efficiently approximating model fitting.

Multi-stage pipelines: Systems commonly separate their work into discrete stages: de-

tecting, posing, refining and validating hands. Some systems use special purpose detec-

tors as a “pre-processing” stage [68, 160, 99, 41, 251, 87, 187, 228]. A segmentation pre-

processing stage has been historically popular. Typically, RGB skin classification [233] or

morphological operations on the depth image [174] segment the hand from the background.

Such segmentation allows computation of Zernike moment [41] or skeletonization [174] fea-

19

tures. While RGB features compliment depth [185, 74], skin segmentation appears diffi-

cult to generalize across subjects and scenes with varying lighting [176]. We evaluate a

depth-based segmentation system [87] for completeness. Other systems use a model for

inverse-kinematics/IK [228, 251], geometric refinement/validation [144, 221], or collabora-

tive filtering [36] during a “post-processing” stage. For highly precise hand pose estimation,

recent hybrid pipelines compliment data-driven per-frame reinitialization with model-based

refinement [226, 15, 211, 176, 255].

2.4.2 Architectures

In this section, we describe popular architectures for hand-pose estimation, placing in bold

those systems that we empirically evaluate.

Decision forests: Decision forests constitute a dominant paradigm for estimating hand

pose from depth. Hough Forests [251] take a two-stage approach of hand detection followed

by pose estimation. Random Decision Forests (RDFs) [99] and Latent Regression

Forests (LRFs) [220] leave the initial detection stage unspecified, but both make use of

coarse-to-fine decision trees that perform rough viewpoint classification followed by detailed

pose estimation. We experimented with several detection front-ends for RDFs and LRFs,

finally selecting the first-stage detector from Hough Forests for its strong performance.

Part model: Pictorial structure models have been popular in human body pose estima-

tion [253], but they appear somewhat rarely in the hand pose estimation literature. For

completeness, we evaluate a deformable part model defined on depth image patches [65].

We specifically train an exemplar part model (EPM) constrained to model deformations

consistent with 3D exemplars [261].

20

Deep models: Recent systems have explored using deep neural nets for hand pose esti-

mation. We consider three variants in our experiments. DeepJoint [228] uses a three stage

pipeline that initially detects hands with a decision forest, regresses joint locations with

a deep network, and finally refines joint predictions with inverse kinematics (IK). Deep-

Prior [155] is based on a similar deep network, but does not require an IK stage and instead

relies on the network itself to learn a spatial prior. DeepSeg [59] takes a pixel-labeling ap-

proach, predicting joint labels for each pixel, followed by a clustering stage to produce joint

locations. This procedure is reminiscent of pixel-level part classification of Kinect [202], but

substitutes a deep network for a decision forest.

2.4.3 Volumetric exemplars

We propose a nearest-neighbor (NN) baseline for additional diagnostic analysis. Specifically,

we convert depth map measurements into a 3D voxel grid, and simultaneously detect and

estimate pose by scanning over this grid with volumetric exemplar templates. We introduce

several modifications to ensure an efficient scanning search.

Voxel grid: Depth cameras report depth as a function of pixel (u, v) coordinates: D(u, v).

To construct a voxel grid, we first re-project these image measurements into 3D using known

camera intrinsics fu, fv.

(x, y, z) =

(
u

fu
D(u, v),

v

fv
D(u, v), D(u, v)

)
(2.2)

Given a test depth image, we construct a binary voxel grid V [x, y, z] that is ‘1’ if a depth

value is observed at a quantized (x, y, z) location. To cover the rough viewable region of a

camera, we define a coordinate frame of M3 voxels, where M = 200 and each voxel spans

21

10mm3. We similarly convert training examples into volumetric exemplars E[x, y, z], but

instead use a smaller N3 grid of voxels (where N = 30), consistent with the size of a hand.

Occlusions: When a depth measurement is observed at a position (x′, y′, z′) = 1, all voxels

behind it are occluded z > z′. We define occluded voxels to be ‘1’ for both the test-time

volume V and training exemplar E.

Distance measure: Let Vj be the jth subvolume (of size N3) extracted from V , and let

Ei be the ith exemplar. We simultaneously detect and estimate pose by computing the best

match in terms of Hamming distance:

(i∗, j∗) = argmin
i,j

Dist(Ei, Vj) where (2.3)

Dist(Ei, Vj) =
∑
x,y,z

I(Ei[x, y, z] 6= Vj[x, y, z]), (2.4)

such that i∗ is the best-matching training exemplar and j∗ is its detected position.

Efficient search: A näıve search over exemplars and subvolumes is prohibitively slow. But

because the underlying features are binary and sparse, there exist considerable opportunities

for speedup. We outline two simple strategies. First, one can eliminate subvolumes that are

empty, fully occluded, or out of the camera’s field-of-view. Song et al. [208] refer to such

pruning strategies as “jumping window” searches. Second, one can compute volumetric

Hamming distances with 2D computations:

Dist(Ei, Vj) =
∑
x,y

|ei[x, y]− vj[x, y]| where (2.5)

ei[x, y] =
∑
z

Ei[x, y, z], vj[x, y] =
∑
z

Vj[x, y, z].

22

Intuition for our encoding: Because our 3D volumes are projections of 2.5D measure-

ments, they can be sparsely encoded with a 2D array (see Fig. 2.5). Taken together, our

two simple strategies imply that a 3D volumetric search can be as practically efficient as a

2D scanning-window search. For a modest number of exemplars, our implementation still

took tens of seconds per frame, which sufficed for our offline analysis. We posit faster NN

algorithms could yield real-time speed [151, 152].

Comparison: Our volumetric exemplar baseline uses a scanning volume search and 2D

depth encodings. It is useful to contrast this with a “standard” 2D scanning-window template

on depth features [90]. First, our exemplars are defined in metric coordinates (Eq. 2.2). This

means that they will not fire on the small hands of a toy figurine, unlike a scanning window

search over scales. Second, our volumetric search ensures that the depth encoding from a

local window contain features only within a fixed N3 volume. This gives it the ability to

segment out background clutter, unlike a 2D window (Fig. 2.6).

2.5 Protocols

We’ve surveyed hand-pose estimation methods. However, methods typically use slightly

different evaluation criteria, which makes comparison tricky. So first (in Sec. 2.5.1), we

describe our protocol for evaluating hand-pose estimators, which supports fair comparisons

between different methods. But, evaluation requires accurate ground truth. Because anno-

tating hand-pose test data is notoriously error prone [157], we second (Sec. 2.5.2) propose

a protocol for both annotating hand-pose test data and for evaluating the accuracy of said

annotations. After establishing criteria for evaluating methods and for assessing the relia-

bility of our evaluation, we finally (Sec. 2.5.3) interpret how our quantitative performance

measurements compare to qualitative and practical results.

23

Figure 2.5: Volumetric Hamming distance:
We visualize 3D voxels corresponding to an exem-
plar (a) and subvolume (b). For simplicity, we vi-
sualize a 2D slice along a fixed y-value. Because oc-
cluded voxels are defined to be ‘1’ (indicating they
are occupied, shown in blue) the total Hamming
distance is readily computed by the L1 distance
between projections along the z-axis (c), mathe-
matically shown in Eq.(2.5).

(a) (b)

Figure 2.6: Windows versus volumes: 2D scanning windows (a) versus 3D scanning
volumes (b). Volumes can ignore background clutter that lies outside the 3D scanning
volume but still falls inside its 2D projection. For example, when scoring the shown hand, a
3D volume will ignore depth measurements from the shoulder and head, unlike a 2D window.

24

2.5.1 Evaluation

Implementations: We evaluate public code when available [160, 175, 87]. Some authors

responded to our request for their code [185]. When software was not available, we attempted

to re-implement methods ourselves. We were able to successfully reimplement [99, 251,

155], matching the accuracy on published results [220, 155]. In other cases, our in-house

implementations did not suffice [228, 220]. For these latter cases, we include published

performance reports, but unfortunately, they are limited to their own datasets. This partly

motivated us to perform a multi-dataset analysis. In particular, previous benchmarks have

shown that one can still compare algorithms across datasets using head-to-head matchups

(similar to approaches that rank sports teams which do not directly compete [166]). We use

our NN baseline to do precisely this. Finally, to spur further progress, we have made our

implementations publicly available, together with our evaluation code.

Reprojection error: Following past work, we evaluate pose estimation methods as a

regression task that predicts a set of 3D joint locations [160, 99, 176, 225, 220]. Given a

predicted and ground-truth pose, we compute both the average and max 3D reprojection

error (in mm) across all joints. We use the skeletal joints defined by libhand [237]. We then

summarize performance by plotting the proportion of test frames whose average (or max)

error falls below a threshold.

Detection issues: Reprojection error is hard to define during detection failures: that is,

false positive hand detections or missed hand detections. Such failures are likely in cluttered

scenes or when considering scenes containing zero or two hands. If a method produced zero

detections when a hand was present, or produced one if no hand was present, this was treated

as a “maxed-out” reprojection error (of ∞ mm). If two hands were present, we scored each

25

method against both and took the minimum error. Though we have released our evaluation

software2, we give pseudocode in Alg. 1.

Missing data: Another challenge with reprojection error is missing data. First, some

methods predict 2D screen coordinates for joints, not 3D metric coordinates [174, 87, 59, 228].

Approximating z ≈ D(u, v), inferring 3D joint positions should be straightforward with

Eq. 2.2. But, small 2D position errors can cause significant errors in the approximated

depth, especially around the hand silhouette. To mitigate, we instead use the centroid

depth of a segmented/detected hand when the measured depth lies outside the segmented

volume. Past comparisons appear not to do this [155], somewhat unfairly penalizing 2D

approaches [228]. Second, some methods may predict a subset of joints [87, 174]. To ensure

a consistent comparison, we force such methods to predict the locations of visible joints with

a post-processing inverse-kinematics (IK) stage [228]. We fit the libhand kinematic model to

the predicted joints, and infer the location of missing ones. Third, ground-truth joints may

be occluded. By convention, we only evaluate visible joints in our benchmark analysis.

2.5.2 Annotation

We now describe both how we collect ground truth annotations and how we asses the accuracy

of our annotations. We present the annotator with cropped RGB and depth images. They

then click semantic key-points, corresponding to specific joints, on either the RGB or depth

images. To ease the annotator’s task and to get 3D keypoints from 2D clicks we invert

the forward rendering (graphics) hand model provided by libhand which projects model

parameters θ to 2D keypoints P (θ). While they label joints, an inverse kinematic solver

minimizes the distance between the currently annotated 2D joint labels, ∀j∈JLj, and those

projected from the libhand model parameters, ∀j∈JPj(θ). Formally, our inverse kinematic

2https://github.com/jsupancic/AStar_Dual_Tree_HandPose

26

https://github.com/jsupancic/AStar_Dual_Tree_HandPose

Figure 2.7: Our error criteria: For each predicted hand, we calculate the average and
maximum distance (in mm) between its skeletal joints and a ground-truth. In our experimen-
tal results, we plot the fraction of predictions that lie within a distance threshold, for various
thresholds. This figure visually illustrates the misalignment associated with various thresh-
olds for max error. A 50mm max-error seems visually consistent with a “roughly correct
pose estimation”, and a 100mm max-error is consistent with a “correct hand detection”.

0 50 100 150 200 250
10

20

30

40

50

60

70

80

ac
cu

ra
cy

 t
h
re

sh
o
ld

 (
m

m
)

number of discrete poses

Figure 2.8: Required precision per discrete pose: Larger pose vocabularies require
more precision. We plot this relationship by considering the sparsest distribution of N poses.
A max-joint-error precision of 20mm suffices to perfectly disambiguate a vocabulary of 100
discrete poses, while 10mm roughly disambiguates 240 poses. If perfect classification is not
needed, one can enlarge the effective vocabulary size.

27

input : predictions and ground truths for each image
output: a set of errors, one per frame
forall test images do

P ← method’s most confident prediction;
G← ground truths for the current test image;
if G = ∅ then

/* Test Image contains zero hands */

if P = ∅ then
errors← errors ∪ {0};

else
errors← errors ∪ {∞};

end

else
/* Test Image contains hand(s) */

if P = ∅ then
errors← errors ∪ {∞};

else
best error←∞;
/* Find the ground truth best matching the method’s prediction

*/

forall H ∈ G do
/* For mean error plots, replace maxi with meani */

/* V denotes the set of visible joints */

current error← maxi∈V ||Hi − Pi||2;
if current error < best error then

best error← current error;
end

end
errors← errors ∪ {best error};

end

end

end
Algorithm 1: Scoring Procedure: For each frame we compute a max or mean re-
projection error for the ground truth(s) G and prediction(s) P . We later plot the proportion
of frames with an error below a threshold, for various thresholds.

28

RGB Depth LibHand

(a)

(b)

(c)

Figure 2.9: Annotation procedure: We annotate until we are satisfied that the fitted
hand pose matches the RGB and depth data. The first two columns show the image evidence
presented and keypoints received. The right most column shows the fitted libhand model.
The IK solver is able to easily fit a model to the five given keypoints (a), but it doesn’t
match the image well. The annotator attempts to correct the model (b), to better match the
image, by labeling the wrist. Labeling additional finger joints finally yields and acceptable
solution (c).

solver attempts to solve the following:

min
θ

∑
j∈J

‖Lj − Pj(θ)‖2 (2.6)

The currently fitted libhand model, shown to the annotator, updates online as more joints

are labeled. When the annotator indicates satisfaction with the fitted model, we proceed to

the next frame. We give an example of the annotation process in Fig. 2.9.

29

Figure 2.10: Annotator disagreements: With whom do you agree? We show two frames
where annotators disagree. The top two rows show the RGB and depth images with an-
notated keypoints. The bottom row shows the libhand model fit to those annotations. In
Frame A, is the thumb upright or tucked underneath the fingers? In Frame B, is the thumb
or pinky occluded? Long-range (low resolution) makes this important case hard to decide,
In one author’s opinion, annotator 1 is more consistent with RGB evidence while annotator
2 is more consistent with depth evidence (we always present annotators with both).

Strengths: Our annotation process has several strengths. First, kinematic constraints

prevent some keypoint combinations, so it is often possible to fit the model by labeling only

a subset of keypoints. Second, the fitted model provides annotations for occluded keypoints.

Third and most importantly, the fitted model provides 3D (x,y,z) keypoint locations given

only 2D (u,v) annotations.

Disagreements: As shown in in Fig. 2.20, annotators disagree substantially on the hand

pose, in a surprising number of cases. In applications, such as sign language [214] ambiguous

poses are typically avoided. We believe it is important to acknowledge that, in general, it

may not be possible to achieve full precision. For our proposed test set (with an average hand

30

(i) ICL Test [220] (ii) NYU Test [228] (iii) UCI-EGO Test [185] (iv) Ours Test

(a
)

P
S
O

[1
60

]
(b

)
H

ou
gh

[2
51

]
(c

)
D

ee
p

[1
55

]
(d

)
1-

N
N

Figure 2.11: Characteristic results: The PSO [160] tracker tends to miss individually
extended fingers, in this case the pinky (a,i), due to local minima. Faces are common
distractors for all methods. But, the PSO tracker in particular never recovers once it locks
onto a face. The first-stage Hough forest [251] detector can recover from failures. But, the
trees vote independently for global orientation and location using only local patch evidence.
This local evidence seems insufficient to differentiate hands from elbows (b,ii) and other
hand sized clutter (b,iv). The second-stage Hough [251] forests typically provide poorer
finger-tip localization deeper inside the hand silhouette; here (b,i) they confuse the ring
and middle finger because without global context the local votes are noisy and unspecific.
NN exemplars most often succeeded in localizing the hand while the deep model [155] more
accurately estimated precise hand pose. See Sec. 5.5 for further discussion.

31

distance of 1100mm), we encountered an average annotation disagreement of about 20mm.

For only nearby hands (≤ 750mm from the camera, with an average distance of 550mm)

we encountered an average annotation disagreement of about 10mm. The ICL dataset [220]

exhibits similar annotation inconsistencies at similar ranges [155]. For hands at an average

distance 235mm from the camera, [157] reduced annotation disagreements to approximately

4mm. This suggests that distance (which is inversely proportional to resolution) directly

relates to annotation accuracy. Fig. 2.10 illustrates two examples of annotator disagreement

on our test set.

2.5.3 Interpretation

We’ve described our proposed quantitative evaluation protocol. But, how can someone new

to field of hand-pose estimation interpret these numbers? First, we provide visualizations

and qualitative interpretations for our proposed metric. Second, we examine the quantitative

performance required for various hand gesture recognition tasks.

Error thresholds: Much past work considers performance at fairly low error thresholds,

approaching 10mm [251, 220, 228]. Interestingly, [155] show that established benchmarks

such as the ICL test set include annotation errors of above 10mm in over a third of their

frames. Ambiguities arise from manual labeling of joints versus bones and centroids versus

surface points. We rigorously evaluate human-level performance through inter-annotator

agreement on our new test set (Fig. 2.20). Overall, we find that max-errors of 20mm ap-

proach the limit of human accuracy for closeby hands. We present a qualitative visualization

of max error at different thresholds in Fig. 2.7. 50mm appears consistent with a roughly

correct pose, while an error within 100mm appears consistent with a correct detection.

Our qualitative analysis is consistent with empirical studies of human grasp [30] and gesture

communication [214], which also suggest that a max-joint difference of 50mm differentiates

32

common gestures and grasps. But in general, precision requirements depend greatly on

the application; So we plot each method’s performance across a broad range of thresholds

(Fig. 2.8). We highlight 50 and 100mm thresholds for additional analysis.

Vocabulary size versus threshold: To better interpret max-error-thresholds, we ask “for

a discrete vocabulary of N poses, what max-joint-error precision will suffice?”. Intuitively,

larger pose vocabularies require greater precision. To formalize this notion, we assume the

user always perfectly articulates one of N poses from a discrete vocabulary Θ, with |Θ| = N .

Given a fixed vocabulary Θ, a recognition system needs to be precise within prec mm to

avoid confusing any two poses from Θ:

prec < min
θ1∈Θ,θ2∈Θ

dist(P (θ1)− P (θ2))

2
(2.7)

where θ1 and θ2 represent two poses in Θ, P (θ) projects the pose θ’s joints into metric

space, and dist gives the maximum metric distance between the corresponding joints from

each pose. To find the minimum precision required for each N , we construct a maximally

distinguishable vocabulary Θ by maximizing the value of prec, subject to the kinematic

constraints of libhand. Finding this most distinguishable pose vocabulary is an NP-hard

problem. So, we take a greedy approach to optimize a vocabulary Θ for each vocabulary

size N .

2.6 Results

We now report our experimental results, comparing datasets and methods. We first address

the “state of the problem”: what aspects of the problem have been solved, and what remain

open research questions? Fig. 2.11 qualitatively characterizes our results. We conclude by

discussing the specific lessons we learned and suggesting directions for future systems.

33

Mostly-solved (distinct poses): Fig. 2.17 shows that coarse hand pose estimation is

viable on datasets of uncluttered scenes where hands face the camera (i.e. ICL). Deep

models, decision forests, and NN all perform quite well, both in terms of articulated pose

estimation (85% of frames are within 50mm max-error) and hand detection (100% are within

100mm max-error). Surprisingly, NN outperforms decision forests by a bit. However, when

NN is trained on other datasets with larger pose variation, performance is considerably

worse. This suggests that the test poses closely resemble the training poses. Novel poses

(those not seen in training data) account for most of the remaining failures. More training

data (perhaps user-specific) or better model generalization should correct these remaining

failures. Yet, this may be reasonable for applications targeting sufficiently distinct poses

from a small and finite vocabulary (e.g., a gaming interface). These results suggest that

the state-of-the-art can accurately predict distinct poses (i.e., 50 mm apart) in uncluttered

scenes.

Major progress (unconstrained poses): The NYU test set still considers isolated

hands, but includes a wider range of poses, viewpoints, and subjects compared to ICL (see

Fig. 2.2). Fig. 2.18 reveals that deep models perform the best for both articulated pose

estimation (96% accuracy) and hand detection (100% accuracy). While decision forests

struggle with the added variation in pose and viewpoint, NN still does quite well. In fact,

when measured with average (rather than max) error, NN nearly matches the performance

of [228]. This suggests that exemplars get most, but not all fingers, correct (see Fig. 2.13

and cf. Fig. 2.11 (c,ii) versus (d,ii)). Overall, we see noticeable progress on unconstrained

pose estimation since 2007 [55].

Unsolved (low-res, objects, occlusions, clutter): When considering our test set (Fig. 2.20)

with distant (low-res) hands and background clutter consisting of objects or interacting sur-

faces (Fig. 2.14), results are significantly worse. Note that many applications [202] often

34

Figure 2.12: Egocentric versus 3rd person challenges: A robust hand-pose estima-
tor must contend with isolated hands in free space, frames with no hands visible, and
hands grasping objects in cluttered scenes. Uniformly sampling frames from the test data
in Table 2.1 we show the distribution of challenges for both Egocentric (UCI-EGO and
CVAR-EGO) and 3rd person test sets. Empirically, egocentric data contains more object
manipulation and occlusion. In general, egocentric datasets target applications which involve
significant clutter[183, 125, 61, 184]. While, 3rd person test sets historically focus on gesture
recognition, involving less clutter.

Figure 2.13: Min versus max error: Compared to state-of-the-art, our 1-NN baseline often
does relatively better under the average-error criterion than under the max-error criterion.
When it can find (nearly) an exact match between training and test data (left) it obtains
very low error. However, it does not generalize well to unseen poses (right). When presented
with a new pose it will often place some fingers perfectly but others totally wrong. The
result is a reasonable mean error but a high max error.

35

demand hands to lie at distances greater than 750mm. For such scenes, hand detection is

still a challenge. Scanning window approaches (such as our NN baseline) tend to outperform

multistage pipelines [99, 59], which may make an unrecoverable error in the first (detection

and segmentation) stage. We show some illustrative examples in Fig. 2.15. Yet, overall

performance is still lacking, particularly when compared to human performance. Notably,

human (annotator) accuracy also degrades for low-resolution hands far away from the cam-

era (Fig. 2.20). This annotation uncertainty (“Human” in Fig. 2.20) makes it difficult to

compare methods for highly precise pose estimation. As hand pose estimation systems be-

come more precise, future work must make test data annotation more precise [157]. Our

results suggest that scenes of in-the-wild hand activity are still beyond the reach of the state

of the art.

Unsolved (Egocentric): The egocentric setting commonly presents (Fig. 2.19) the same

problems discussed before, with the exception of low-res. While egocentric images do not nec-

essarily contain clutter, most datasets in this area target applications with significant clutter

(see Fig. 2.12). And, in some sense, egocentric views make hand detection fundamentally

harder. We cannot merely assume that the nearest pixel in the depth image corresponds to

the hand, as we can with many 3rd person gesture test sets. In fact, the forearm often pro-

vides the primary salient feature. In Fig. 2.11 (c-d,iii) both the deep and the 1-NN models

need the arm to estimate the hand position. But, 1-NN wrongly predicts that the palm faces

downwards, not towards the coffee maker. With such heavy occlusion and clutter, these

errors are not surprising. The deep model’s detector [228, 155] proved less robust in the ego-

centric setting. Perhaps it developed sensitivity to changes in noise patterns, between the

synthetic training and real test datasets. But, the NN and deep detectors wrongly assume

translation-invariance for egocentric hands. Hand appearance and position are linked by

perspective effects coupled with the kinematic constraints imposed by the arm. As a result,

an egocentric-specific whole volume classification model [183] outperformed both.

36

Figure 2.14: Complex backgrounds: Most existing systems, including our own 1-NN
baseline, fail when challenged with complex backgrounds which cannot be trivially seg-
mented. These backgrounds significantly alter the features extracted and processed and
thus prevent even the best models from producing sensible output.

Table 2.5: Cross-dataset generalization: We compare training and test sets using a
1-NN classifier. Diagonal entries represent the performance using corresponding train and
test sets. In each grid entry, we denote the percentage of test frames that are correct (50mm
max-error, above, and 50mm average-error, below) and visualize the median error using the
colored overlays from Fig. 2.7. We account for sensor specific noise artifacts using established
techniques [33]. Please refer to the text for more details.

37

(a) Latent Hough detection (c) per-pixel classification

(b) Hough orientation failure (d) hard segmentation

Figure 2.15: Risks of multi-phase approaches: Many approaches to hand pose es-
timation divide into three phases: (1) detect and segment (2) estimate pose (3) validate
or refine [99, 87, 251, 228, 220]. However, when an earlier stage fails, the later stages are
often unable to recover. When detection and segmentation are non-trivial, this becomes to
root cause of many failures. For example, Hough forests [251] (a) first estimate the hand’s
location and orientation. They then convert to a cardinal translation and rotation before
estimating joint locations. (b) When this first stage fails, the second stage cannot recover.
(c) Other methods assume that segmentation is solved [99, 59], (d) when background clut-
ter is inadvertently included by the hand segmenter, the finger pose estimator is prone to
spurious outputs.

38

Training data: We use our NN-baseline to analyze the effect of training data in Table

2.5. Our NN model performed better using the NYU training set [228] (consisting of real

data automatically labeled with a geometrically-fit 3D CAD model) than with the libhand

training set. While enlarging the synthetic training set increases performance (Fig. 2.16),

computation fast becomes intractable. This reflects the difficulty in using synthetic data:

one must carefully model priors [155], sensor noise, [74] and hand shape variations between

users [225, 101]. In Fig. 2.21 we explore the impact of each of these factors to uncover two

salient conclusions: First, training with the test-time user’s hand geometry (user-specific

training data) showed modestly better performance, suggesting that results may be opti-

mistic when using the same subjects for training and testing. Second, for synthetic hand

data, modeling the pose-prior (i.e. , choosing likely poses to synthesize) overshadows other

considerations. Finally, in some cases, the variation in the performance of NN (dependent

on the particular training set) exceeded the variation between model architectures (decision

forests versus deep models) - Fig. 2.17. Our results suggest the diversity and realism of the

training set is as important as the model learned from it.

Surprising NN performance: Overall, our 1-NN baseline proved to be surprisingly po-

tent, outperforming or matching the performance of most prior systems. This holds true even

for moderately-sized training sets with tens of thousands of examples [228, 220], suggesting

that simple memorization outperforms much prior work. To demonstrate generalization, fu-

ture work on learning based methods will likely benefit from more and better training data.

One contribution of our analysis is the notion that NN-exemplars provides a vital baseline

for understanding the behavior of a proposed system in relation to its training set.

NN versus Deep models: In fact, DeepJoint [228] and DeepPrior [155] were the sole

approaches to significantly outperform 1-NN (Figs. 2.17 and 2.18). This indicates that

deep architectures generalize well to novel test poses. Yet, the deep model [155] did show

39

greater sensitivity to objects and clutter than the 1-NN model. We see this qualitatively in

Fig. 2.11 (c-d,iii-iv) and quantitatively in Figs. 2.20 and 2.19. But, we can understand the

deep model’s failures: we did not train it with clutter, so it “generalizes” that the bottle

and hand are a single large hand. This may contrast with existing folk wisdom about deep

models: that the need for large training sets suggests that these models essentially memorize.

Our results indicate otherwise. Finally, the deep model performed worse on more distant

hands; this is understandable because it requires a larger canonical template (128x128) than

the 1-NN model (30x30).

Conclusion: The past several years have shown tremendous progress regarding hand pose:

training sets, testing sets, and models. Some applications, such as gaming interfaces and

sign-language recognition, appear to be well-within reach for current systems. Less than a

decade ago, this was not true [55, 174, 41]. Thus, we have made progress! But, challenges

remain nonetheless. Specifically, when segmentation is hard due to active hands or clutter,

many existing methods fail. To illustrate these realistic challenges we introduce a novel

test set. We demonstrate that realism and diversity in training sets is crucial, and can

be as important as the choice of model architecture. Thus, future work should investigate

building large, realistic, and diverse training sets. In terms of model architecture, we perform

a broad benchmark evaluation and find that deep models appear particularly well-suited for

pose estimation. Finally, we demonstrate that NN using volumetric exemplars provides a

startlingly potent baseline, providing an additional tool for analyzing both methods and

datasets.

40

Figure 2.16: Synthetic data versus accuracy: Synthetic training set size impacts per-
formance on our test test set. Performance grows logarithmically with the dataset size.
Synthesis is theoretically unlimited, but practically becomes unattractively slow.

ICL Test Set [220]

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

NN-Ego NN-NYU

NN-ICL NN-libhand
Hough [251] RDF [99] Simulation [144] DeepPrior [155]
LRF [220]

Figure 2.17: We plot results for several systems on the ICL test set using max-error (top)
and average-error (bottom). Except for 1-NN, all systems are trained on the corresponding
train set (in this case ICL-Train). To examine cross-dataset generalization, we also plot the
performance of our NN-baseline constructed using alternate sets (NYU, EGO, and libhand).
When trained with ICL, NN performs as well or better than prior art. One can find near-
perfect pose matches in the training set (see Fig. 2.1). See the text for further discussion.

41

NYU Test Dataset [228]

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100
p

ro
p

o
rt

io
n

 c
o

rr
ec

t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

NN-Ego NN-NYU Hough [251] RDF [99]

NN-ICL NN-libhand DeepJoint [228] DeepPrior [155]

Figure 2.18: Deep models [228, 155] perform noticeably better than other systems, and
appear to solve both articulated pose estimation and hand detection for uncluttered single-
user scenes (common in the NYU test set). However, the other systems compare more
favorably under average error. In Fig. 2.13, we interpret this disconnect by using 1-NN to
show that each test hand commonly matches a training example in all but one finger. See
the text for further discussion.

UCI-EGO Test Dataset [185]

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

NN-Ego NN-NYU Ego. WS. [183] DeepPrior [155] PXC [87]

NN-ICL NN-libhand Cascades [185] Hough [251] RDF [99]

Figure 2.19: For egocentric data, methods that classify the global scene [183] tend to out-
perform local scanning-window based approaches (including both deep and NN detectors).
Rogez at al [183] make the argument that kinematic constrains from the arm imply that
the location of the hand (in an egocentric coordinate frame) effects its local orientation and
appearance, which in turn implies that recognition should not be translation-invariant. Still
overall, performance is considerably worse than on other datasets. Egocentric scenes con-
tain more background clutter and object/surface interactions, making even hand detection
challenging for most methods.

42

Our Test Dataset - All Hands

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

Our Test Dataset - Near Hands (≤ 750mm)

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100
p

ro
p

o
rt

io
n

 c
o

rr
ec

t

NN-Ego NN-NYU Human DeepPrior [155] NiTE2 [175] PSO [160]
NN-ICL NN-libhand EPM [261] DeepSeg [59] RDF [99] PXC [87]
Hough [251] Cascades [185]

Figure 2.20: We designed our dataset to address the remaining challenges of in “in-the-
wild” hand pose estimation, including scenes with low-res hands, clutter, object/surface
interactions, and occlusions. We plot human-level performance (as measured through inter-
annotator agreement) in black. On nearby hands (within 750mm, as commonly assumed
in prior work) our annotation quality is similar to existing test sets such as ICL [155].
This is impressive given that our test set includes comparatively more ambiguous poses
(see Sec. 2.5.2). Our dataset includes far away hands, for which even humans struggle to
accurately label. Moreoever, several methods (Cascades,PXC,NiTE2,PSO) fail to correctly
localize any hand at any distance, though the mean-error plots are more forgiving than
the max-error above. In general, NN-exemplars and DeepPrior perform the best, correctly
estimating pose on 75% of frames with nearby hands.

43

Synthetic Training - NYU Test [228]

0 10 20 30 40 50 60 70 80 90 100

max joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

0 10 20 30 40 50 60 70 80 90 100

mean joint error threshold (mm)

0

10

20

30

40

50

60

70

80

90

100

p
ro

p
o

rt
io

n
 c

o
rr

ec
t

Real training data Synth: real-poses Synth: generic geometry
Synth: sensor-noise Synth: user specific Synth: 3d augmentation

Figure 2.21: Challenges of synthetic data: We investigate possible causes for our syn-
thetic training data’s lackluster performance. To do so, we synthesize a variety of training
sets for a deep model [155] and test on the NYU test set. Clearly, real training data (blue)
outperforms our generic synthetic training set (cyan), as described in Sec. 2.3.1). By fit-
ting our synthesis model’s geometry to the test-time users we obtain a modest gain (red).
However, the largest gain by far comes from synthesizing training data using only “realistic”
poses, matching those from the NYU training set. By additionally modeling sensor noise [74]
we obtain the magenta curve. Finally, we almost match the real training data (yellow ver-
sus blue) by augmenting our synthetic models of real-poses with out-of-plane rotations and
foreshortening.

44

Chapter 3

Models for Egocentric Hand Pose

Grégory Rogez, James Steven Supančič III & Deva Ramanan

3.1 Introduction

Our evaluation (in the previous chapter) showed that egocentric scenes remain a challenge.

As opposed to 3rd person hand-pose recognition, egocentric views may be more difficult due

to additional occlusions (from manipulated objects, or self-occlusions of fingers by the palm)

and the fact that hands interact with the environment and often leave the field-of-view.

The latter necessitates constant re-initialization, precluding the use of a large body of hand

trackers which typically perform well given manual initialization.

Previous work for egocentric hand analysis tends to rely on local 2D features, such as pixel-

level skin classification [128, 127] or gradient-based processing of depth maps with scanning-

window templates [181]. Our approach follows in the tradition of [181], who argue that near-

field depth measures obtained from a egocentric-depth sensor considerably simplifies hand

analysis. Interestingly, egocentric-depth is not “cheating” in the sense that humans make

45

Figure 3.1: Egocentric workspaces. We directly model the observable egocentric
workspace in front of a human with a 3D volumetric descriptor, extracted from a 2.5D
egocentric depth sensor. In this example, this volume is discretized into 4× 3× 4 bins. This
feature can be used to accurately predict shoulder, arm, hand poses, even when interacting
with objects. We describe models learned from synthetic examples of observable egocentric
workspaces obtained by placing a virtual Intel Creative camera on the chest of an animated
character.

use of stereoscopic depth cues for near-field manipulations [66]. We extend this observation

by building an explicit 3D map of the observable near-field workspace.

Contributions: In this chapter, we describe a new computational architecture that makes

use of global egocentric views, volumetric representations, and contextual models of

interacting objects and human-bodies. Rather than detecting hands with a local (translation-

invariant) scanning-window classifier, we process the entire global egocentric view (or work-

space) in front of the observer (Fig. 6.1). Hand appearance is not translation-invariant due to

perspective effects and kinematic constraints with the arm. To capture such effects, we build

a library of synthetic 3D egocentric workspaces generated using real capture conditions (see

examples in Fig. 3.2). We animate a 3D human character model inside virtual scenes with

objects, and render such animations with a chest-mounted camera whose intrinsics match

46

our physical camera . We simultaneously recognize arm and hand poses while interacting

with objects by classifying the whole 3D volume using a multi-class Support Vector Machine

(SVM) classifier. Our real-time recognition architecture is simple enough to be implemented

in 4 lines of code.

3.1.1 Related work

Hand-object pose estimation: While there is a large body of work on hand-tracking [115,

109, 108, 9, 161, 212, 243], we focus on hand pose estimation during object manipulations.

Object interactions both complicate analysis due to additional occlusions, but also provide

additional contextual constraints (hands cannot penetrate object geometry, for example).

Hamer et al. [77] describe articulated tracking with soft anti-penetration constraints, in-

creasing robustness to occlusion. They later describe contextual priors for hands in relation

to objects [76], and demonstrate their effectiveness for increasing tracking accuracy. Ob-

jects are easier to animate than hands because they have fewer pose parameters. With this

intuition, object motion can be used as an input signal for estimating hand motions [75].

Romero et al. [189] use a large synthetic dataset of hands manipulating objects, similar to

our work. We differ in our focus on single-image and egocentric analysis.

Egocentric Vision: Previous studies have focused on activities of daily living [171, 60].

Long-scale temporal structure was used to handle complex hand object interactions, exploit-

ing the fact that objects look different when they are manipulated (active) versus not manip-

ulated (passive) [171]. Much previous work on egocentric hand recognition make exclusive

use of RGB cues [127, 126], while we focus on volumetric depth cues. Notable exceptions

include Damen et al. [46], who employ egocentric RGB-D sensors for personal workspace

monitoring in industrial environments and Mann et al. [138], who employ such sensors to

assist blind users in navigation.

47

Figure 3.2: Synthesis: We generate a training set by sampling different dimensions of a
workspace model, yielding a total number of Narm×Nhand×Nobject×Nbackground samples. We
sample Narm arm poses, a fixed set of hand-object configurations (Nhand×Nobject = 100) and
a fixed set of Nbackground background scenes captured with an Intel Creative depth camera.
For each hand-object model, we randomly perturb shoulder, arm and hand joint angles to
generate physically possible arm+hand+object configurations. We show 2 examples of a
bottle-grasp (left) and a juice-box-grasp (right) rendered in front of a flat wall.

48

(a) (b)

(c) (d)

Figure 3.3: Examples of synthetic training images. Our rendering pipeline produces
realistic depth maps consisting of multiple hands manipulating household objects in front of
everyday backgrounds.

Depth features: Previous work has shown the efficacy of depth cues [201, 252]. We com-

pute volumetric depth features from point clouds. Previous work has examined point-cloud

processing of depth-images [254, 202, 252]. A common technique estimates local surface

orientations and normals [254, 252], but this may be sensitive to noise since it requires

derivative computations. We use simpler volumetric features, similar to [209] except that we

use a spherical coordinate frame that does not slide along a scanning window (we want to

measure depth in an egocentric coordinate frame).

Non-parametric recognition: Our work is inspired by non-parametric techniques that

make use of synthetic training data [189, 199, 77, 44, 230]. Shakhnarovich et al. [199] make

use of pose-sensitive hashing techniques for efficient matching of synthetic RGB images

rendered with Poser. We generate synthetic depth images, mimicking capture conditions of

our actual camera.

49

3.2 Training data

We begin by generating a training set of realistic 3D egocentric workspaces. Specifically,

we render synthetic 3D hand-object data (generated from a 3D animation system) on top

of real 3D background scenes, making use of the test camera projection matrix. Because

egocentric scenes involve objects that lie close to the camera, we found it useful to model

camera-specific perspective effects.

Poser models. Our in-house grasp database is constructed by modifying the commercial

Everyday hands Grasp Poser library [49]. We vary the objects being interacted with, as

well as the clothing of the character, i.e., with and without sleeves. We use more than

200 grasping postures and 49 objects, including kitchen utensils, personal bathroom items,

office/classroom objects, fruits, etc. Additionally we use 6 models of empty hands: wave, fist,

thumbs-up, point, open/close fingers. Some objects can be handled with different canonical

grasps. For example, one can grip a bottle by its body or by its lid when opening it. We

manually add such variants.

Kinematic model. Let θ be a vector of arm joint angles, and let φ be a vector of grasp-

specific hand joint angles, obtained from the above set of Poser models. We use a standard

forward kinematic chain to convert the location of finger joints u (in a local coordinate

system) to image coordinates:

p = C
∏
i

T (θi)
∏
j

T (φj)u, where T,C ∈ R4×4,

u =

[
ux uy uz 1

]T
, (x, y) = (f

px
pz
, f
py
pz

), (3.1)

where T specifies rigid-body transformations (rotation and translation) along the kinematic

chain and C specifies the extrinsic camera parameters. Here p represents the 3D position

of point u in the camera coordinate system. To generate the corresponding image point, we

50

assume camera intrinsics are given by identity scale factors and a focal length f (though it is

straightforward to use more complex intrinsic parameterizations). We found it important to

use the f corresponding to our physical camera, as it is crucial to correctly model perspective

effects for our near-field workspaces.

Pose synthesis: We wish to generate a large set of postured hands. However, building

a generative model of grasps is not trivial. One option is to take a data-driven approach

and collect training samples using motion capture [173]. Instead, we take a model-driven

approach that perturbs a small set of manually-defined canonical postures. To ensure that

physically plausible perturbations are generated, we take a simple rejection sampling ap-

proach. We fix φ parameters to respect the hand grasps from Poser, and add small Gaussian

perturbations to arm joint angles

θ′i = θi + ε where ε ∼ N(0, σ2).

Importantly, this generates hand joints p at different translations and viewpoints, correctly

modeling the dependencies between both. For each perturbed pose, we render hand joints

using (3.1) and keep exemplars that are 90% visible (e.g., their projected (x, y) coordinates

lie within the image boundaries). We show examples in Fig. 3.2.

Depth maps. Associated with each rendered set of keypoints, we would also like a depth

map. To construct a depth map, we represent each rigid limb with a dense cloud of 3D

vertices {ui}. We produce this cloud by (over) sampling the 3D meshes defining each rigid-

body shape. We render this dense cloud using forward kinematics (3.1), producing a set of

points {pi} = {(px,i, py,i, pz,i)}. We define a 2D depth map z[u, v] by ray-tracing. Specifically,

we cast a ray from the origin, in the direction of each image (or depth sensor) pixel location

51

(u, v) and find the closest point:

z[u, v] = min
k∈Ray(u,v)

||pk|| (3.2)

where Ray(u, v) denotes the set of points on (or near) the ray passing through pixel (u, v).

We found the above approach simpler to implement than hidden surface removal, so long as

we projected a sufficiently dense cloud of points.

Multiple hands: Some object interactions require multiple hands interacting with a single

object. Additionally, many views contain the second hand in the “background”. For example,

two hands are visible in roughly 25% of the frames in our benchmark videos. We would like

our training dataset to have similar statistics. Our existing Poser library contains mostly

single-hand grasps. To generate additional multi-arm egocentric views, we randomly pair

25% of the arm poses with a mirrored copy of another randomly-chosen pose. We then add

noise to the arm joint angles, as described above. Such a procedure may generate unnatural

or self-intersecting poses. To efficiently remove such cases, we separately generate depth

maps for the left and right arms, and only keep pairings that produce compatible depth

maps:

|zleft[u, v]− zright[u, v]| > δ ∀u, v (3.3)

We find this simple procedure produces surprisingly realistic multi-arm configurations (Fig. 3.3).

Finally we add background clutter from depth maps of real egocentric scenes (not from our

benchmark data). We use the above approach to generate over 100,000 multi-hand(+arm+objects)

configurations and associated depth-maps.

52

Figure 3.4: Volume quantization. We quantize those points that fall within the egocentric
workspace (observable volume within zmax = 70cm) into a binary spherical voxel grid of
Nu×Nv×Nw voxels (a). We vary the azimuth angle α to generate equal-size projections on
the image plane (b). Spherical bins ensure that voxels at different distances project to same
image area (c). This allows for efficient feature computation and occlusion handling, since
occluded voxels along the same line-of-sight can easily be identified.

3.3 Formulation

3.3.1 Perspective-aware depth features

It may seem attractive to work in orthographic (or scaled orthographic) coordinates, as this

simplifies much of 3D analysis. Instead, we posit that perspective distortion is useful in

egocentric settings and should be exploited: objects of interest (hands, arms, and manipu-

lated things) tend to lie near the body and exhibit perspective effects. Specifically, parts of

objects that are closer to the camera project to a larger image size. To model such effects, we

construct a spherical bin histogram by gridding up the egocentric workspace volume by vary-

ing azimuth and elevation angles (Fig. 3.4). We demonstrate that this feature outperforms

orthographic counterparts, and is also faster to compute.

53

Figure 3.5: Binarized volumetric feature. We synthesize training examples by randomly
perturbing shoulder, arm and hand joint angles in a physically possible manner (a). For
each example, a synthetic depth map is created by projecting the visible set of dense 3D
points using a real-world camera projection matrix (b). The resulting 2D depth map is
then quantized with a regular grid in x-y directions and binned in the viewing direction to
compute our new binarized volumetric feature (c). In this example, we use a 32 × 24 × 35
grid. Note that for clarity we only show the sparse version of our 3D binary feature. We
also show the quantized depth map z[u, v] as a gray scale image (c).

Binarized volumetric features: Much past work processes depth maps as 2D rasterized

sensor data. Though convenient for applying efficient image processing routines such as

gradient computations (e.g., [222]), rasterization may not fully capture the 3D nature of

the data. Alternatively, one can convert depth maps to a full 3D point cloud [119], but

the result is orderless, making operations such as correspondence-estimation difficult. We

propose encoding depth data in a 3D volumetric representation, similar to [209]. To do so, we

can back-project the depth map from (3.2) into a cloud of visible 3D points {pk}, visualized

in Fig. 3.5-(b). They are a subset of the original cloud of 3D points {pi} in Fig. 3.5-(a). We

now bin those visible points that fall within the egocentric workspace in front of the camera

(observable volume within zmax = 70cm) into a binary voxel grid of Nu ×Nv ×Nw voxels:

b[u, v, w] =

 1 if ∃k s.t. pk ∈ F (u, v, w)

0 otherwise.
(3.4)

54

where F (u, v, w) denotes the set of points within a voxel centered at coordinate (u, v, w).

Spherical voxels: Past work tends to use rectilinear voxels [209, 119]. Instead, we use a

spherical binning structure, centering the sphere at the camera origin (Fig. 3.4). At first

glance, this might seem strange because voxels now vary in size – those further away from

the camera are larger. The main advantage of a “perspective-aware” binning scheme is that

all voxels now project to the same image area in pixels (Fig. 3.4-(c)). We will show that

this both increases accuracy (because one can better reason about occlusions) and speed

(because volumetric computations are sparse).

Efficient quantization: Let us choose spherical bins F (u, v, w) such that they project to

a single pixel (u, v) in the depth map. This allows one to compute the binary voxel grid

b[u, v, w] by simply “reading off” the depth value for each z(u, v) coordinates, quantizing it

to z′, and assigning 1 to the corresponding voxel:

b[u, v, w] =

 1 if w = z′[u, v]

0 otherwise
(3.5)

This results in sparse volumetric voxel features, as visualized in Fig. 3.5-(c). Crucially, a

spherical parameterization allows one to efficient reason about occlusions: once a depth

measurement is observed at position b[u′, v′, w′] = 1, all voxels behind it are occluded for

w ≥ w′. This arises from the fact that single camera depth measurements are, in fact, 2.5D.

By convention, we define occluded voxels to be “1”. Note that such occlusion reasoning is

difficult with orthographic parameterizations because voxels are not arranged along line-of-

sight rays.

In practice, we consider a coarse discretization of the volume to make the problem more

tractable. The depth map z[x, y] is resized to Nu × Nv (smaller than depth map size) and

quantized in the z-direction. To minimize the effect of noise when counting the points which

55

fall in the different voxels, we quantize the depth measurements by applying a median filter

on the pixel values within each image region:

∀u, v ∈ [1, Nu]× [1, Nv],

z′[u, v] = Nw

zmax
median(z[x, y] : (x, y) ∈ P (u, v)),

(3.6)

where P (u, v) is the set of pixel coordinates in the original depth map corresponding to pixel

coordinate (u, v) coordinates in the resized depth map.

3.3.2 Global pose classification

We quantize the set of poses from our synthetic database into K coarse classes for each limb,

and train a K-way pose-classifier for pose-estimation. The classifier is linear and makes use

of our sparse volumetric features, making it quite simple and efficient to implement.

Pose space quantization: For each training exemplar, we generate the set of 3D key-

points: 17 joints (elbow + wrist + 15 finger joints) and the 5 finger tips. Since we want

to recognize coarse limb (arm+hand) configurations, we cluster the resulting training set

by applying K-means to the elbow+wrist+knuckle 3D joints. We usually represent each of

the K resulting clusters using the average 3D/2D keypoint locations of both arm+hand (See

examples in Fig. 3.6). Note that K can be chosen as a compromise between accuracy and

speed.

Global classification: We use a linear SVM for a multi-class classification of upper-limb

poses. However, instead of classifying local scanning windows, we classify global depth maps

quantized into our binarized depth feature b[u, v, w] from (3.5). Global depth maps allow

the classifier to exploit contextual interactions between multiple hands, arms and objects.

In particular, we find that modeling arms is particularly helpful for detecting hands. For

each class k ∈ {1, 2, ...K}, we train a one-vs-all SVM classifier to obtain a weight vector

56

Figure 3.6: Pose classifiers. We visualize the linear weight tensor βk[u, v, w] learnt by the
SVM for a 32×24×35 grid of binary features for 3 different pose clusters. We plot a 2D (u, v)
visualization obtained by computing the max along w. We also visualize the corresponding
average 3D pose in the egocentric volume together with the top 500 positive (light gray) and
negative weights (dark gray) within βk[u, v, w].

which can be re-arranged into a Nu × Nv × Nw tensor βk[u, v, w]. The score for class k is

then obtained by a simple dot product of this weight and our binarized feature b[u, v, w]:

score[k] =
∑
u

∑
v

∑
w

βk[u, v, w] · b[u, v, w]. (3.7)

We visualize projections of the learned weight tensor βk[u, v, w] in Fig. 3.6 and slices of the

tensor in Fig. 3.7.

Figure 3.7: Weights along w. We visualize the SVM weights βk[u, v, w] for a particular
(u, v) location. Our histogram encoding allows us to learn smooth nonlinear functions of
depth values. For example, the above weights respond positively to depth values midway
into the egocentric volume, but negatively to those closer.

57

3.3.3 Joint feature extraction and classification

To increase run-time efficiency, we exploit the sparsity of our binarized volumetric feature

and jointly implement feature extraction and SVM scoring. Since the final score is a simple

dot product with binary features, one can readily extract the feature and update the score

on the fly. Because all voxels behind the first measurement are backfilled, the SVM score for

each class k from (5.1) can be written as:

score[k] =
∑
u

∑
v

β′k[u, v, z
′[u, v]], (3.8)

where z′[u, v] is the quantized depth map and tensor β′k[u, v, w] is the cumulative sum of the

weight tensor along dimension w:

β′k[u, v, w] =
∑
d>=w

βk[u, v, d]. (3.9)

Note that the above cumulative-sum tensors can be precomputed. This makes test-time

classification quite efficient (Eq. 3.8). Feature extraction and SVM classification can be

computed jointly following the algorithm presented in Alg. 2. Our implementation runs at

275 frames per second.

3.4 Experiments

For evaluation, we use the recently released UCI Egocentric dataset [181] and score hand

pose detection as a proxy for limb pose recognition (following the benchmark criteria used

in [181]) . The dataset consists of 4 video sequences (around 1000 frames each) of everyday

egocentric scenes with hand annotations every 10 frames.

58

input : Quantized depth map z′[u, v].
Cumsum’ed weights {β′k[u, v, w]}.
output: score[k]

for u ∈ {0, 1, ...Nu} do
for v ∈ {0, 1, ...Nv} do

for k ∈ {0, 1, ...K} do
score[k]+ = β′k[u, v, z

′[u, v]]
end

end

end
Algorithm 2: Joint feature extraction & classification. We jointly extract binarized depth
features and evaluate linear classifiers for all quantized poses k. We precompute a “cum-
sum” β′k of our SVM weights. At each location (u, v), we add all the weights corresponding
to the voxels behind z[u, v], i.e. such that w ≥ z[u, v].

Feature comparison Feature resolution

(a) (b)

Figure 3.8: Feature evaluation. We compare our feature encoding to different variants
(for K = 750 classes) in (a). Our feature outperforms HOG-on-depth and HOG-on-RGBD.
Our feature also outperforms orthographic voxels and the raw quantized depth map, which
surprisingly itself outperforms all other baselines. When combined with a linear classifier,
our sparse encoding can learn nonlinear functions of depth (see Fig. 3.7), while the raw
depth map can only learn linear functions. We also vary the resolution of our feature in (b),
again for K = 750. A size of 32× 24× 35 is a good trade-off between size and performance.
Doubling the resolution in u, v marginally improves accuracy.

59

Feature evaluation: We first compare hand detection accuracy for different K-way SVM

classifiers trained on HOG on depth (as in [181]) and HOG on RGB-D, thus exploiting the

stereo-views provided by RGB and depth sensors. To evaluate our voxel encoding, we also

trained a SVM directly on the quantized depth map z[u, v] (without constructing a sparse

binary feature). To evaluate our perspective voxels, we compare to an orthographic version

of our binarized volumetric feature (similar to past work [209, 119]). In that case, we

quantize those points that fall within a 64x48x70 cm3 egocentric workspace in front of the

camera into a binary grid of square voxels:

b⊥[u, v, w] =

 1 if ∃i s.t. (xi, yi, zi) ∈ N(u, v, w)

0 otherwise
(3.10)

where N(u, v, w) specifies a 2 × 2 × 2cm cube centered at voxel (u, v, w). Note that this

feature is considerably more involved to calculate, since it requires an explicit backprojection

and explicit geometric computations for binning. Moreover, identifying occluded voxels is

difficult because they are not arranged along line-of-sight rays.

The results obtained with K = 750 pose classes are reported in Fig. 3.8-(a). Our perspective

binary features clearly outperforms other types of features. We reach 72% detection accuracy

while the state of the art [181] reports 60% accuracy. Our volumetric feature has empirically

strong performance in egocentric settings. One reason is that it is robust to small intra-

cluster misalignment and deformations because all voxels behind the first measurement are

backfilled. Second, it is sensitive to variations in apparent size induced by perspective effects

(because voxels have consistent perspective projections). In Fig. 3.8-(b), we also show results

varying the resolution of the grid. Our choice of 32 × 24 × 35 is a good trade-off between

feature dimensionality and performance.

We compare primarily to [181], as that method was already shown to outperform commercial

(Intel PXC [87]) and fully-featured tracking systems [160]. Such systems perform poorly due

60

Detection varying K Detection varying size of training

(a) (b)

Figure 3.9: Clustering and size of training set. In (a), we plot performance as a function
of K (the number of discretized pose classes) for a fixed-size training set. For reference, we
also plot the state-of-the-art method from [181]. In (b), we plot performance as we increase
the amount of training data for K. Both results suggest that our system may perform better
with more training data and more quantized poses. Please see text for further discussion.

to occlusions inherent in egocentric viewpoints. Notably, [181] use local part templates in

a scanning window fashion. Our global approach captures correlations between pose and

spatial location, and better deals with occlusion where local appearance can be misleading.

Training data and clustering: We evaluated the performance of our algorithm when

varying the number of quantized pose classes K and the amount of training data. Fig. 3.9-

(a) varies K for a fixed training set of 120,000 training images. Performance maxes out

relatively quickly at K = 750, suggesting that our model may be overfitting due to lack

of training data. Fig. 3.9-(a) fixes K = 750 and increases the amount of training data per

quantized class. Here, we see a more consistent increase in accuracy. These results suggest

that a massive training set and larger K may produce better results.

Qualitative results: We illustrate successes in difficult scenarios in Fig. 3.10 and analyze

common failure modes in Fig. 3.11. Please see the figures for additional discussion.

61

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

CVPR
#1403

CVPR
#1403

CVPR 2015 Submission #1403. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Figure 9. Good detections. We show frames where arm and hand are correctly detected. First, we present some easy cases of hands in
free-space (top row). Noisy depth data and cluttered background cases (middle row) showcases the robustness of our system while novel
objects (bottom row: envelope, staple box, pan, double-handed cup and lamp) require generalization to unseen objects at train-time.

reflective object (phone) bottle noisy depth/clutter unseen object (keys) malsegmentability ambiguous pose

Figure 10. Hard cases. We show frames where the pose is not correctly recognized (sometimes not even detected) by our system. These
hard cases include excessively-noisy depth data, hands manipulating reflective material (phone or bottle of wine), malsegmentability cases
of hands touching background.

explicitly reasons about perspective occlusions while being
both conceptually and practically simple to implement (4

lines of code). We produce state-of-the-art real-time results
for egocentric pose estimation.

8

Freespace

Noisy depth

Novel objects

Figure 3.10: Good detections. We show frames where arm and hand are correctly detected.
First, we present some easy cases of hands in free-space (top row). Noisy depth data and
cluttered background cases (middle row) showcases the robustness of our system while novel
objects (bottom row: envelope, staple box, pan, double-handed cup and lamp) require
generalization to unseen objects at train-time.

Figure 3.11: Hard cases. We show cases where the pose is not correctly recognized (some-
times not even detected): excessively-noisy depth data, hands manipulating reflective ma-
terial (phone or bottle of wine) or malsegmentability cases of hands touching background.

62

3.5 Conclusions

We have proposed a new approach to the problem of egocentric 3D hand pose recognition

during interactions with objects. Instead of classifying local depth image regions through

a typical translation-invariant scanning window, we have shown that classifying the global

arm+hand+object configurations within the “whole” egocentric workspace in front of the

camera allows for fast and accurate results. We train our model by synthesizing workspace

exemplars consisting of hands, arms, objects and backgrounds. Our model explicitly rea-

sons about perspective occlusions while being both conceptually and practically simple to

implement (4 lines of code). We produce state-of-the-art real-time results for egocentric pose

estimation in real-time.

63

Chapter 4

Models for Hand Grasps

Grégory Rogez, James Steven Supančič III & Deva Ramanan

4.1 Introduction

Recall that, in the preceding chapter, we developed a method to (re-)initialize a hand tracker

by estimating pose from a single egocentric depth depth image. But, there is more to

hand-object manipulation than pose. Humans can interact with objects in complex ways,

including grasping, pushing, or bending them. By watching humans, an autonomous robot

might learn the forces to apply in novel object manipulation tasks. In this chapter, we

address the perceptual problem of parsing such manipulations, with a focus on handheld,

manipulatable objects. Most previous work on hand analysis tends to focus only on kinematic

pose estimation [79, 56]. Interestingly, the same kinematic pose can be used for dramatically

different functional manipulations (Fig. 6.1), where differences are manifested in terms of

distinct contact points and force vectors. Thus, contact points and forces play a crucial role

when parsing such interactions from a functional perspective.

64

Figure 4.1: Same kinematic pose, but different functions: We show 3 images of near-
identical kinematic hand pose, but very different functional manipulations, including a wide-
object grasp (a), a precision grasp (b), and a finger extension (c). Contact regions (green)
and force vectors (red), visualized below each image, appear to define such manipulations.
This chapter (1) introduces a large-scale dataset for predicting pose+contacts+forces from
images and (2) proposes an initial method based on fine-grained grasp classification.

Problem setup: Importantly, we wish to analyze human-object interactions in situ. To do

so, we make use of wearable depth cameras to ensure that recordings are mobile (allowing one

to capture diverse scenes [171, 31]) and passive (avoiding the need for specialized pressure

sensors/gloves [27, 112]). We make no explicit assumption about the environment, such as

known geometry [169]. However, we do make explicit use of depth cues, motivated by the fact

that humans make use of depth for near-field analysis [66]. Our problem formulation is thus:

given a first-person RGB-D image of a hand-object interaction, predict the 3D kinematic

hand pose, contact points, and force vectors.

Motivation: We see several motivating scenarios and applications. Our long-term goal

is to produce a truly functional description of a scene that is useful for an autonomous

robot. When faced with a novel object, it will be useful to know how if it can be pushed or

grasped, and what forces and contacts are necessary to do so [197]. A practical application

65

of our work is imitation learning or learning by demonstration for robotics [8, 70], where

a robot can be taught a task by observing humans performing it. Finally, our problem

formulation has direct implications for assistive technology. Clinicians watch and evaluate

patients performing everyday hand-object interactions for diagnosis and evaluation [7]. A

patient-wearable camera that enabled automated parsing of object manipulations would

allow for long-term monitoring.

Why is this hard? Estimating forces from visual signals typically requires knowledge of

object mass and velocity, which is difficult to reliably infer from a single image or even a

video sequence. Isometric forces are even more difficult to estimate because no motion may

be observed. Finally, even traditional tasks such as kinematic hand pose estimation are now

difficult because manipulated objects tend to generate significant occlusions. Indeed, much

previous work on kinematic hand analysis considers isolated hands in free-space [218], which

is a considerably easier problem.

Approach: We address the continuous problem of pose+contact+force prediction as a dis-

crete fine-grained classification task, making use of a recent 73-class taxonomy of fine-grained

hand-object interactions developed from the robotics community [134]. Our approach is in-

spired by prototype-based approaches for continuous shape estimation that treat the problem

as a discrete categorical prediction tasks, such as shapemes [178] or poselets [26]. However,

rather than learning prototypes, we make use of expert domain knowledge to quantize the

space of manipulations, which allows us to treat the problem as one of (fine-grained) clas-

sification. A vital property of our classification engine is that it is data-driven rather than

model-based. We put forth considerable effort toward assembling a large collection of di-

verse images that span the taxonomy of classes. We experiment with both parametric and

exemplar-based classification architectures trained on our collection.

Our contributions: Our primary contributions are (1) a new “in-the-wild”, large-scale

dataset of fine-grained grasps, annotated with contact points and forces. Importantly, the

66

data is RGB-D and collected from a wearable perspective. (2) We develop a pipeline for fine-

grained grasp classification exploiting depth and RGB data, training on combinations of both

real and synthetic training data and making use of state-of-the-art deep features. Overall, our

results indicate that grasp classification is challenging, with accuracy approaching 20% for a

71-way classification problem. (3) We describe a simple post-processing exemplar framework

that predicts contacts and forces associated with hand manipulations, providing an initial

proof-of-concept system that addresses this rather novel visual prediction task.

4.2 Related Work

Hand pose with RGB(D): Hand pose estimation is a well-studied task, using both RGB

and RGB-D sensors as input. Much work formulates the task as articulated tracking over

time [115, 109, 108, 9, 161, 212, 243], but we focus on single-image hand pose estimation

during object manipulations. Relatively few papers deal with object manipulations, with

the important exceptions of [186, 189, 118, 117]. Most similar to our method is [169], who

estimate contact forces during hand-object interactions, but do so in a “in-the-lab” scenario

where objects of known geometry are used. We focus on single-frame “in-the-wild” footage

where the observer is instrumented, but the environment (and its constituent objects) are

not.

Egocentric hand analysis: Spurred by the availability of cheap wearable sensors, there has

been a considerable amount of recent work on object manipulation and grasp analysis from

egocentric viewpoints [47, 32, 86, 31, 61]. The detection and pose estimation of human hands

from wearable cameras was explored in [180]. [32] propose a fully automatic vision-based

approach for grasp analysis from a wearable RGB camera, while [86] explores unsupervised

clustering techniques for automatically discovering common modes of human hand use. Our

67

work is very much inspired by such lines of thought, but we take a data-driven perspective,

focusing on large-scale dataset collection guided by a functional taxonomy.

Grasp taxonomies: Numerous taxonomies of grasps have been proposed, predominantly

from the robotics community. Early work by Cutkosky [43] introduced 16 grasps, which were

later extended to 33 by Feix et al. [63], following a definition of a grasp as a “static hand pos-

tures with which an object can be held with one hand”. Though this excluded two-handed,

dynamic, and gravity-dependent grasps, this taxonomy has been widely used [188, 32, 31].

Our work is based on a recent fine-grained taxonomy proposed in [134], that significantly

broadens the scope of manipulations to include non-prehensile object interactions (that are

technically not grasps, such as pushing or pressing) as well as other gravity-dependent in-

teractions (such as lifting). The final taxonomy includes 73 grasps that are annotated with

various qualities (including hand shape, force type, direction of movement and effort).

Datasets. Because grasp understanding is usually addressed from a robotics perspective,

the resulting methods and datasets developed for the problem tend to be tailored for that

domain. For example, robotics platforms often require an unavoidable real-time constraint,

limiting the choice of algorithms, which also (perhaps implicitly) limited the difficulty of the

data in terms of diversity (few subjects, few objects, few scenes). We overview the existing

grasp datasets in Table 4.1 and tailor our new dataset to “fill the gap” in terms of overall

scale, diversity, and annotation detail.

4.3 GUN-71: Grasp UNderstanding Dataset

We begin by describing our dataset, visualized in Fig. 4.2. We start with the 73-class

taxonomy of [134], but omit grasps 50 and 61 because of their overly-specialized nature

(holding a ping-pong racket and playing saxophone, respectively), resulting in 71 classes.

68

Figure 4.2: GUN-71: Grasp Understanding dataset: We have captured (from a chest-
mounted RGB-D camera) and annotated our own dataset of fine-grained grasps, following
the recent taxonomy of [134]. In the top row, the “writing tripod” grasp class exhibits
low variability in object and pose/view across 6 different subjects and environments. In
the second row, “flat hand cupping” exhibits high variability in objects and low variability
in pose due to being gravity-dependent. In the third row, “trigger press” exhibits high
variability in objects and pose/view. Finally, in bottom, we show 6 views of the same grasp
captured for a particular object and a particular subject in our dataset.

4.3.1 Data capture

To capture truly in-the-wild data, we might follow the approach of [31] and monitor un-

prompted subjects behaving naturally throughout the course of a day. However, this results

in a highly imbalanced distribution of observed object manipulations. Bullock et al. [31]

shows that 10 grasps suffice to explain 80% of the object interactions of everyday users. Bal-

anced class distributions arguably allow for more straightforward analysis, which is useful

when addressing a relatively unexplored problem. Collecting a balanced distribution in such

a unprompted manner would be prohibitively expensive, both in terms of raw data collection

and manual annotation. Instead, we prompt users using the scheme below.

69

Capture sessions: We ask subjects to perform the 71 grasps on personal objects (typical for

the specific grasp), mimicking real object manipulation scenarios in their home environment.

Capture sessions were fairly intensive and laborious as a result. We mount Intel’s Senz3D,

a wearable time-of-flight sensor [89, 46, 138], on the subjects’s chest using a GoPro harness

(as in [180]). We tried to vary the types of objects as much as possible and considered

between 3 and 4 different objects per subject for each of the 71 grasps. For each hand-

object configuration, we took between 5 and 6 views of the manipulation scene. These views

correspond to several steps of a particular action (opening a lid, pouring water) as well as

different 3D locations and orientation of the hand holding the object (with respect to the

camera).

Diversity: This process led to the capture of roughly 12,000 RGB-D images labeled with

one of the 71 grasps. We captured 28 objects per grasp, resulting in 28×71 = 1988 different

hand-object configurations with 5-6 views for each. We consider 8 different subjects (4

males and 4 females) in 5 different houses, ensuring that “house mates” avoid using the

same objects to allow leave-one-out experiments (we can leave out one subject for testing

and ensure that the objects will be novel as well). Six of our eight subjects were right

handed. To ensure consistency, we asked the two left-handed subjects to perform grasps

with their right hand. We posited that body shape characteristics might effect accuracy and

generalizability, particularly in terms of hand size, shape, and movement. To facilitate such

analysis, we also measured arm and finger lengths for each subject.

4.4 Synthetic (training) data generation

3D hand-object models: In addition to GUN-71, we construct a synthetic training dataset

that will be used during our grasp-recognition pipeline. To construct this synthetic dataset,

we make use of synthetic 3D hand models. We obtain a set of 3D models by extending the

70

Figure 4.3: Contact point and forces: We show the 3D hand model for 18 grasps of
the considered taxonomy. We also show the contact points (in green) and forces (in red)
corresponding to each grasp. The blue points help visualize the shape of the typical object
associated with each of these 18 grasps. We can observe that power grasps have wider contact
areas on finger and palm regions, while precision grasps exhibit more localized contact points
on finger tips and finger pads.

publicly-available Poser models from [186] to cover the selected grasps from [134]’s taxonomy

(by manually articulating the models to match the visual description of grasp).

Contact and force annotations: We compute contact points and applied forces on our

3D models with the following heuristic procedure. First, we look for physical points of

contact between the hand and object mesh. We do this by intersecting the triangulated

hand and object meshes with the efficient method of [150]. We produce a final set of contact

regions by connected-component clustering the set of 3D vertices lying within an intersection

boundary. To estimate a force vector, we assume that contact points are locally stable and

will not slide along the surface of the object (implying the force vector is normal to the

surface of the object). We estimate this normal direction by simply reporting the average

normal of vertices within each contact region. Note this only produces an estimate of the

force direction, and not magnitude. Nevertheless, we find our heuristic procedure to produce

71

surprisingly plausible estimates of contact points and force directions for each 3D model (

Fig. 4.3).

Synthetic training data: We use our 3D models to generate an auxiliary dataset of

synthetic depth data, annotated with 3D poses, grasp class label, contacts, and force direction

vectors. We additionally annotate each rendered depth map with a segmentation mask

denoting background, hand, and object pixels. We render over 200, 000 training instances

(3, 000 per grasp). We will release our models, rendering images, as well as GUN-71 (our

dataset of real-world RGB-D images) to spun further research in the area.

4.5 Recognition pipeline

We now describe a fairly straightforward recognition system for recognizing grasps given

real-world RGB-D images. Our pipeline consists of two stages; hand segmentation and

fine-grained grasp classification.

4.5.1 Segmentation

The first stage of our pipeline is segmenting the hand from background clutter, both in the

RGB and depth data. Many state-of-the-art approaches [32, 189, 186] employ user-specific

skin models to localize and segment out the hand. We want a system that does not require

such a user-specific learning stage and could be applied to any new user and environment,

and so instead make use of depth cues to segment out the hand.

Depth-based hand detection: We train a P -way classifier designed to report one of

P = 1500 quantized hand poses, using the approach of [182]. This classifier is trained on the

synthetic training data, which is off-line clustered into P pose classes. Note that the set of

72

Figure 4.4: Segmentation: We show the different steps of our segmentation stage: the
depth map (a) is processed using a K-way pose classifier [182], which reports a quantized
pose detection k and associated foreground prior bik (b) and mean depth µik(c) (used to
compute a posterior following Eq. 4.1). To incorporate bottom-up RGB cues, we first extract
superpixels (e) and then label superpixels instead of pixels to produce a segmentation mask
(f). This produces a segmented RGB image in (g) , which can then be cropped (h) and/or
unsegmented (i). We concatenate (deep) features extracted from (d), (g), (h), and (i) to
span a variety of resolutions and local/global contexts.

pose classes P is significantly larger than the set of fine-grained grasps K = 71. We use the

segmentation mask associated with this coarse quantized pose detection to segment out the

hand (and object) from the test image, described further below.

Pixel model: We would like to use hand detections to generate binary segmentation masks.

To do so, we use a simple probabilistic model where xi denotes the depth value of pixel i and

yi ∈ {0, 1} is its binary foreground/background label. We write the posterior probability of

label yi given observation xi, all conditioned on pose class k as:

p(yi|xi, k) ∝ p(yi|k)p(xi|yi, k) (4.1)

73

which can easily derived from Bayes rule . The first term on the right-hand-side is the “prior”

probability of pixel i being fg/bg, and the second term is a “likelihood” of observing a depth

value given a pose class k and label:

p(yi = 1|k) = bik Bernoulli (4.2)

p(xi|yi = 1, k) = N(xi;µik, σ
2
ik) Normal (4.3)

p(xi|yi = 0, k) ∝ constant Uniform (4.4)

We use a pixel-specific Bernoulli distribution for the prior, and an univariate Normal and

Uniform (uninformative) distribution for the likelihood. Intuitively, foreground depths tend

to be constrained by the pose, while the background will not be. Given training data of

depth images x with foreground masks y and pose class labels k, it is straightforward to

estimate model parameters {bik, µik, σik} with maximum likelihood estimation (frequency

counts, sample means, and sample variances). We visualize the pixel-wise Bernoulli prior bik

and mean depth µik for a particular class k in Fig. 4.4-b and Fig. 4.4-c.

RGB-cues: Thus far, our segmentation model does not make use of RGB-based grouping

cues such as color changes across object boundaries. To do so, we first compute RGB-based

superpixels [2] on a test image and reason about the binary labels of superpixels rather than

pixels:

labelj = I
(1

|Sj|
∑
i∈Sj

p(yi|xi, k) > .5
)

(4.5)

where Sj denotes the set of pixels from superpixel j. We show a sample segmentation in

Fig. 4.4. Our probabilistic approach tends to produce more reliable segmentations than

existing approaches based on connected-component heuristics [87].

74

4.5.2 Fine-grained classification

We use the previous segmentation stage to produce features that will be fed into a K = 71-

way classifier. We use state-of-the-art deep networks – specifically, Deep19 [204] – to extract

a 3096 dimensional feature. We extract off-the-shelf deep features extracted for (1) the entire

RGB image, (2) a cropped window around the detected hand, and (3) a segmented RGB

image (Fig. 4.4 (d,g,h,i)). We resize each window to a canonical size (of 224 x 224 pixels)

before processing. The intuition behind this choice is to mix high and low resolution features,

as well as global (contextual) and local features. The final concatenated descriptors are fed

into a linear multi-class SVM for processing.

Exemplar matching: The above stages return an estimate for the employed grasp and a

fairly accurate quantized pose class, but it is still quantized nonetheless. One can refine this

quantization by returning the closest synthetic training example belonging to the recognized

grasp and the corresponding pose cluster. We do this by returning the training example n

from quantized class k with the closest foreground depth:

NN(x) = min
n∈Classk

∑
i

yni (xni − µik)2 (4.6)

We match only foreground depths in the nth synthetic training image xn, as specified by

its binary label yn. Because each synthetic exemplar is annotated with hand-object contact

points and forces from its parent 3D hand model, we can predict forces and contact points

by simply transferring them from the selected grasp model to the exemplar location in the

3D space.

75

4.6 Experiments

For all the experiments of this section, we use a leave-one-out approach where we train our 1-

vs-all SVM classifiers on 7 subjects and test on the last 8th subject. We repeat that operation

with the 8 subjects and average the results. When analyzing our results, we refer to grasps

by their id#. In the supplementary material, we include a visualization of all grasps in our

taxonomy.

Baselines: We first run some “standard” baselines: HOG-RGB, HOG-Depth, and an off-

the-shelf deep RGB feature [204]. We obtained the following average classification rate:

HOG-RGB (3.30%), HOG-Depth (6.55%), concatenated HOG-RGB and HOG-Depth (6.55%)

and Deep-RGB (11.31%). Consistent with recent evidence, deep features considerably out-

perform their hand-designed counterparts, though overall performance is still rather low

(Table 4.2).

Segmented/cropped data: Next, we evaluate the role of context and clutter. Using seg-

mented RGB images marginally decreases accuracy of deep features from 11.31% to 11.10%,

but recognition rates appear are more homogeneous. Looking at the individual grasp clas-

sification rates, segmentation helps a little for most grasps but hurts the accuracy of “easy”

grasps where context or object shape are important (but removed in the segmentation). This

includes non-prehensile “pressing” grasps (interacting with a keyboard) and grasps associ-

ated with unique objects (chopsticks). Deep features extracted from a cropped segmentation

and cropped detection increase accuracy to 12.55% and 13.67%, respectively, suggesting that

some amount of local context around the hand and object helps.

Competing methods: [189, 32] make use of HOG templates defined on segmented RGB

images obtained with skin detection. Because skin detectors did not work well on our (in-

the-wild) dataset, we re-implemented [32] using HOG templates defined on our depth-based

segmentations and obtained 7.69% accuracy. To evaluate recent non-parametric methods

76

Grasp classification Confusion matrix

(a) (b)

Figure 4.5: RGB Deep feature + SVM: We show the individual classification rates for
the 71 grasps in our dataset (a) and the corresponding confusion matrix in (b).

[189], we experimented with a naive nearest neighbor (NN) search using the different features

extracted for the above experiments and obtained 6.10%, 6.97%, 6.31% grasp recognition

accuracy using Deep-RGB, cropped-RGB and cropped+segmented-RGB. For clarity, these

replace the K-way SVM classifier with a NN search. The significant drop in performance

suggests that the learning is important, implying that our dataset is still not big enough to

cover all possible variation in pose, objects and scenes.

Cue-combination: To take advantage of detection and segmentation without hurting

classes where context is important, we trained our SVM grasp classifier on the concatenation

of all the deep features. Our final overall classification rate of 17.97% is a considerable im-

provement over a naive deep model 11.31% as well as (our reimplementation of) prior work

7.69%. The corresponding recognition rates per grasp and confusion matrices corresponding

to this classifier are given in Fig. 4.5.

Easy cases: High-performing grasp classes (Fig. 4.5) tend to be characterized by limited

variability in terms of viewpoint (i.e., position and orientation of the hand w.r.t camera)

77

and/or object: eg. opening a lid (#10), writing (#20), holding chopsticks (#21), measuring

with a tape (#33), grabbing a large sphere such as a basketball (#45), using screwdriver

(#47), trigger press (#49), using a keyboard (#60), thumb press (#62), holding a wine

cup (#72). Other high-performing classes tend to exhibit limited occlusions of the hand:

hooking a small object(#15) and palm press (#55).

Common confusions: Common confusions in Fig. 4.6 suggest that finger kinematics are

a strong cue captured by deep features. Many confusions correspond to genuinely similar

grasps that differ by small details that might be easily occluded by the hand or the manip-

ulated object: “Large diameter” (#1) and “Ring” (#31) are both used to grasp cylindrical

objects, except that “Ring” only uses thumb and index finger. When the last three fingers

are fully occluded by the object, it is visually impossible to differentiate them (see Fig. 4.6-

c). “Adduction-Grip” (#23) and “Middle-over-Index”(#51) both involve grasping an object

using the index and middle finger. Abduction-Grip holds the object between the two fingers,

while Middle-over-Index holds the object using the pad of the middle finger and nail of the

index finger (see Fig. 4.6-f).

Best view: To examine the effect of viewpoint, we select the top-scoring view for each grasp

class, increasing accuracy from 17.97% to 22.67% (Table 4.3). Comparing the two sets of

recognition rates, best-view generally increases the performance of easy grasps significantly

more than difficult ones - e.g., the average recognition rate of the top 20 grasps grow from

36.20% to 47.53%, while the top 10 grasps grows from 44.97% to 59.04%. This suggests that

some views may be considerably more ambiguous than others.

Comparison to state-of-the-art. We now compare our results to those systems evaluated

on previous grasp datasets. Particularly relevant is [32], which presents visual grasp recog-

nition results in similar settings, i.e., egocentric perspective and daily activities. In their

case, they consider a reduced 17-grasp taxonomy from Cutkosky [43], obtaining 31% with

HOG features overall and 42% on a specific “machinist sequence” from [31]. Though these

78

Figure 4.6: Common confusions: The confusions occur when some fingers are occluded
(a and c) or when the poses are very similar but the functionality (associated forces and
contact points) is different (b, d, e and f).

results appear more accurate than ours, its important to note that their dataset contains

less variability in the background and scenes, and, crucially, their system appears to require

training a skin detector on a subset of the test set. Additionally, it is not clear if they (or

indeed, other past work) allow for the same subject and/or scene to be included across the

train and testset. If we allow for this, recognition rate dramatically increases to 85%. This

highly suggestive of overfitting, and can be seen a compelling motivation for the distinctly

large number of subjects and scenes that we capture in our dataset.

Evaluations on limited taxonomies: If we limit our taxonomy to the 17 grasps from

Cai et al. [32], i.e., by evaluating only the subset of 17 classes, we obtain 20.53% and 23.44%

79

Figure 4.7: Force and contact points prediction: We show frames for which the entire
pipeline (detection + grasp recognition + exemplar matching) led to an acceptable prediction
of forces and contact points. For each selected frame, we show from top to bottom: the RGB
image, the depth image with contact points and forces (respectively represented by green
points and red arrows, the top scoring 3D exemplar with associated forces and contact points,
and finally the RGB image with overlaid forces and contact points.

(best view). See Table 4.4. These numbers are comparable to those reported in Cai et al.

[32]. Best-view may be a fair comparison because Bullock et al. [31] used data that was

manually labelled, where annotators were explicitly instructed to only annotate those frames

that were visually unambiguous. In our case, subjects were asked to naturally perform object

manipulations, and the data was collected “as-is”. Finally, if we limit our taxonomy to the

33 grasps from Feix et al. [63], we obtained 20.50% and 21.90% (best view). The marginal

improvement when evaluating grasps from smaller taxonomies suggests that the new classes

are not much harder to recognize. Rather, we believe that overall performance is somewhat

low because our dataset is genuinely challenging due to diverse subjects, scenes, and objects.

Force and contact point prediction: Finally, we present preliminary results for force

and contact prediction. We do so by showing the best-matching synthetic 3D exemplar from

80

the detected pose class, along with its contact and force annotations. Fig. 4.7 shows frames

for which the entire pipeline detection + grasp recognition + exemplar matching led to an

acceptable prediction. Unfortunately, we are not able to provide a numerical evaluation

as obtaining ground-truth annotation of contact and forces is challenging. One attractive

option is to use active force sensors, either embedded into pressure-sensitive gloves worn by

the user or through objects equipped with force sensors at predefined grasp points (as done

for a simplified cuboid object in [169]). While certainly attractive, active sensing somewhat

violates the integrity of a truly in-the-wild, everyday dataset.

4.7 Conclusions

We have introduced the challenging problem of understanding hands in action, including force

and contact point prediction, during scenes of in-the-wild, everyday object manipulations.

We have proposed an initial solution that reformulates this high-dimensional, continuous

prediction task as a discrete fine-grained (functional grasp) classification task. To spur

further research, we have captured a new large scale dataset of fine-grained grasps that we will

release together with 3D models and rendering engine. Importantly, we have captured this

dataset from an egocentric perspective, using RGB-D sensors to record multiple scenes and

subjects. We have also proposed a pipeline which exploits depth and RGB data, producing

state-of-the-art grasp recognition results. Our first analysis show that depth information

is crucial for detection and segmentation, while the richer RGB feature allows for a better

grasp recognition. Overall, our results indicate that grasp classification is challenging, with

accuracy approaching 20% for a 71-way classification problem.

We have used a single 3D model per grasp. In future work, it would be interesting to (1)

model within-grasp variability, capturing the dependence of hand kinematics on object shape

81

and size and (2) consider subject-specific 3D hand shape models [100], which could lead to

more accurate set of synthetic exemplars (and associated forces and contacts).

82

Dataset View Cam. Sub. Scn Frms Label Tax.

YALE [31] Ego RGB 4 4 9100 Gr. 33
UTG [32] Ego RGB 4 1 ? Gr. 17

GTEA [61] Ego RGB 4 4 00 Act. 7
UCI-EGO [180] Ego RGB-D 2 4 400 Pose ?

Ours Ego RGB-D 8 > 5 12, 000 Gr. 71

Table 4.1: Object manipulation datasets: [31] captured 27.7 hours but labelled only
9100 frames with grasp annotations. While our dataset is balanced and contains the same
amount of data for each grasp, [31] is imbalanced in that common grasps appear much more
often than rare grasps (10 grasps suffice to explain 80% of the data). [32] uses the same set
of objects for the 4 subjects.

Features Acc. top 20 top 10 min max

HOG-RGB 3.30 7.20 9.59 0.00 28.54
HOG-Depth 6.55 12.96 15.74 0.66 26.18
HOG-RGBD 6.54 13.76 19.24 0.00 45.62

Deep-RGB [204] 11.31 25.92 35.28 0.69 61.39

Deep-RGB(segm.) 11.10 21.56 26.51 0.69 29.46

HOG-RGB (cropped) 5.84 11.22 14.03 0.00 27.85
Deep-RGB (cropped) 13.67 27.32 36.95 1.22 55.35

HOG-RGB (crop.+segm.) [32] 7.69 15.23 18.65 0.69 30.77
HOG-Depth (crop.+segm.) 10.68 22.04 27.99 0.52 42.40
Deep-RGB (crop.+segm.) 12.55 22.89 27.85 0.69 37.49

Deep-RGB (All) 17.97 36.20 44.97 2.71 68.48

Table 4.2: Grasp classification results. We present the result obtained when training a
K-way linear SVM (K=71) with different types of features: HOG-RGB, HOG-Depth and
Deep-RGB features, on the whole workspace, i.e., entire image, on a cropped detection
window or on cropped and segmented image.

View Acc. top 20 top 10 min max

All (All) 17.97 36.20 44.97 2.71 68.48
Best scoring view 22.67 47.53 59.04 0 79.37

Table 4.3: View selection: We present grasp recognition results obtained when training
a K-way linear SVM on a concatenation of Deep features. We present the results obtained
when computing the average classification rate over 1) the entire dataset and 2) over the top
scoring view of each hand-object configuration.

71 Gr. [134] 33 Gr. [63] 17 Gr. [43]

All views 17.97 20.50 20.53
Best scoring view 22.67 21.90 23.44

Table 4.4: Grasp classification for different sized taxonomies: We present the results
obtained for K = 71 [134], K = 33 [63] and K = 17 [43], smaller taxonomies being obtained
by selecting the corresponding subsets of grasps.

83

Chapter 5

Self-Paced Learning for Tracking

James Steven Supančič III & Deva Ramanan

5.1 Introduction

In the previous three chapters, we discussed pre-constructing models offline, specifically

for hand tracking. But, hands are not the only things we want to track. Sometimes we

must track an object which we have not seen before, so we cannot use a pre-constructed

appearance model. This is the problem of model-free tracking: we specifically consider the

scenario where one must track an unknown object, given a known bounding box in a single

frame. We focus on long-term tracking, where the object may become occluded, significantly

change scale, and leave/re-enter the field-of-view.

Our approach builds on two key observations made by past work. The first is the importance

of learning an appearance model. We learn adaptive discriminative models that implicitly

encode the difference in appearance between the object and the background. Such methods

allow for the construction of highly-tuned templates that are resistant to background clutter.

84

However, a well-known danger of adaptively updating (or re-learning) a template over time

is the tendency to drift [142]; drift occurs when small errors in tracking accumulate in

the appearance model until the tracker fails. Our main contribution is an algorithm that

minimizes drift by carefully deciding which frames to learn from, using the framework of

self-paced learning [19, 114].

The second observation is the importance of detection, where an object template is globally

scanned across the entire frame. This allows one to re-initialize lost tracks, but requires

detectors resistant to background clutter at all spatial regions, including those far away

from the object. Most prior approaches learn a detector using a small set of negatives.

We show that using a large set of negatives significantly improves performance, but also

increases computation. We address the latter issue through the use of solvers that can be

warm-started from previous solutions [58].

Self-paced learning: Curriculum learning is an approach inspired by the teaching of stu-

dents, where easy concepts (say, a model learned from un-occluded frames) are taught before

complex ones (a model learned from frames with partial occlusions) [19]. In self-paced learn-

ing, the student learner must determine what is easy versus complex [114]. One natural

application of such a strategy would label frames as easy or complex as they are encountered

by an online tracker. One could then update appearance models after the easy frames. We

show that it is crucial to revisit old frames when learning. In terms of self-paced learning,

a student might initially think a concept is hard; however, once that student learns other

concepts, it may become easy in retrospect.

Transductive learning: A unique aspect of our learning problem is that it is transductive

rather than inductive [232]: when tracking a face, the learned model need not generalize

to all faces, but only separate the particular face and background in the video. In some

sense, we want to “over-fit” to the video. Following [232], we use a transductive strategy for

selecting frames: rather than choosing a frame that scores well under the current model (as

85

Figure 5.1: Our tracker uses self-paced learning to select reliable frames from which to extract
additional training data as it progresses (shown in red). We use such frames to define both
positive examples and a very-large set of negative examples (all windows that do not overlap
each positive). By re-learning a model with this additional data, and re-tracking with that
model, one can correct the errors shown above. We show that it is crucial to revisit old
frames when adding training data; in terms of self-paced learning, a concept (frame) that
initially looks hard may become easy in hindsight.

most prior work does), we choose a frame that when selected for learning, produces a model

that well-separates the object from the background. We demonstrate that the latter scheme

performs better because it is naturally retrospective.

Evaluation: We evaluate our method on a large-scale benchmark suite of videos. Part of

our contribution is a baseline detector that tracks by detection without any online learning

or temporal reasoning; the detector is learned from the first labeled frame. Surprisingly, we

demonstrate that a simple linear template defined on HOG features outperforms state-of-the-

art trackers, including the well-known Predator TLD-Tracker [97] and MIL-Tracker [12]. We

86

believe this disparity exists because detection is an undervalued aspect of tracking; invariant

gradient descriptors and large-scale negative training sets appear crucial for building good

object detectors [45], but are insufficiently used in tracking. We use this baseline as a starting

point, and show that one can reduce error by a factor of 4 with our proposed self-paced

transduction framework.

Computation: Our detection-based approach learns appearance models from large train-

ing sets with hundreds of thousands of negative examples. Our self-paced learning scheme

requires learning putative appearance models for each candidate image. To address these

computational burdens, we make use of dual coordinate descent SVM solvers that can be

“warm-started” from previous solutions. Our solvers are efficient enough that detection

(implemented as a convolution) is the computational bottleneck, which can further be ame-

liorated with parallel computations. This means that our tracker is near real-time at present,

and could readily be real-time with hardware implementations.

5.1.1 Related work

We refer the reader to the survey from [256] for a broad description of related work. Many

object trackers can be differentiated between their choice of appearance models and inference

algorithms.

Appearance models: Because object appearance is likely to change over time, many tracks

update appearance models through color histogram tracking [40] and online adaption [91].

Generative subspace models of appearance are common [190, 122], including recent work that

makes use of sparse reconstructions [143, 133]. Other methods have focused on discrimative

appearance models [39], often trained with boosting [72, 11] or SVMs [10, 78]. Our work is

similar to these latter approaches, though we focus on the problem of carefully choosing a

subset of frames from which to learn a classifier.

87

Inference algorithms: To capture multiple hypotheses, many trackers use sampling-based

schemes such as particle filtering [88, 162] or Markov-chain Monte-Carlo techniques [116, 167].

Such methods may require a large number of particles to track objects in clutter. We show

that a discrete first-order dynamic model (which is straightforward to optimize with dynamic

programming) can accurately reason about multiple hypotheses. Moreover, our experiments

suggest that multiple hypotheses may not even be necessary given a good appearance model;

in such cases, tracking by detection is a simple and effective inference strategy.

Semi-supervised tracking: Semi-supervised and transductive approaches have been

previously used in tracking. Semi-supervised [97, 12, 13] trackers tend to proceed in a greedy

online fashion, not revisiting past decisions. We show retrospective learning is important

for correcting errors in the past. Transductive approaches [246, 260] are limited by the fact

that the general transductive problem is highly non-convex and hard to solve. We show that

transduction can be effectively applied for the isolated sub-problem of frame selection (for

self-paced learning).

5.2 Approach

Our tracker operates by iterating over three stages. First, it learns a detector given a training

set of positives and negatives. Second it tracks using that learned detector. Third, it selects

a subset of frames from which to re-learn a detector for the next iteration. After describing

each stage, we describe our final algorithms in Sec. 5.3.

5.2.1 Learning appearance with a SVM

Assume we are given a set of labeled frames, where we are told the location of the object.

Initially, this is the first frame of a video. We would like to learn a detector to apply on the

88

Figure 5.2: We use dynamic programming to maintain multiple track hypothesis over time.
We visualize detections as boxes, the best previous transition leading to a give detection as a
solid arrow, and non-optimal legal transitions with a dotted line. Note that the most-likely
track at frame T (in green) can be revised to an alternate track hypothesis at a later frame
S (in blue). We find that such reasoning provides a modest increase in performance.

remaining unlabeled frames. We write Λ for a set of frame-bounding box {(ti, bi)} pairs. We

extract positive and negative examples from Λ, and use them to learn a linear SVM:

LEARN(Λ) = argmin
w

λ

2
w · w+ (5.1)∑

ti∈Λ

[
max(0,1− w · φti(bi)) +

∑
b6=bi

max(0, 1 + w · φti(b))
]

where φti(bi) extracts appearance (e.g. , HOG) features from bounding box bi in frame ti.

For each frame ti in Λ, we extract a single positive example at bounding box bi and extract

a large set of negative examples at all other non-overlapping bounding boxes. We use a fixed

regularization parameter λ for all our experiments. We solve the above minimization using

a quadratic programming (QP) solver [58]. For convenience, we define OBJ(Λ) to be the

min objective value corresponding to the argmin from (5.1).

89

5.2.2 Tracking as shortest-paths

We formulate the problem of finding the optimal track y1:N = {y1, . . . yN} given the known

location in the first fame y1 and model w by solving a shortest path problem on a trellis

graph shown in Fig. 5.2. For each frame, we have a set of nodes, or states, representing

possible positions of the object in that frame. Between each pair of frames, we have a set of

edges representing the cost of transitioning from a particular location to another location:

TRACK(y1, w,N) = argmin
y1:N

N∑
t=2

π(yt, yt−1)− w · φ(t, yt) (5.2)

Local cost: The second term defines the local cost of placing the object at location yt in

frame xt as the negative SVM score of w. We experimented with calibrating the score to

return a probability, but did not see a significant change in performance.

Pairwise cost: We experimented with many different definitions for the pairwise cost

π. In general, we found a thresholded motion model to work well in most scenarios (where

the pairwise cost is 0 for transitions that are consistent with measured optical flow and ∞

otherwise). Finally, to model occlusions, we augment yt with a dummy occlusion state with

a fixed local cost.

We compute the best track by solving the shortest-path problem using dynamic program-

ming [29]. We also experimented with an uninformative prior π(yt, yt−1); in this case, the

best track is given by independently selecting the highest scoring location in each frame

(“tracking by detection”).

90

Figure 5.3: Given an initial detector w, we consider different methods for selecting frames
in our SELECT stage. We deem a selected frame as a true positive if the estimated track
location correctly overlaps the ground-truth. Frames selected based on the SVM objective
value in (5.3) greatly outperform frames selected on SVM response.

5.2.3 Selecting good frames

Our tracker operates by sequentially re-learning a model from previously-tracked frames. To

avoid template drift, we find it crucial to select “good” frames from which to learn. Given a

set of frames used for learning Λ and an estimated track y1:N , we estimate a new set of good

frames:

SELECT (Λ, y1:N) = Λ ∪ (t, yt) where

t = argmin
t′ 6∈Λ

OBJ(Λ ∪ (t′, yt′)) (5.3)

where we define t 6∈ Λ to refer to frames that are not in any frame-location pair in Λ. The

above select function computes the frame, that when added to the training set Λ, produces

the lowest SVM objective. We generalize the above function to return a K-element set by

independently finding the (K−|Λ|) frames with the smallest increase in the SVM objective,

written as SELECTK(Λ, y1:N).

Why use OBJ? Our approach directly follows from strategies for data selection in self-

placed learning [114] and label assignment in transductive learning [232]. A more standard

approach may be to simply select the frame with the strongest model response w · φ(t, yt);

91

Fig. 5.3 shows that this a poorer predictor of correct frames that should be used for learning.

To build intuition as to why, consider tracking a face that rotates from frontal to profile.

A model learned on frontal poses may score poorly on a profile face. However, a model

(retrospectively) learned from frontal and profile faces may still produce a good discriminant

boundary (and hence a low SVM objective).

5.3 Algorithm

We now describe an online and an offline algorithm that make use of the previously-defined

stages.

5.3.1 Online (causal) tracker

Our online algorithm is outlined in Algorithm 3. Intuitively, at each frame: we re-estimate

the best track from the first to the current frame using the current model. We then select

half of the observed frames to learn/update an appearance model, which is used for the

next frame. A crucial aspect of our algorithm is that can select frames that were previously

rejected (unlike, for example [97]).

Efficiency: A naive implementation of an online algorithm would be very slow because it

involves solving a shortest-path problem and learning an SVM at every timestep. Moreover,

the SELECT function requires learning (t) SVMs at each iteration (in order to evaluate

OBJ for each possible frame to add). Assuming one can train linear SVMs in linear time,

this would make computation O(N3). We make two modifications to considerably reduce

computation. First, we only apply these expensive operations on batches of frames that

double in size (Line 8). Secondly, we re-use solutions of previously-solved SVMs to warm-

start new SVM problems. We do this by initializing the dual coordinate descent solvers of

92

Input: y1

t← 1;
Λ← {(t, yt)};
w ← LEARN(Λ);
while t < N do

y1:t ← TRACK(y1, w, t);
Λ← SELECTt/2(Λ, y1:t);
w ← LEARN(Λ);
t← 2t

end
Algorithm 3: For each frame t, our online algorithm outputs the best track found up
until then. However, every power-of-two frames, it learns a new model while revisiting
past frames to correct mistakes made under previous models. This allows our tracker be
linear time O(N) while still being a “retrospective” learner.

[58] with previously-computed dual variables. In practice, we find that evaluating OBJ for

each possible frame is constant time because only a single convolution is required (discussed

further in Sec. 5.4). This means that the SELECT function scales linearly with t, making

each iteration of the main loop O(t). Because our batch procedure requires only log2N

iterations, total computation is N + N/2 + N/4 + . . . = O(N) . We also observe a linear

scaling of computation in practice.

5.3.2 Offline tracker

Alg. 4 describes our off-line algorithm. It operates similarly to our online algorithm, but

it has access to the entire set of frames in a video. We iterate between tracking (over the

whole video) and learning (from a select subset of frames) for a fixed number of iterations

K. As in curriculum learning, we found it useful to learn from the easy cases first. We

exponentially grow the number of selected frames such that at the last iteration, 50% of

all frames are selected. We found that little is gained by iterating more than K = 4 times

(shown qualitatively in Fig. 5.4 and quantitatively in Fig. 5.6).

93

Input: y1

Λ← {(1, y1)};
w ← LEARN(Λ);
for i = 1 : K do

y1:N ← TRACK(y1, w,N);

Λ← SELECTr(Λ, y1:N) where r = N
2

i
K ;

w ← LEARN(Λ);
end

Algorithm 4: Our offline algorithm performs a fixed number (K) of iterations. During
each iteration, it updates the track, selects the r “easiest” new frames of training examples,
and re-trains using these examples.

5.4 Implementation

We now discuss various implementation details for applying our algorithms.

Tracking: We implement the TRACK subroutine by using dynamic programming, which

requires O(s2N) time where N is the number of frames and s is the number of states per-

frame. To reduce computational costs we limit s to be the top 25 new detections. Thus,

assuming all videos are of some fixed resolution, the complexity of our tracking algorithm is

O(N) given a fixed model.

Repeatedly-learning SVMs: Each call to LEARN requires training a single SVM, and

each call to SELECT requires training (t) SVMs, needed to evaluate the SVM objective OBJ

for each possible frame to select. Training each SVM from scratch would be prohibitively

slow due to our massive negative training sets. We now show how to use the dual coordinate

descent method of [58] to “warm-start” SVM training using previous solutions.

Dual QP: We write the dual of (5.1) by writing a training example as xi and its label

yi ∈ {−1, 1}:

max
0≤α≤C

−1

2

∑
i,j

αiyixi · xjyjαj +
∑
i

αi (5.4)

94

the KKT conditions allow us to reconstruct the primal weight vector as w =
∑
αiyixi. We

represent our models both with a weight vector w, and implicitly through a cached collection

of non-zero dual variables {αi} and support vectors {xi}. We include all positive examples in

our cache (even if they are not a support vector) because they require essentially no storage,

and may become support vectors during subsequent optimizations as described below.

Warm-start: Given a model w and its dual variables αi and support vectors xi, we can

quickly learn a new model and estimate the increase in OBJ due to adding an additional

frame t. We perform one pass of coordinate descent on examples from this new frame as

follows: we run the model w on frame t and cache examples with a non-zero gradient in

the dual objective (5.4). One can show this is equivalent to finding margin violations; e.g.,

negative examples that score greater than −1 and positive examples that score less than 1

[58]. This can be done with a single convolution that evaluates the current model w on frame

t. In practice, we find that our dual QP converges after a small fixed number of coordinate

descent passes over the cache, making the overall training time dominated by the single

convolution.

5.5 Results

Benchmark evaluation: We define a test suite of videos and ground truth labelings by

merging the test videos of [12, 97]. We show a sampling of frames in Fig. 5.5. Previous

approaches evaluate mean displacement in pixels or thresholded detection accuracy. In our

experience, displacement error can be ambiguous because it is not scale-invariant and can

be somewhat arbitrary once an algorithm looses track. Furthermore, pixel displacement is

undefined for frames where the object is occluded or leaves the camera view (common in

long-scale tracking). Instead, we use follow [97] and define an estimated object location

as correct if it sufficiently overlaps the ground-truth. We then compute true positive and

95

Initial frame

Iteration 1

Iteration 2

Iteration 3

Figure 5.4: On the top, we show the initial labeled frame for 3 videos. In the next 3 rows,
we show specific examples that are added over 3 iterations of offline learning. Our model
slowly expands to capture more difficult appearances (or “concepts” in curriculum learning).

Partial Occlusion Illumination Changes Object Deformation Out of Plane Rotation

Figure 5.5: Our test videos present numerous challenges, including (from left to right):
partial occlusion, illumination changes, object deformation, and out of plane rota-
tion. Ground Truth is Green . TLD is Yellow ; MIL Track is Red ; Our Tracker is Blue .
If there is no rectangle for a tracker, then that tracker signaled occlusion for the frame.
In general, our system is able to track correctly through such challenging scenarios. Our
large negative training sets and retrospective learning greatly reduce the probability of false
positives.

96

missed detections, producing a final F1 score. To further spur innovation, we have released

our combined benchmark dataset, along with all our source code (available through the

author’s website).

Overall performance: We evaluate our performance against state-of-the-art trackers with

published source (TLD and MIL Track) code in Fig. 5.7 and Table 5.1. TLD requires

a minimum window size for the learned model; the default value (of 24 × 24 pixels) was

too large for many of the benchmark videos. We manually tuned this to 16 pixels, but

this reduced performance on other videos (because this increases the number of possible

candidate locations). We show results for both parameter settings, including results for

tuning this parameter on a per-video basis. On two videos, MILTrack loses track by frame

500 and so we only report accuracy over those initial 500 frames. Even when giving past

work these unfair advantages, our final system (without any per-video tuning) significantly

outperforms past work F1 = 93% vs F1 = 76%. Our online algorithm slightly underperforms

our offline variant, with an average F1 of 91%. For completeness, we also include results for

mean displacement error (for the subset of videos with no occlusion or field-of-view exits) in

Table 5.3. In terms of displacement error, our method compares favorably to much recent

work, but does not quite match the recent performance of [167]. We hypothesize this gap

exists because we resolve object location up to a HOG cell and not an individual pixel. We

posit that overlapping cells or post-processing temporal smoothing would likely reduce our

displacement error.

Speed: Our final algorithm runs at about 1
20

th
real-time. In the next diagnostic section,

we describe variants, many of which are real-time while still outperforming prior art. The

current bottleneck of our algorithm is the repeated evaluation of detectors on image frames.

Because this convolution operation is straightforward to parallelize, we believe our full system

could also operate at real-time given additional optimizations.

97

Figure 5.6: Offline learning in action. As we increase the number of latently labeled training
frames (from 1 to 50%), performance generally increases. For many videos, the initial model
learned on the first frame is already quite accurate. We discuss this somewhat surprising
observation at length in the text.

5.5.1 Diagnostics

In Table 5.2, we analyze various aspects of our system that are important for good results.

We point out those observations that seem inconsistent with the accepted wisdom in the

tracking literature. We refer to specific rows in the table using its label in the first column

(e.g., “D1”).

Detection: We begin with a “naive” tracking-by-detection baseline. Our baseline LEARNs

a detector from the initial labeled frame, and simply returns the highest scoring location

at each subsequent frame. Surprisingly, even without additional learning or tracking, our

baseline (D1) produces a F1 score of 73%, outperforming MILTrack and comparable to TLD.

Most prior work on learning for detection uses a small set of negatives, usually extracted

from windows near the object. We compare to such an approach (D2), and show that

using a large set of negatives is crucial for good performance. We see this observation as

98

emphasizing an under-appreciated connection between tracking and detection; it is well-

known in the object detection community that large training sets of negatives are crucial for

good performance [45].

Motion: Adding a motion model to our baseline detector improves performance from 73%

(D1) to 76% (D5,D6). However, a standard first-order motion model (that favors stationary

objects) is not particularly effective, improving performance to only 74% (D4). Our optical-

flow-based motion model works much better. A single-hypothesis greedy tracker – that

greedily enforces the dynamic model in (5.2) given the best location in the previous frame

– improves performance to 76% (D3). This suggests that multiple hypothesis tracking may

not be crucial for good performance. Furthermore, the improvement due to motion in our

final system with learning is even lower; without any motion model, we still perform at 89%

(D8). We find that the better the detector, the less advantage can be gained from a motion

model.

Learning: Learning is the most crucial aspect of our system, improving performance from

76% (D5) to 91% (C6) for our online algorithm (and even more for our off-line). We construct

a restricted version of our online algorithm that does not require revisiting previous frames.

We do this by not allowing SELECT to accept a previously-rejected frame, and not allowing

TRACK to edit a previously-estimated location. This restriction virtually eliminates all

benefits of learning, producing a F1 of 77% (D7). This suggests that its vital to edit previous

tracks to produce better examples for retrospective learning. Secondly, naively SELECT ing

all previously-seen frames for learning also significantly decreases performance to 84% (D9).

This suggests that selecting a good subset of reliable frames is also important. Finally, our

OBJ-based criteria for frame selection outperforms the traditional SVM response, 91% (C6)

vs 89% (D10). The performance increase is largest (up to 10%) for difficult videos such as

Panda and Motocross.

99

C
u

m
u

la
ti

ve
F

1

Pedestrain 1
Panda
Volkswagen
Tiger2
Tiger1
Sylvester
Motocross
Girl
Face Occ 2
Face Occ 1
David
Coke Can

Our's Offline Our's Online TLD MIL Track

Figure 5.7: We compare F1 scores, accumulated across 12 benchmark test videos. The
maximum accumulated score is 12. Our trackers significantly reduce error, compared to
prior work. Most of the improvement comes from a few “challenging” videos containing
significant occlusions and scale challenges, including Pedestrian, Panda, and Motorcross.
See Table 5.1 for additional numeric analysis.

5.5.2 Conclusion

We have a described a simple but effective system for tracking based on the selection of

trustworthy frames for learning appearance. We have performed an extensive diagnostic

analysis across a large set of benchmark videos that reveals a number of surprising results.

We find the task of learning good appearance models to be crucial, as compared to say,

maintaining multiple hypothesis for tracking. To learn good appearance models, we find it

important to use large sets of negative training examples, and to retrospectively edit and

select previous frames for learning. To do so in a principled and efficient manner, we use the

formalism of self-paced learning and online solvers for SVMs.

Our tracker handles long videos with periods of occlusion/absence and large scale changes.

Our benchmark analysis suggests we do so with significantly better accuracy than prior

art. Our algorithms are linear time and so asymptotically efficient. We believe that a

parallelized implementation could easily lead to real-time performance with significant real

world applications.

100

Benchmark video comparison (F1 score)
Coke David Face1 Face2 Girl Moto-x Sylvester Tiger1 Tiger2 VW Panda Pedestrian Mean
C1 LK-FB [96] 40.00 100.0 99.43 99.43 100.0 00.04 72.38 28.16 27.39 04.00 05.13 10.71 42.09
C2 MIL Track[12] 55.00 95.00 99.44 100.0 93.00 01.00† 97.00 82.00 85.00 58.00† 36.27 63.76 72.12 †
C3 TLD (min=24) [97] ERR 96.77 41.96 99.43 88.29 ERR 94.40 62.85 48.64 ERR ERR ERR ERR
C4 TLD (min=16) 90.26 95.45 100.0 60.81 85.08 48.58 92.50 44.06 50.48 95.24 69.68 11.04 70.26
C5 TLD (min=better) 90.26 96.77 100.0 99.43 88.29 48.58 94.40 62.85 50.48 95.24 69.68 11.04 75.59
C6 Us [On-line] 98.21 90.32 99.71 93.25 98.02 79.08 91.01 91.01 95.83 95.46 62.09 95.71 90.81
C7 Us [Off-line] 97.39 94.62 99.71 98.16 100.0 82.95 93.65 98.59 98.63 96.48 63.05 95.00 93.18

Table 5.1: Comparison of methods (F1, higher is better). ERR indicates a tracker did not
run given the size of the initial object bounding box. † indicates a tracker was evaluated only
on the initial (500) frames before it lost track. Our trackers place special emphasis on long
term tracking and can thus recover from such failures. Both online and offline versions of
our algorithm significantly outperform prior work, including various versions of TLD tuned
with different hyper-parameters.

Diagnostic analysis (without learning)
Version Coke David Face1 Face2 Girl Moto-x Sylvester Tiger1 Tiger2 VW Panda Pedestrian Mean

D1 Tracking by Detection 88.69 33.33 99.71 96.31 95.05 25.41 88.80 90.14 83.56 67.43 31.97 75.71 73.01
D2 TBD with sub-sampling 73.04 17.20 37.08 38.65 35.64 33.80 81.72 50.70 47.95 70.99 7.89 12.86 42.29
D3 Single track hypothesis 78.00 24.24 99.71 96.31 96.04 37.26 90.67 92.95 86.30 82.95 28.79 95.00 75.68
D4 On-line w/o flow 85.21 36.55 96.31 99.71 96.04 26.26 89.92 92.95 80.28 83.22 30.29 69.74 73.87
D5 On-line 85.96 33.51 99.71 96.93 91.08 34.60 89.55 92.95 84.72 83.11 29.63 91.75 76.12
D6 Off-line 85.21 36.55 99.71 96.93 96.04 39.76 89.17 92.95 80.82 83.94 26.52 92.85 76.70

Diagnostic analysis (with learning)
D7 Fix TRACK & SELECT 91.43 35.03 99.72 93.25 95.05 29.76 91.15 91.18 80.00 89.71 40.79 89.61 77.22
D8 On-line w/o motion 97.39 88.17 99.72 93.87 99.01 64.04 92.16 94.37 93.15 95.66 53.06 95.71 88.86
D9 On-line w/ SelectAll 97.39 91.40 99.72 88.34 100.00 73.35 80.46 97.87 73.38 70.18 43.74 90.97 83.90
D10 On-line w/ RespSelect 98.21 89.24 99.71 95.70 94.05 72.06 88.67 98.57 93.70 92.07 52.64 93.57 89.02

Table 5.2: Diagnostic analysis of our system (F1, higher is better), with and without learning.
Please see Sec. 5.5.1 for a detailed discussion.

Mean Center Displacement Error (MCDE)
Tracker Us[C6] Us[C7] ART[167] LRSVT[13] TLD MIL[12] Frag[3] PROST[196] NN[73] OAB1[71]

Code Yes Yes No No Yes Yes Yes No Yes Yes

Sylv. 12 12 6 9 14 11 11 - - 25
Girl 17 29 11 - 21 32 27 19 18 48

David 10 7 3 7 7 23 46 15 16 49
Face1 10 11 8 12 18 27 6 7 7 44
Face2 14 13 6 10 17 20 45 17 17 21
Tiger1 4 4 5 8 15 15 40 - - 35
Tiger2 7 5 5 13 30 17 38 - - 34
Coke 7 7 - 12 9 21 63 - - 25

Mean 10 11 6* 10* 16 21 35 15* 15* 35

Table 5.3: Mean Center Displacement Error (MCDE), where lower is better. * indicates
a given tracker did not report results on all videos. Though we believe the F1 score (see
Table 5.1) is a more accurate measure, we report MCDE for completeness. Our trackers
generally compare favorably to other state of the art algorithms. We conjecture that our
pixel displacement error would decrease if we resolved object locations up to pixels and not
just HOG cells. See Sec. 5.5 for more discussion.

101

Chapter 6

Learning to Make Decisions

James Steven Supančič III & Deva Ramanan

6.1 Introduction

In the previous chapter, we looked at the problem of long-term model-free tracking. Model-

free tracking is one of the basic computational building blocks of video analysis, relevant for

tasks such as general scene understanding and robot perception. Recall that in model-free

tracking’s standard formulation, a tracker must follow an unknown object given only a single

bounding box for initialization [111, 247]. In model-free tracking, most of the recent state-

of-the-art advances make heavy use of online machine learning at test time [111, 242, 166,

249, 95]. Systems often produce impressive results by improving core components, such as

appearance and motion models.

Challenges: We see two significant challenges that limit further progress in model-free

tracking. First, the limited quantity of annotated video data impedes both training and

evaluation. While image datasets involve millions of images for training and testing, tracking

102

Figure 6.1: Streaming training & evaluation: We propose an iterative procedure for
interactively training trackers from data. We download a new video from the Internet and
run the current tracker on it, evaluate the tracker’s performance with interactive rewards,
and then retrain the tracker policy with the reward signals. This scheme allows us to train
and evaluate our tracker on massive streaming datasets.

datasets have hundreds of videos. Lack of data seems to arise from the difficulty of annotating

videos, as opposed to images. Second, as vision (re)-integrates with robotics, video processing

must be done in an online, streaming fashion. In terms of tracking, this requires a tracker to

make on-the-fly decisions such as when to re-initialize itself [240, 82, 136, 216, 98] or update

its appearance model (the so-called template-update problem [242, 98]). Such decisions are

known to be crucial in terms of final performance, but are typically hand-designed rather

than learned.

Contribution 1 (interactive video processing): We show that reinforcement learning

(RL) can be used to address both challenges in distinct ways. In terms of data, rather than

requiring videos to be labeled with detailed bounding-boxes at each frame, we interactively

train trackers with far more limited supervision (specifying binary rewards/penalties only

when a tracker fails). This allows us to train on massive video datasets that are 100×

larger than prior work. Interestingly, RL also naturally lends itself to streaming “open-

world” evaluation: when running a tracker on a never-before-seen video, the video can be

used for both evaluation of the current tracker and for training (or refining) the tracker for

future use (Fig. 6.1). This streaming evaluation allows us to train and evaluate models in

103

an integrated fashion seamlessly. For completeness, we also evaluate our learned models on

standard tracking benchmarks.

Contribution 2 (tracking as decision-making): In terms of tracking, we model the

tracker itself as an active agent that must make online decisions to maximize its reward,

which is (as above) the correctness of a track. Decisions ultimately specify where to devote

finite computational resources at any point of time: should the agent process only a limited

region around the currently predicted location (e.g.,“track”), or should it globally search

over the entire frame (“reinitialize”)? Should the agent use the predicted image region

to update its appearance model for the object being tracked (“update”), or should it be

“ignored”? Such decisions are notoriously complicated when image evidence is ambiguous

(due to say, partial occlusions): the agent may continue tracking an object but perhaps decide

not to update its model of the object’s appearance. Rather than defining these decisions

heuristically, we will ultimately use data-driven techniques to learn good policies for active

decision-making (Fig. 6.2).

Contribution 3 (deep POMDPs): We learn tracker decision policies using reinforcement

learning. Much recent work in this space assumes a Markov Decision Process (MDP), where

the agent observes the true state of the world [148, 249], which is the true (possibly 3D)

location and unoccluded appearance of the object being tracked. In contrast, our tracker

only assumes that it receives partial image observations about the world state. The resulting

partially-observable MDP (POMDP) violates Markov independence assumptions: actions

depend on the entire history of observations rather than just the current one [93, 194].

As in [80, 103], we account for this partial observability by maintaining a memory that

captures beliefs about the world, which we update over time (Sec. 6.3). In our case, beliefs

capture object location and appearance, and action policies specify how and when to update

those beliefs (e.g., how and when should the tracker update its appearance model) (Sec.

6.4). However, policy-learning is notoriously challenging because actions can have long-term

104

Figure 6.2: Decisions in tracking: Long-term trackers must decide when to update their
appearance models and when to re-initialize. This requirement leads us to formulate tracking
as a sequential decision problem. In this example, we isolate the update decision. A tracker
should often update using good localizations (blue boxes) because such updates improve
the tracker’s appearance model (a)-Update. Without such updates, the appearance model
may struggle detect occlusions and to avoid distractors during reinitialization (a)-Ignore.
But a tracker cannot always update: Updates during tracking failures (red boxes) virtually
always reduce tracking accuracy (b). And if a tracker always updates, it may drift and begin
tracking occluders (e.g. the pole) (c). Thus, a tracker must have a decision policy which
strikes a careful balance. We learn such a policy from data.

effects on future beliefs. To efficiently learn policies, we introduce frame-based heuristics

that provide strong clues as to the long-term effects of taking a particular action (Sec. 6.5).

6.2 Related Work

Tracking datasets: Several established benchmarks exist for evaluating trackers [247,

111]. Interestingly, there is evidence to suggest that many methods tend to overfit due

to aggressive tuning [166]. Withholding test data annotation and providing an evaluation

server addresses this to some extent [124, 193]. Alternatively, we propose to evaluate on

an open-world stream of Internet videos, making over-fitting impossible by design. It is

well-known that algorithms trained on “closed-world” datasets (say, with centered objects

105

against clean backgrounds [165, 21]) are difficult to generalize to “in-the-wild” footage [229].

We invite the reader to compare our videos in the supplementary material to contemporary

video benchmarks for tracking.

Interactive tracking: Several works have explored interactive methods that use trackers

to help annotate data. The computer first proposes a track. Then a human corrects major

errors and retrains the tracker using the corrections [29, 5, 235]. Our approach is closely

inspired by such active learning formalisms but differs in that we make use of minimal

supervision in the form of a binary reward (rather than a bounding box annotation).

Learning-to-track: Many tracking benchmarks tend to focus on short-term tracking

(< 2000 frames per video) [247, 111]. In this setting, a central issue appears to be modeling

the appearance of the target. Methods that use deep features learned from large-scale train-

ing data perform particularly well [240, 241, 135, 129, 154]. Our focus on tracking over longer

time frames poses additional challenges - namely, how to reinitialize after cuts, occlusions

and failures, despite changes in target appearance [54, 242]. Several trackers address these

challenges with hand-designed policies for model updating and reinitialization - TLD [98],

ALIAN [168] and SPL [216] explicitly do so in the context of long-term tracking. On the

other hand, our method takes a data-driven approach and learns policies for model-updating

and reinitialization. Interestingly, such an “end-to-end” learning philosophy is often em-

braced by the multi-object tracking community, where strategies for online reinitialization

and data association are learned from data [121, 249, 131]. Most related to our work are

Xiang et al. [249], who use an MDP for multi-object tracking, and [103], who use RL for

single target tracking. Both works use heuristics to reduce policy learning to a supervised

learning task, avoiding the need to reason about rewards in the far future. The robotics

community has developed techniques to accelerate RL using human demonstrations [123],

interactive feedback [107, 227], and hand-designed heuristics [23]. Using heuristic functions

106

Figure 6.3: Tracker architecture: At each frame i, our tracker updates a location
heatmap hi for the target using the current image observation oi, a location prior given by
the previous frames’ heatmap hi−1, and the previous appearance model θi−1. Crucially, our
tracker learns a policy for actions ai that optimally update hi and θi (6.2).

for initialization [23, 107], our experimental results show that explicit Q-learning outperforms

supervised reductions because it can learn to capture long-term effects of taking particular

actions.

Real-time tracking through attention: An interesting (but perhaps unsurprising)

phenomenon is that better trackers tend to be slower [111]. Indeed, on the VOT benchmark,

most recent trackers do not run in real time. Generally, trackers that search locally [206, 234]

run faster than those that search globally [216, 136, 85]. To optimize visual recognition

efficiency, one can learn a policy to guide selective search or attention. Inspired by recent

work which finds a policy for selective search using RL [95, 147, 164, 37, 92, 16, 141], we

aslo learn a policy that decides whether to track (i.e. , search positions near the previous

estimate) or reinitialize (i.e. , search globally over the entire image). But in contrast to this

prior work, we additionally learn a policy to decide when to update a tracker’s appearance

model. To ensure that our tracker operates with a fixed computational budget, we implement

reinitialization by searching over a random subset of positions (equal in number to those

examined by track).

107

6.3 POMDP Tracking

We now describe our POMDP tracker, using standard notation where possible [194]. For

our purposes, a POMDP is defined by a tuple of states (Ω, O,A,B): At each frame i, the

world state ωi ∈ Ω generates a noisy observation oi ∈ O that is mapped by an agent into an

action ai ∈ A, which in turn generates a reward.

In our case, the state ωi captures the true location and appearance of the object being tracked

in frame i. To help build intuition, one can think of the location as 2D pixel coordinates

and appearance as a 2D visual template. Instead of directly observing this world state, the

tracking agent maintains a belief over world states, written as

bi = (θi, hi), where θi ∈ Rh×w×f , hi ∈ RH×W

where θi is a distribution over appearances (we use a point-mass distribution encoded by a

single h × w filter defined on f convolutional features), and hi is a distribution over pixel

positions (encoded as a spatial heatmap of size H ×W). Given the previous belief bi−1 and

current observed video frame oi, the tracking agent updates its beliefs about the current

frame bi. Crucially, tracker actions ai specify how to update its beliefs, that is, whether to

update the appearance model and whether to reinitialize by disregarding previous heatmaps.

From this perspective, our POMDP tracker is a memory-based agent that learns a policy for

when and how to update its own memory (Fig. 6.3).

Specifically, beliefs are updated as follows:

hi =

 TRACK(hi−1, θi−1, oi) if a
(1)
i = 1

REINIT (θi−1, oi) otherwise
(6.1)

θi =

 UPDATE(θi−1, hi, oi) if a
(2)
i = 1

θi−1 otherwise

108

where ai = (a
(1)
i , a

(2)
i). Object heatmaps hi are updated by running the current appearance

model θi−1 on image regions oi near the target location previously predicted using hi−1

(“tracking”). Alternatively, if the agent believes it has lost track, it may globally evaluate

its appearance model (“reinit”). The agent may then decide to “update” its appearance

model using the currently-predicted target location, or it may leave its appearance model

unchanged. In our framework, the tracking, reinitialization, and appearance-update modules

can be treated as black boxes given the above functional form. We will discuss particular

implementations shortly, but first, we focus on the heart of our RL approach: a principled

framework for learning to take appropriate actions. To do so, we begin by reviewing standard

approaches for decision-making.

Online heuristics: The simplest approach to picking actions might be to pre-define heuris-

tics functions which estimate the correct action. For example, many trackers reinitialize

whenever the maximum confidence of the heatmap is below a threshold. Let us summarize

the information available to the tracker at frame i as a “state” si, which includes the previous

belief bi−1 (the previous heatmap and appearance model) and current image observation oi.

a∗i = Heuron(si), where si = (bi−1, oi) (6.2)

Offline heuristics: A generalization of the above is to use offline training data to build

better heuristics. Crucially, one can now make use of ground-truth training annotations

as well as future frames to better gauge the impact of possible actions. We can write

this knowledge as the true world state {ωi,∀i}. For example, a natural heuristic may be

to reinitialize whenever the predicted object location does not overlap the ground-truth

position for that frame. Similarly, one may update appearance whenever doing so improves

109

the confidence of ground-truth object locations across future frames:

a∗i = Heuroff (si, {ωi : ∀i}) (6.3)

Crucially, these heuristics cannot be applied at test time because ground truth is not known!

However, they can generate per-frame target action labels a∗i on training data, effectively

reducing policy learning to a standard supervised-learning problem. Though offline heuristics

appear to be a simple and intuitive approach to policy learning, we have not seen them widely

applied for learning tracker action policies.

Q-functions: Offline heuristics can be improved by unrolling them forward in time: the

benefit of a putative action can be better modeled by applying that action, processing the

next frame, and using the heuristic to score the goodness of possible actions in that next

frame. This intuition is formalized through the well-known Bellman equations that recur-

sively define Q-functions to return a score (the expected future reward) for each putative

action a:

Q(si, ai) = R(si) + γmax
ai+1

Q(si+1, ai+1), (6.4)

where si includes both the tracker belief state and image observation, and R(si) is the reward

associated with the reporting the estimated object heatmap hi. We let R(si) = 1 for a correct

prediction and 0 otherwise. Finally, γ ∈ [0, 1] is a discount factor that trades off immediate

vs. future per-frame rewards. Given a tracker state and image observation si, the optimal

action to take is readily computed from the Q-function:

a∗ = arg max
a
Q(si, a)

110

Q-learning: Traditionally, Q-functions are iteratively learned with Q-learning [194]:

Q(si, ai)⇐Q(si, ai) + . . . (6.5)

α
(
R(si) + γmax

ai+1

Q(si+1, ai+1)−Q(si, ai)
)

where α is a learning rate. To handle continuous belief states, we approximate the Q-function

with a CNNs:

Q(si, ai) ≈ CNN(si, ai)

that processes states si and binary actions ai to return a scalar value capturing the expected

future reward for taking that action. Recall that a state si encodes a heatmap and an

appearance model from previous frames and an image observation from the current frame.

6.4 Interactive Training and Evaluation

In this section, we describe our procedure for interactively learning CNN parameters w (that

encode tracker action policies) from streaming video datasets. To do so, we gradually build

up a database of experience replay memories [4, 148], which are a collection of state-action-

reward-nextstate tuples D = {(si, ai, ri, si+1)}:

L(w,D) =
(
ri + max

ai+1

Qw(si+1, ai+1)−Qw(si, ai)
)2

(6.6)

Q-learning reduces policy learning to a supervised regression problem by unrolling the current

policy one step forward in time. Gradient descent on the above objective is performed as

follows: given a training sample (si, ai, ri, si+1), first perform a forward pass to compute the

current estimate Qw(si, ai) and the target: ri + maxai+1
Qw(si+1, ai+1). Then backpropagate

through the weights w to reduce L(w).

111

Dataset # Videos # Frames Annotations Type
OTB-2013 [247] 50 29,134 29,134 AABB
PTB [207] 50 21,551 21,551 AABB
VOT-2016 [111] 60 21,455 21,455 RBB
ALOV++ [205] 315 151,657 30,331 AABB
NUS-PRO [124] 365 135,310 135,310 AABB
Ours 16,384 10,895,762 108,957 Rewards

Table 6.1: Our streaming dataset and evaluation enable us to evaluate on a larger number
of videos than prior work. We annotate rewards, while the other datasets provide Axis
Aligned (AABB) or Rotated (RBB) Bounding Boxes.

while True do
Download random video;
θ1 ← UPDATE(h1, o1); /* manually init. */

forall i ∈ video do
si = ((θi−1, hi−1), oi);
/* track or reinitialize? */

if Qw(si, t) > Qw(si, r) then

hi ← TRACK(hi−1, θi−1, oi); a
(1)
i ← 1;

end

else hi ← REINIT(θi−1, oi); a
(1)
i ← 0 ;

/* update or ignore? */

if Qw(si,m) > Qw(si, i) then

θi ← UPDATE(θi−1, hi, oi); a
(2)
i ← 1;

end

else θi ← θi−1 ;a
(2)
i ← 0 ;

/* manually evaluate the performance */

ri ← annotated frame correct? ;
/* update experience database */

D←D ∪ (si, ai, ri, si+1)
end
w ← arg minL(w;D)

end
Algorithm 5: Our final learning algorithm interactively labels a streaming dataset of
videos while learning a tracker action policy Qw. Given a video, steps 5 through 11 run a
tracker according to the current policy. An annotator then assesses the binary reward ri
(correctness) for the highest-scoring bounding box extracted from the heatmap hi by using
an intersection-over-union threshold. Annotated frames (and their associated state-action-
reward-nextstate tuples) are added to our experience replay database D. We then sample
a minibatch of replay memories and update the action policy w with backprop (Eq. 6.6).

112

Figure 6.4: Our final reinforcement learning algorithm’s (Alg. 5) flowchart is shown
above.

The complete training algorithm is written in Alg. 5 and illustrated in Fig. 6.4. We choose

random videos from the Internet by sampling phrases using WordNet [146]. Given the

sampled phrase and video, an annotator provides an initialization bounding box and begins

running the existing tracker. After tracking, the annotator marks those frames (in strides of

50) where the tracker was incorrect using a standard 50% intersection-over-union threshold.

Such binary annotation (“correct” or “failed”) requires less time per frame than bounding-

box annotation: we can perform 135 annotations per minute versus 22. By May 23rd of 2017,

our dataset had grown to over 10 million frames (used for both training and evaluation),

dramatically exceeding prior work (Table 6.1). After running our tracker and interactively

marking failures, we use the annotation as a reward signal to update the policy parameters

113

for the next video. Thus each video is used to both evaluate the current tracker and train

it for future videos. To avoid any possibility of “training on test data”, we always evaluate

performance on videos not yet used for training the tracker.

6.5 Implementation

In this section, we discuss several implementation details. We begin with a detailed overview

of our tracker’s test time pipeline. The implementation details for the TRACK, REINIT,

UPDATE, and Q-functions follow. Finally, we describe the offline heuristics used at train

time.

Overview of p-tracker’s pipeline: In Fig. 6.5 we show a flowchart for our tracker’s

test time pipeline. We use a UML Activity Diagram [191]. We describe each step in detail

in Alg. 6. We now describe how we chose to implement the TRACK, REINIT, UPDATE

and Q-functions.

TRACK/REINIT functions: Our TRACK function (Eq. 6.2) takes as input the pre-

vious heatmap hi−1, appearance model θi−1, and image observation oi, and produces a new

heatmap for the current frame. We make use of the state-of-the-art fully-convolutional

tracker FCNT [240] and refer to the reader to that work for precise implementation details,

but summarize them here: TRACK crops the current image oi to a region of interest (ROI)

around the most likely object location from the previous frame (the argmax of hi−1). This

ROI is resized to a canonical image size (e.g., 224×224) and processed with a CNN (VGG16)

to produce a convolutional feature map. The object appearance model θi−1 is represented

as a filter on this feature map, allowing one to compute a new heatmap with a convolu-

114

Figure 6.5: Our tracker’s (p-track’s) test time pipeline is shown above as a standard flow
chart. The tracker invokes the pipeline once per frame. We explain each step in Alg. 6.

115

For each frame,

a Define the tracker’s input state as si = ((θi−1, hi−1), oi). This state consists of the previous
appearance model θi−1, previous localization heatmap hi−1 and the current observation oi.
Importantly, extract the localization heatmap predicted for the previous frame hi−1 from the
tracker’s input state si. We will use hi−1 as the argument of our decision function.

b Evaluate the Q-function on this heatmap for the track and reinit actions. Compare the value of
Qw(si, t) to the value of Qw(si, r) and choose the action with the greater value.

c If we decide to track

• Extract a ROI from the current observation image, centered at the mode of the previous
localization heatmap.

• Evaluate the FCNT [240] (Sec 4.2) GNet and SNet models to predict two localization
heatmaps.

• Based on FCNT’s distractor selection (Sec 4.2 of [240]), decide which heatmap to use. This
becomes hi.

d If we decide to reinit

• Extract a random ROI from the current observation image.

• Evaluate the FCNT [240] (Sec 4.2) GNet and SNet models to predict two location prediction
heatmaps.

• Based on FCNT’s distractor selection (Sec 4.2 of [240]), decide which heatmap to use. This
becomes hi.

e Now evaluate the Q-function for each of the candidate actions (update or ignore) using the old
heatmap hi−1. We could instead use the newly predicted heatmap hi, but we don’t. Using hi−1 is
computationally faster because our implementation actually evaluates (b) and (e) in parallel. And,
empirically using hi does not improve performance.

f If we decide to update

• Assume the tracker correctly localized the target. Use this assumption to define new labeled
training examples for the appearance model.

• Update the appearance model as described in [240] (Sec 4.3).

g Repeat on the next frame.

Algorithm 6: Above, we describe each step in our p-tracker’s test time pipeline (cf.
Fig. 6.5).

116

Figure 6.6: Q-CNNs: A Q-function predicts a score (the expected future reward) as a
function of (1) the localization heatmap and (2) an action encoded using a one-hot encoding.

tion. When the tracker decides that it has lost track, the REINIT model simply processes a

random ROI.

UPDATE function: We update the current filter θ using positive and negative patches

extracted from the current frame i. We extract a positive patch from the maximal location

in the reported heatmap hi, and extract negative patches from adjacent regions with less

than 30% overlap. We follow FCNT and represent θ as a two-layer perceptron defined over

convolutional features, which we update with a small fixed number of iterations (10) of

gradient descent.

Q-function CNN: Recall that our Q-functions process a tracker state si = ((hi−1, θi−1), oi)

and a candidate action ai, to return a scalar representing the expected future reward of

taking that action (Fig. 6.6 and Eq. 6.6). We define two independent Q-functions for our two

binary decisions (TRACK/REINIT and UPDATE/IGNORE). While independent functions

support development & ablative analysis, the experience replay Q-learning algorithm [4, 148]

is defined using a single Q function. For training, we define our single Q-function, Qw =

Q
(1)
w + Q

(2)
w , with Q

(1)
w being for track vs. reinit and Q

(2)
w being for update vs. ignore.

We deliberately use addition to define our unified Q function because it makes our two

Q-functions independent at test time:

arg max
a
(1)
i ,a

(2)
i

Qw(si, (a
(1)
i , a

(2)
i)) =

(
arg max

a
(1)
i

Q(1)
w (si, a

(1)
i), arg max

a
(2)
i

Q(2)
w (si, a

(2)
i)

)
(6.7)

117

Figure 6.7: Q-CNNs: We implement our two Q-functions (for track vs. reinit and update

vs. ignore) using the architecture shown above. Note that Q
(1)
w and Q

(2)
w share the first two

convolutional layers. But, each has its own fully-connected (FC) layer.

where we have re-encoded our unified Q-function’s argument ai by decomposing it into two

arguments, a
(1)
i and a

(2)
i . In Fig. 6.7 we show a more detailed schematic of the multi-layer

CNN we train to approximate Q(si, ai). We found it sufficed to condition on the heatmap

hi−1 and implemented each function (of hi−1) as a CNN, where the first two hidden layers are

shared between the two functions. Sharing weights helps to mitigate overfitting. Each shared

hidden layer consists of 16×16×4 convolution followed by ReLU and 4×4 max pooling. For

each decision, an independent fully-connected layer ultimately predicts the expected future

reward. When training the Q-function using experience-replay, we use γ = .95, a learning

rate of 1e-4, a momentum of .9 and 1e-8 weight decay.

Offline heuristics: We initialize the Q-learning optimization in Eq. 6.6 with an offline

heuristic (Eq. 6.3) which assumes the tracker achieves the maximum possible future reward

(
∑

j≥i γ
j−i) if it chooses the action selected by the heuristic a∗i :

Qinit(si, ai)⇐ I[ai = a∗i]
∑
j≥i

γj−i (6.8)

In practice, we found it useful to minimize a weighted average of the true loss in Eq. 6.6 and a

supervised loss (Qw−Qinit)
2, an approach related to heuristically-guided Q-learning [95, 24].

118

Defining a heuristic for deciding when to track vs. reinitialize is straightforward: a∗i should

indicate track whenever the peak of the reported heatmap overlaps the ground-truth object.

Defining a heuristic for update vs. ignore is more subtle. Intuitively, we should update

the appearance template whenever doing so improves the confidence of ground-truth object

locations across that video. Specifically, let us tentatively assume that the tracker correctly

localized the target at frame i. We then fine-tune the current appearance model θi on samples

labeled using this frame. Let ∆+ indicate the number of future frames where updating the

appearance model increases confidence at correct localizations, and let ∆− be the number of

future frames where the update decreases confidence at the incorrect localizations. We set

a∗i to update when ∆+ + ∆− > .5N , where N is the total number of future frames. A more

formal description of the update heuristic follows.

Formalizing the update heuristic Recall that our offline (train-time) heuristic decides

when to set the target action a∗i to update. Our tracker could retrain (i.e. , update) its

appearance model (as described in Sec 4.3 of [240]) using its localization at frame i to get

new parameters θ′ for GNet and SNet. Or, it may choose not to update its appearance

model θ. We let ∆+ indicate the number of future frames where updating the appearance

model increases confidence at correct localizations, let ∆− be the number future frames

where the update decreases confidence at the incorrect localizations, and let N be the total

number of remaining frames. Our heuristic sets a∗i to update if and only if (on average)

updating increases confidence for correct localizations and reduces confidence for incorrect

localizations: ∆+ + ∆− > .5N . During training, we have the reward rj which tells us which

frames the tracker got correct. So we may formally define ∆+ and ∆− as

∆+ =
1∑
j>i rj

∑
j>i

rjI
[
ρθ

′

j > ρθj

]
(6.9)

119

Online Tracking Benchmark [247]

Figure 6.8: OTB-2013: While this dataset contains a number of challenging sequences,
many are quite easy. We show results for our p-tracker plus FCNT [240], MUSTer [82],
LTCT [136], TLD [98] and SPL [216]

∆− =
1∑
j>i r̄j

∑
j>i

r̄jI
[
ρθ

′

j < ρθj

]
where r̄j = 1− rj (6.10)

where ρθj is the confidence of the appearance model θ at the tracker’s test-time localization

in frame j.

6.6 Experiments

Evaluation metrics: Following established protocols for long-term tracking [98, 216], we

evaluate F1 = 2pr
p+r

, where precision (p) is the fraction of predicted locations that are correct

and recall (r) is the fraction of ground-truth locations that are correctly predicted. Because

Internet videos vary widely in difficulty, we supplement average statistics with boxplots to

better visualize performance skew.

Baselines: We compare results to two classic approaches that explicitly tackle long-term

tracking: TLD [98] and SPL [216]. Additionally, we also compare against short-term trackers

with public code that we were able to adapt: FCNT [240], MUSTer [82], and LTCT [136].

120

Internet Videos

T
ra

n
sf

or
m

S
p

ac
eX

S
n

ow
T

a
n

k
J
oh

n
W

ic
k

Figure 6.9: Internet videos contain new challenges, such as cuts, strange and interesting
behaviors, fast motion and complex illumination. We show select results for our p-tracker
plus FCNT [240], MUSTer [82], LTCT [136], TLD [98] and SPL [216].

0 50 100
Threshold (bb overlap)

0

0.5

1

Pr
ec

is
io

n

OOT-PS
TLD
FCNT
MUSTer
LTCT
SPL
p-track-long (ours)
p-track-short (ours)

Figure 6.10: OTB-2013 [247] results: Our learned policy tracker (p-track) performs com-
petitively on standard short-term tracking benchmarks. We find that a policy learned for
long-term tracking (p-track-long) tends to select the ignore action more often (appropriate
during occlusions, which tend be more common in long videos). Learning a policy from short-
term videos significantly improves performance, producing state-of-the-art results: compare
our p-track-short vs. OOT-PS [85], TLD [98], FCNT [240], MUSTer [82], LTCT [136], and
SPL [216]

121

01020
Robustness

0

10

20
A

cc
ur

ac
y

 p-track (ours)
 FCNT
 CCOT
 TCNN
 SSAT
 MLDF
 Staple
 DDC

 EBT
 SRBT
 STAPLEp
 DNT
 SSKCF
 SiamRN
 DeepSRDCF
 SHCT

Figure 6.11: VOT-2016 [111] results: Our learned policy tracker (p-track-short) is as
accurate as the state-of-the-art but is considerably more robust. Robustness is measured by
a ranking of trackers according to the number of times they fail, while accuracy is the rank
of a tracker according to its average overlap with the ground truth. Notably, p-track-short
significantly outperforms FCNT [240] in terms of accuracy and robustness, even though its
TRACK and UPDATE modules follow directly from that work.

p-track FCNT MUSTer LTCT TLD SPL
Method

0

0.5

1

F
1-

m
ea

su
re

0.30 0.07 0.17 0.19 0.09 0.08

Figure 6.12: Versus state-of-the-art: Our learned policy (p-track) performs better than
state-of-the-art baselines [240, 82, 136, 98, 216] on a hold-out test set. See Sec. 6.6.1 for
discussion.

Notably, all these baselines use hand designed appearance update and reinitialization strate-

gies.

6.6.1 Comparative Evaluation

Short-term benchmarks: While our focus is long-term tracking, we begin by pre-

senting results on existing benchmarks that tend to focus on the short-term setting – the

Online Tracker Benchmark (OTB-2013) [247] and Visual Object Tracking Benchmark (VOT-

2016) [111]. Our policy tracker (p-track-long), trained on Internet videos, performs com-

122

Figure 6.13: Occlusion Frequency: We compare how frequently targets become oc-
cluded (# occlusions

frames
) on various short-term (left, solid) and long-term tracking datasets (right,

hatched). The long-term tracking datasets contain more frequent occlusions. To handle
these occlusions, trackers must typically reinitialize. This explains why a policy learned
specifically for long-term tracking outperforms a generic policy when evaluated on long-term
tracking data: it can learn a policy which exploits the fact that occlusion is much more
common in long-term tracking data. This fact supports the value of adapting short-term
trackers to long-term tracking by learning different decision policies.

petitively (Fig. 6.10), but tends to over-predict occlusions (which rarely occur in short-term

videos, as shown in Fig. 6.13). Fortunately, we can learn a dedicated policy for short-term

tracking (p-track-short) by applying reinforcement learning (Alg. 5) on short-term training

videos. For each test video in OTB-2013, we learn a policy using the 40 most dissimilar

videos in VOT-2016 (and vice-versa). We define similarity between videos to be the correla-

tion between the average (ground-truth) object image in RGB space. This ensures that, for

example, we do not train on Tiger1 when testing on Tiger2. Even under this controlled sce-

nario, p-track-short significantly outperforms prior work on both OTB-2013 and VOT-2016

(Figs. 6.10 and 6.11).

Long-term results: To evaluate results for long-term tracking, we define a new 16-video

held-out test set of long-term Internet videos that is never used for training. Each video

has approximately 5,000 frames and contains numerous challenges: cuts, truncations, poor

illumination, fast motion, and heavy occlusion. Please see the supplementary material for

123

Figure 6.14: System diagnostics: Beginning with the initial policy of FCNT [240], we
evolve towards our final data-driven policy objective. As shown, each component of our
objective measurably improves performance on the hold-out test-data. See Sec. 6.6.2 for
discussion.

visualizations. We compare our method to various baselines in Fig. 6.12. Comparisons to

FCNT [240] are particularly interesting since we make use of its TRACK and UPDATE

modules. While FCNT performs quite well in the short-term (Fig. 6.10), it performs poorly

on long-term sequences (Fig. 6.12). However, by learning a policy for updating and reini-

tialization, we produce a state-of-the-art long-term tracker. We visualize the learned policy

in Fig. 6.16.

Internet videos: We compare our method to long-term tracking baselines on a large suite

of Internet videos in Fig. 6.12. Clearly, our final system (and indeed all methods) do worse

on Internet videos than on OTB-2013 (which also uses F1 as an evaluation criteria). Qual-

itatively speaking, internet videos are much more difficult than standard benchmarks (cf.

Fig 6.8 and Fig. 6.9). First, many benchmarks tend to contain videos that are easy for most

modern tracking approaches, implying that a method’s rank is largely determined by per-

formance on a small number of challenging videos. The easy videos focus on iconic [165, 21]

views with slow motion and stable lighting conditions [124], featuring no cuts or long-term

occlusions [54]. Internet videos are significantly more complex. One major reason is the

presence of frequent cuts. In theory, long-term trackers should be able to re-detect the tar-

124

get after a cut, but there is still much room for improvement. Also, many strange things

happen in the wild world of Internet videos. For example, in Transform the car transforms

into a robot before transforming back to car form. All trackers fail to recognize the car

when in robot form. In SnowTank the tracker must contend with many distractors (tanks

of different colors and type) and widely varying viewpoint and scale. Meanwhile, JohnWick

contains poor illumination, fast motion, and numerous distractors.

6.6.2 System Diagnostics

We now provide a diagnostic analysis of various components of our system. We begin by

examining several alternative strategies for making sequential decisions (Fig. 6.14).

Online vs. offline heuristics: We begin by analyzing the online heuristic actions of our

baseline tracker, FCNT. FCNT updates an appearance model when the predicted heatmap

location is above a threshold, and always tracks without reinitialization. This produces a F1

score of .09. Next, we use offline heuristics to learn the best action to take. These correspond

to tracking when the predicted object location is correct, and updating if the appearance

model trained on the new patch produces higher scores for ground-truth locations. We train

a classifier to predict these actions using the current heatmap. When this offline trained

classifier is run at test time, F1 improves to .13 with the track heuristic alone, .14 with the

update heuristic alone, and .20 if both are used.

Q-learning: Finally, we use Q-learning to refine our heuristics (Eq. 6.6), noticeably im-

proving the F1 score to .30. Learning the appearance update action seems to have the most

significant effect on performance, producing an F1 score of .28 by itself. During partial oc-

clusions, the tracker learns to delicately balance between appearance update and drift while

accepting a few failures to avoid the cost and risk of reinitialization. Overall, the learned

125

0,000 4,000 8,000 12,000 16,000
Number of Videos

0

0.5

1

F
1-

m
ea

su
re

0.09 0.14 0.26 0.29 0.30

Figure 6.15: Our p-tracker’s performance increases as it learns its policy using addi-
tional Internet videos. Above, we plot the distribution of F1 scores on our hold-out test data,
at various stages of training. At initialization, the average F1 score was 0.08. After seeing
16,000 videos, it achieves an average F1 score of 0.30. We stop training after seeing 16,000
videos because the marginal improvement on our hold-out test set becomes minuscule.

policy dramatically outperforms the default online heuristics, tripling the F1 score from 9%

to 30%!

Training iterations: In theory, our tracker can be interactively trained on a never-ending

stream. However, in our experiments, Q-learning appeared to converge after seeing between

8,000 and 12,000 videos. Thus, we choose to stop training after seeing 16,000 videos. In

Fig. 6.15, we plot performance versus training iteration.

Computation: As mentioned previously, comparatively slower trackers typically perform

better [111]. On a Tesla K40 GPU, our tracker runs at approximately 10 fps. While compu-

tationally similar to [240], we add the ability to recover from tracking failures by reinitializing

through detection. To do so, we learn an attention policy that efficiently balances tracking

versus reinitialization. Tracking is fast because only a small region of interest (ROI) need

be searched. Rather than searching over the whole image during reinitialization, we select

a random ROI (which ensures that our trackers operate at a fixed frame rate). In practice,

we find that target is typically found in ≈ 15 frames.

126

(a) Track & Update (b) Track Only (c) Track Only (d) Reinit

Ground Truth Tracker’s Localization

Figure 6.16: What does p-track learn? We show the actions taken by our tracker given
four heatmaps. P-track learns to track and update appearance even in cluttered heatmaps
with multiple modes (a). However, if the confidence of other modes becomes high, p-track
learns not to update appearance to avoid drift due to distractors (b). If the target mode
is heavily blurred, implying the target is difficult to localize (because of a transforming
robot), p-track also avoids model update (c). Finally, the lack of mode suggests p-track will
reinitialize (d).

Conclusions: We formulate tracking as a sequential decision-making problem, where a

tracker must update its beliefs about the target, given noisy observations and a limited

computational budget. While such decisions are typically made heuristically, we bring to

bear tools from POMDPs and reinforcement learning to learn decision-making strategies in

a data-driven way. Our framework allows trackers to learn action policies appropriate for

different scenarios, including short-term and long-term tracking. One practical observation

is that offline heuristics are an effective and efficient way to learn tracking policies, both by

themselves and as a regularizer for Q-learning. Finally, we demonstrate that reinforcement

learning can be used to leverage massive training datasets, which will likely be needed for

further progress in data-driven tracking.

127

Chapter 7

Multiple-Object Tracking with

Sensored Annotation

James Steven Supančič III, Deva Ramanan & Peter Carr

7.1 Introduction

The previous chapter proposed a method to evaluate & train single object trackers. Invari-

ably however, scenes contain more than a single object. In this chapter, we consider tracking

more than one object, a task often called multiple object tracking (MOT). MOT has a rich

literature [104, 224, 145, 18, 67, 1, 258, 137, 20, 120]. Such works treat tracking as a spa-

tiotemporal grouping task, where detections (i.e. , possible object positions) from the entire

video are partitioned into disjoint subsets representing individual object tracks. However,

when the number of objects K is known, tracking can be treated as a classification task: each

detection is assigned an identity label k ∈ [∅, 1, . . . , K]. While similar, these two perspectives

have distinct approaches and evaluations. The latter task, which is the focus of this chapter,

is often denoted as identity-aware multiple object tracking (IAMOT) [257, 259, 50].

128

Figure 7.1: Our new dataset for IAMOT provides highly accurate pixel-level ground-
truth annotations (we show four of our five cameras above) while being much larger than
existing public datasets. We use highly accurate ultra-wideband (UWB) sensors to auto-
matically & precisely (within 10cm) locate people in 3D space. We use these tags to label
the depth points in our five calibrated depth cameras, which we then project onto the RGB
image to obtain individual ground-truth segmentation masks. The scale and detail, of our
new data, enables more detailed analysis of the IAMOT problem.

The MOT perspective originates from the radar community [177] and is well suited for track-

ing an unknown number of visually indistinguishable objects, like ants [102] or bats [22], but

can also leverage appearance information when available. For efficiency, the MOT cluster-

ing objective typically only considers similarities between pairs of consecutive detections,

which makes reliable long-term tracking through occlusion difficult [38]. IAMOT is the more

natural setting for applications where a priori knowledge about appearance is available and

maintaining correct identity is crucial, such as surveillance (e.g., determining who abandoned

a piece of luggage) or team sports. Each tracking approach has its own metrics (Sec. 7.3),

but intuitively, identity swaps are catastrophic in IAMOT (all future detections have the

wrong label). In contrast, MOT only assigns an instantaneous penalty. This distinction

becomes evident when tracking over long sequences.

129

IAMOT is a generalization of classic single object tracking (SOT): following an object when

given its initial bounding box [238, 240]. The key difference between running K independent

SOTs and one IAMOT is that the latter enforces mutual exclusion which prevents two tracks

from claiming the same detection.

Although IAMOT is an excellent formulation for long-term multiple object tracking (e.g. ,

combining MOT with re-identification [17]), it has not been well studied. One reason is the

lack of large-scale, long-duration datasets with sufficient annotation for detailed evaluation.

The second is that IAMOT involves three critical components (detecting objects, identifying

objects, and mutual exclusion), but the interplay between all three is not well understood

(SOT and MOT only consider two of these aspects simultaneously). The final challenge is

scalability. IAMOT algorithms must be efficient because they are evaluated on long-duration

videos with many object identities. In this chapter, we address all three concerns.

Contribution 1 (data): We have collected a new dataset (Sec. 7.3) that is orders of

magnitude larger and more challenging than existing scenarios (Table 7.2). Crucially, the

annotations of true object location, identity, and segmentation mask are generated automat-

ically using a heterogeneous sensor network of RGB cameras, Kinect cameras, and cutting

edge ultra-wideband RF tags [195] (Fig. 7.1). We will release our dataset to spur further

research.

Contribution 2 (analysis): We introduce new methodology (Sec. 7.4) for simulating

IAMOT performance by hallucinating better detectors and appearance classifiers. We il-

lustrate how the TINF [50] IAMOT algorithm can be converted into K independent SOTs,

which makes it possible to assess the merit of improving specific stages of the pipeline.

One interesting discovery is that mutual exclusion is only beneficial when detectors and

130

appearance classifiers are sufficiently reliable. Surprisingly, running K independent SOTs

outperformed two state-of-the-art IAMOT approaches (Fig. 7.11 and Table 7.1)!

Contribution 3 (algorithm): Finally, we use our large-scale annotated dataset to learn

data-driven models (Sec. 7.2.2) for improving each stage of the IAMOT pipeline. We make

heavy use of our extensive and detailed automatic annotations to learn geometry-aware

detectors and occlusion-aware appearance models. We demonstrate that these detectors

generalize to other datasets (Table 7.1). We also introduce a variant of the min-cost max-

flow formulation which reasons about the compatibility of predicted occlusion masks between

targets in close proximity. Motivated by the strong performance of our K independent SOTs

baseline, we introduce greedy online algorithms that enforce mutual exclusion in a scalable

manner and achieve competitive performance with their offline counterparts (Sec. 7.6).

We first review the core aspects of the three tracking paradigms MOT, SOT, and IAMOT;

and then describe our investigations into IAMOT using our new dataset.

7.2 Related Work

7.2.1 Literature Review

Multiple-Object Tracking (MOT): is most commonly viewed as a data association

problem [258, 137, 20, 120]. Trackers are tasked with grouping detections into coherent tra-

jectories. In this formulation, the input is a set of spatiotemporal detections and associated

appearance features [104, 224, 172]. Notably, this assumes prior appearance and detection

models. These scenarios stand out in that the tracker is not provided with any initializa-

131

Dataset Type Tracker Year f1 MTBF MOTA

Ours IAMOT TINF [50] 2015 .42 .10 .35
Ours IAMOT SP [259] 2016 .27 .08 .42
Ours SOT FCNT [240] 2015 .60 .18 .48
Ours IAMOT Ours - Online Proposed .85 .85 .69
Ours IAMOT Ours - Offline Proposed .89 .86 .74

MOT3D IAMOT TINF [50] 2015 .43 .48 .32
MOT3D IAMOT SP [259] 2016 .33 .21 .23
MOT3D SOT FCNT [240] 2015 .50 .59 .33
MOT3D IAMOT Ours - Online Proposed .69 .60 .46
MOT3D IAMOT Ours - Offline Proposed .78 .68 .46

MOT3D MOT DBN [105] 2015 — — .51†
MOT3D MOT GPDBN [106] 2016 — — .50†

MOT3D MOT LPSFM [120] 2011 — — .36†

MOT3D MOT LP3D [145] 2016 — — .36†

MOT3D MOT KalmanSFM [48] 1993 — — .25†

Table 7.1: Single vs. Multiple Object Trackers: We compare K single object trackers
(SOT) and identity-aware multi-object trackers (IAMOTs) across our new dataset and an ex-
isting public dataset with a similar 3D capture setup (MOT3D). Our focus is on f1 accuracy,
which scores the fraction of correctly-classified identities. See Sec. 7.3 for an explanation of
why this is a more appropriate metric for identity-aware applications than MOTA. On both
datasets, off-the-shelf SOTs outperform off-the-shelf IAMOTs. After improving detection,
appearance modeling, and occlusion reasoning, our IAMOT trackers (blue) significantly out-
performs prior work (red). †For completeness, we also include published MOT systems on
MOT3D, but note that this is not a fair comparison as they are not manually initialized in
the first frame.

Ours SP-Data [258] OxfordTC [18] MOT16 [145] MOT3D [145] KITTI [67] CAVIAR [1]

Image
Frames 1,270,010 850,000 4,500 11,235 1,860 17,112 28,185
Annot. 1,270,010 5,000 4,500 5,316 974 8,008 28,185
Boxes 579,544 11,475 71,460 110,407 5,632 11,470 45,626
Segm. 579,544 0 0 0 0 0 0
Views 5 15 1 1 1 1 1
Imgs. Yes No Yes Yes Yes Yes Yes

Table 7.2: Public datasets for IAMOT universally lack pixel-level annotations, and most
contain only short sequences labeled at the bounding-box level. The only exception is the
long nursing home sequence of [257]. However, privacy issues preclude its public release and
it is only annotated at one frame per minute. In contrast, we have released our dataset
without legal restrictions and have labels at 30fps.

132

Figure 7.2: Our sensor network uses three types of sensors. We have five Kinect RGB+D
cameras, two UHF receivers, and seventeen UWB base stations. The UWB system localizes
tags to an accuracy of 10cm. We can use the UWB tag locations to label the depth point
cloud, which we project onto the RGB image to obtain per-individual segmentation masks.

tion [145, 18, 67, 1]. Thus, the tracker must not only decide which detections belong to the

same trajectory but also how many trajectories exist.

Single-Object Trackers (SOT): are often provided with a bounding-box in the first-

frame, but are often not provided with a pre-trained detector [247, 110]. Unlike multi-object

tracking, single-object trackers tend to be evaluated on shorter-length sequences where full

occlusions are less common, implying reinitialization is not a key issue [247, 248]. That said,

numerous SOTs explore extensions for automatic reinitialization, typically through learning

object-specific detectors on the fly [82, 240, 216, 136, 98]. Such SOTs are natural candidates

for “one-at-a-time” multi-object tracking.

133

Identity-Aware Multiple-Object Tracking (IAMOT): has received recent atten-

tion [50, 259, 258]. One reason is that many real-world MOT scenarios require correct

identities – e.g., health-care [259], sports [50], and surveillance [257]. Formally, IAMOT

requires labeling detections with identities, rather than merely clustering them. This prob-

lem requires some form of supervision at test time, typically provided as initial bounding

boxes for learning identity-specific appearance models (similar to SOT). We explore two

IAMOT systems in detail. The Target Identity-Aware Multi-Object Tracker (TINF) [50]

uses global per-identity SVM appearance models and alternates between solving a network-

flow based linear program [258] and updating the global appearance models. The Solution

Path (SP) [258] algorithm uses quadratic constraints which are optimized through successive

tightening of a relaxation. The Marauder’s map [257] procedure tackles this problem using

Non-Negative Discretization (NND).

MOT datasets: We summarize the available data in Table 7.2. Our dataset combines

the features of many MOT datasets. We capture data with multiple camera views and

collect a very large number of frames (which, importantly, are automatically annotated both

densely and accurately). Additionally, our data focuses on realistic and crowded scenes.

While our entire dataset requires 200GB of storage, we include some short clips in the

supplementary material. Finally, we will release the raw image data and annotations, as

well as precomputed detections with associated features. Virtually every tracking algorithm

has some (hyper-)parameters. Rather than manually tune these on a test set, most MOT

datasets provide an explicit training set [94, 249]. We similarly divide our dataset into

training & test subsets. However, because our training set is much larger than most, we can

train generic models (e.g., detectors and appearance classifiers) for general-purpose use.

Occlusion-aware trackers: Our dataset contains very crowded scenes and plentiful

occlusion, which a tracker must reason about, either explicitly or implicitly. The idea of

134

explicitly reasoning about occlusion patterns is not new [84, 6, 82, 245]. In particular, the

work of Shu et al. [203] reasons about part visibility to avoid updating part appearances

during occlusion. Prior work has also shown that training detectors to handle multiple,

overlapping people improves performance [223]. Our work differs in that we use pixel-level

occlusion reasoning to improve mutual-exclusion constraints.

7.2.2 Theoretical Background

The following unified overview of Single-Object and Identity-Aware Multi-Object Tracking

should help describe the components studied in our analysis. In terms of Single-Object

tracking, we focus on FCNT [240], as it is a state-of-the-art model based on classic tracker

components (motion models, appearance models, and template updates) integrated with

contemporary deep features. In terms of multi-object tracking, we focus on TINF [50],

which tracks multiple objects by decomposing IAMOT into multiple independent tracking

subproblems (making it particularly attractive for comparisons to single-object trackers).

Single-Object Tracker (FCNT): Loosely put, all SOTs make use of a motion model,

appearance model, and template update strategy. FCNT [240] is a state-of-the-art SOT

that makes use of a standard Brownian motion model and instead focuses on tracking with

a strong appearance model based on multiscale deep features. Tracking is specifically done

with a template that is implemented as a two-layer convolutional classifier, which is evaluated

at all pixel positions in the next frame to return a heatmap of candidate object positions.

FCNT itself does not include any mechanism for detecting occlusions, nor for automatically

reinitializing after occlusion or tracking failures. We extend FCNT to handle both. First,

we threshold the category level confidence to determine if the object has become occluded

or has left the frame. Second, when the object is not found, we search globally for possible

135

re-initializations. As our empirical results show, these simple modifications render FCNT a

formidable technique for long-term IAMOT.

Solution Path (SP) tracker: Theoretically, tracking all the target identities through a

single optimization should outperform running FCNT once per identity. In one formulation

of IAMOT, the SP [259] tracker tries to find a binary matrix F assigning detections (rows)

to identities (columns) which minimizes a quadratic loss function. Its quadratic loss function

considers both appearance costs L and spatial affinity costs C. We refer to reader to Yu

et al. [259] for details but will briefly review the SP objective to demonstrate that it can be

trivially converted into K independent SOT problems as follows:

min
F

Tr(FT (L + C)F) (7.1)

s.t. ∀(d, k) ∈ Y ,Fdk = 1 (7.2)

∀(i, j) ∈ T , ||[Fil Fjl||0 ≤ 1,∀l (7.3)

||Fd||0 ≤ 1,∀d (dropped in the k-SOT reduction) (7.4)

with the notation

• Fd,k : binary indicator for detection d assigned to identity k.

• L : normalized Laplacian encoding appearance costs, as defined in [259].

• C : normalized Laplacian encoding spatial costs, as defined in [259].

• (d, k) ∈ Y : provided ground truth assignment of detection d to identity k.

• T = {(i, j)|vi,j > V } : set of detections which cannot be the same person due to
velocity constraints. This is equivalent to the absence of a transition edge in TINF.

The first constraint (Eq. (7.2)) integrates the identity initialization provided in Y . The

second constraint (Eq. (??)) enforces a maximum velocity motion model. If we drop the

mutual-exclusion constraints (Eq. (7.4) the last line in the objective), the SP reduces to

136

k-SOT. We next describe an alternative IAMOT formulation and how to reduce it to K

independent SOTs.

Identity-Aware Multiple-Object (TINF) tracker: As shown in Fig. 7.3, TINF [50]

formulates IAMOT as a min-cost max-flow problem. The objective decomposes as unary

and binary potentials (corresponding to observation and transition edges). Each detection dn

corresponds to K observation edges, and transition edges link pairs of subsequent detections.

TINF enforces appearance consistency using a K-way classifier which is trained (from the

detections initially labeled with identities) using a structured SVM. Later, these per-identity

appearance models are refined using the passive aggressive algorithm [42]. The weights on

each observation edge can be viewed as the negative log probability of detection dn being

object k based on the associated appearance features an. For each identity k = 1 . . . K the

cost associated with a track fk becomes:

C(fk) =
K∑
k=1

∑
(i,j)∈E

cki,jf
k
i,j, s.t.

K∑
k=1

fki,j ≤ 1 (7.5)

where cki,j is the cost of an edge and fki,j indicates the flow through that edge.

The linear inequality constraint from Eq. 7.5 enforces mutual exclusion: no more than one

track can claim a single detection, or in other terms, two people cannot exist at the same

location at the same time. While target co-locating might be possible for 2D image locations,

this is less permissible when reasoning in 3D positions (as we do). Crucially, without this

constraint, finding the optimal tracks according to Eq. 7.5 reduces to solving K shortest

path problems, equivalent to solving the tracking problems independently. Akin to the

original paper [50], we iteratively solve the constrained problem using Lagrange multipliers.

Essentially, we run the trackers independently but whenever they claim the same detection

we add a penalty (λi,j) for all but the most confident tracker claiming that detection (and

repeat).

137

Figure 7.3: TINF: In each iteration, TINF (1) runs k-single-object trackers independently,
(2) adjusts the costs in the single-target tracking objectives to enforce interaction constraints
and (3) updates per-identity appearance models. The first two operations constitute a flow
problem which could be reduced to a linear program. However, the appearance model up-
dates induce higher-order interactions which motivates the coordinate descent algorithm
described here. (a) shows the original TINF min-cost max-flow network. We replace the
flow network (b) with k-independent shortest path computations. If we run the trackers in-
dependently, (c1) they might both claim the same detections. The TINF algorithm increases
the costs for nodes when there’s a conflict. After re-running the detector with the new cost
graph, (c2) the conflicted interaction is resolved.

Figure 7.4: Det. windows for downward looking cameras are not translation invariant.
Rather, we found rectifying windows before feature computation crucial. For each 3D head
detection, we first compute the rotated rectangle most tightly fitting the detection’s 3d
bounding cylinder. Then, we fit an affine transform from each corner of the bounding rect-
angle to their corresponding coordinates in the rectified image. Using this affine transform,
we warp the image before computing features.

138

7.3 Dataset, Task, and Evaluation

We now describe our new dataset (Contribution 1) and review the evaluation criteria we used

for conducting our detailed analysis of IAMOT vs. SOT methods. Importantly, we make use

of a sensored environment that provides automatic high-quality ground-truth annotations

(Fig. 7.2).

Scenarios: Our dataset captures several realistic scenarios: (1) a crowd gathered to listen

to a presentation, (2) a demonstration of an interactive robot, (3) a simulation of people

walking through a busy intersection and crossing paths, (4) socializing in small groups, and

(5) a simulation of queuing for an event.

Ground-truthing: We make use of three sensor types: Kinect RGB+D, UHF [83], and

UWB [69]. The UWB system uses active (battery powered) tags to achieve precise lo-

calization performance. However, passive (energy harvesting) tags are attractive for some

applications, although the localization performance is often not as precise as UWB. We do

not use the UHF sensor data in our analysis, but it is included in our public dataset. We

register and fuse depth, UWB, and image data (using the Kuhn-Munkres algorithm to match

detections) to obtain high-quality 3D annotations that are accurate up to 10cm. By com-

bining our UWB tags with depth cameras and simple depth-based threshold heuristics, one

can automatically generate segmentations.

Task: Our dataset can be used to both train and evaluate trackers across multiple modal-

ities (RGB/Depth/RF), single/multiple cameras, and 2D/3D tracking formulations. To

explore occlusion reasoning and appearance modeling in a practical setting, we focus on

the task of identity-aware 3D tracking from a single 2D RGB camera. We use the (known)

camera parameters to reason about object locations on the world ground-plane.

139

Evaluation (f1): The main criteria for IAMOT tracking is f1-accuracy. We evaluate

identity-aware K object tracks as K object detection problems: for each identity, we com-

pute the number of false negatives (FN), false positives (FP) and true positives (TP) using

standard 50% intersection-over-union overlap thresholds. We then sum up FN, FP, and TP

across identities and use the aggregates to compute f1 as the harmonic mean of precision and

recall: p = TP
TP+FP

, r = TP
TP+FN

. In some cases, we examine the accuracy of the underlying

detector, which can be measured using detector f1. Detector f1 is identity agnostic; it counts

detections which are correct but labeled with the wrong identity as TP, instead of FP.

Evaluation (MTBF): Recent work has suggested that Mean-Time Between Failures

(MTBF) provides a more interpretable measure of tracker performance [34]. While MTBF

can be used in an identity-agnostic setting, we adapt it to measure identity-aware perfor-

mance: if the tracker’s prediction is within 0.5m of the identity-aware target, we consider it

correct. MTBF is the average run length of a correct output. We then divide by the length

of the identity’s ground truth track to normalize to the [0, 1] range and average the result

across all identities.

Evaluation (MOTA): Even though the MOTA (Multiple-Object Tracking Accuracy)

evaluation metric was designed for the identity-agnostic MOT regime [145], we include it

in our analysis for historical reasons. MOTA averages over three types of errors: identity-

agnostic FP, identity-agnostic FN, and Identity Swaps (IDSW):

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
tGTt

. (7.6)

One crucial difference between identity-aware measures (such as f1) and MOTA is the way

identity swaps are penalized. Eq. 7.6 counts the number of identity swaps as one of many

factors when measuring accuracy, while identity swaps in IAMOT (and SOT) are catastrophic

140

in that all future frames are wrong. We argue that such extreme penalties are appropriate

for applications that require identity maintenance (such as sports and surveillance). The

same arguments apply to fragmentation (where a tracker cannot correctly link a series of

shorter tracks into one long track).

7.4 Preliminary Analysis

We use our annotated dataset to explore the performance of off-the-shelf SOTs and IAMOTs,

and discover the surprising result that running K independent SOTs can outperform IAMOTs;

As shown in Table 7.1, on our dataset the best SOT obtains an f1 score of .60 while the best

IAMOT obtains an f1 score of 0.42. In this section, we seek to understand why. Because

SOT isn’t concerned with mutual-exclusion constraints (there is only one object), research

efforts have focused on developing good (deep) feature representations and learning effective

instance-specific detectors online. In contrast, much of the MOT literature has focused on

object interactions, and employed classic appearance features like RGB histograms. For

these reasons, we suspect K independent SOTs (with no mutual exclusion) can outperform

a single IAMOT because they use more effective detectors and appearance features.

To investigate this hypothesis, we note that the method of [50] is equivalent to K independent

SOTs if no Lagrange multipliers are used (for details see Sec. 7.2.2). As a result, we can hold

all other parameters fixed and only vary whether mutual exclusion is enforced or ignored.

This allows a direct comparison between IAMOT and SOT.

To understand how the reliability of the detection and identification stages affect the final

tracking results with and without mutual exclusion, we hallucinate new detection and iden-

tification outputs by interpolating between the actual results of an off-the-shelf detector and

identity classifier, and the corresponding ground truth generated from the UWB tags. It

141

is important to note that this process does not specify how to make a better detector or

appearance-based identity classifier. Instead, it estimates how tracking performance should

increase if the performance of the detector and/or identity classifier is improved. This insight

also allows us to focus our efforts on the components of the tracker that should lead to the

biggest overall improvement. As such, we first explain our simulation process and its key

findings (see Sec. 7.6 for a full analysis) and then describe how we develop better classifiers,

identifiers and exclusion models in Section 7.2.2. Finally, we interpret our results and discuss

some interesting conclusions in Sec. 7.6.

7.5 Methods

We now describe our simulation experiments and several improvements to the core modules

of IAMOT. To do so, we make use of data-driven methods that take advantage of our large-

scale dataset for training.

7.5.1 Hallucinating Better Detections

To examine the effect of detector quality on tracker performance, we first evaluate the perfor-

mance of a baseline detector [139]. Given an input set of detections D and the corresponding

ground truth detections D∗ = {d∗1, . . . , d∗M}, we use the Kuhn-Munkres algorithm [113, 153]

to determine which elements in D are true positives and false positives, and which elements

in D∗ are false negatives (missed detections)

D = DTP ∪DFP, (7.7)

D∗ = DTP ∪DFN. (7.8)

142

We hallucinate a better set of detections D̂ by interpolating between D and D∗. We inter-

polate between sets by sampling elements for each set. Specifically, we start with the set

of true positives DTP, and for a specific interpolation value γ ∈ [0, 1] add a portion of false

positives and a portion of the missed detections (false negatives),

D̂ = DTP ∪ (1− γ)DFP ∪ γDFN. (7.9)

Effectively, we are producing a better set of detections by suppressing false positives and

inserting missed detections (false negatives). But, we must carefully consider how we choose

detections to suppress and insert. Randomly sampling results in an unrealistic set of halluci-

nated detections. In reality, detector errors occur in clusters: occurrences of occlusions and

confusing background clutter are rarely instantaneous. In practice, we sample false positives

and false negatives based on confidence scores (i.e. , discarding the least confident false pos-

itives, and adding the most confident false negatives). We plot the performance of IAMOT

versus SOT as a function of the hallucinated detector’s performance and present the results

in Fig. 7.5.

7.5.2 Hallucinating Better Identifications

For each detection dn there is an associated vector In encoding the probabilities for each of

the K identities and a background class (for false detections). Following [50] we derive the

baseline probabilities using color histograms. Similarly, the ground truth identity of each

detection can be encoded as a “one-hot” vector I∗n. Like detections, we hallucinate new

identification results using linear interpolation

În = (1− γ)In ∪ γI∗n. (7.10)

143

Head Detection
TINF Tracker [50] SP Tracker [259]

Figure 7.5: Increasing detection performance increases tracker performance. The marked
points correspond to four actual systems: either a SOT or IAMOT using either the state-of-
the-art CNN detector [238] or our new head detector. On the left, the IAMOT is TINF [50].
On the right, we use SP [259]. For both TINF and SP, we remove the mutual-exclusion
constraints, which results in the corresponding green SOT. The lines plot tracking perfor-
mance as a function of an interpolated detection set’s quality. This plot shows that standard
IAMOT systems outperform in the blue region while k SOT outperform in the red region.

Here, we use random sampling to identify a set of detections which should get the vector

indicating the correct identities I∗n, instead of the probabilities In estimated from appearance

features. We show the results in Fig. 7.6.

7.5.3 Extensions to TINF

Motivated by our simulation experiments, we now describe several improvements to the core

modules of IAMOT.

k-Independent SOTs: In its initial iteration, the TINF tracker essentially runs multiple

independent trackers with no mutual-exclusion constraints. Any SOT (e.g. , FCNT) could

be used for this. Then, by updating penalties (in the form of Lagrange Multipliers) the inde-

144

pendent trackers interact with each other. If we optimize Eq. (7.5), adjusting the Lagrange

multipliers λ until convergence, the hard mutual-exclusion constraints will be satisfied ??.

Alternatively, we could reduce TINF back to a SOT by simply dropping the mutual-exclusion

constraint entirely. We use this fact in order to make direct comparisons between IAMOT

and K-SOT, keeping all other parameters fixed. We reimplemented TINF, making several

additional changes. First, our implementation tracks people in 3D space instead of 2D scan-

ning windows. This allows it to fuse detections from multiple calibrated cameras and enforce

3D mutual-exclusion. Additionally, as will be discussed later, we can swap in better features

for detection and identification to obtain significant gains in performance. These changes

make TINF comparable to K-SOT, in terms of effective appearance features. We refer to

this improved implementation as TINF++.

Detector: We posit that existing head detectors are not trained on sufficiently difficult

data. For crowded surveillance data, we want training examples exhibiting the partial oc-

clusions that are frequent at test time. We build a better head detector using our large-scale

annotated tracking dataset (six times larger than prior work [238]). First, we note that

surveillance data commonly contains downward looking cameras with wide fields of view.

From these camera perspectives, people can appear rotated by almost 45 degrees near the

boundaries (Fig. 7.4). Following prior work on re-identification [14], we rectify the individual

windows with affine transformations (i.e. , using the approximation that people are planar).

We then train a binary classifier on deep features extracted from these rectified windows:

specifically, we use state-of-the-art deep networks (ResNet) [81]. Fig. 7.7 shows our im-

proved detector’s performance at various precision-recall thresholds. The improved detector

performance (Det. f1 .42 to .79) translated to better tracker performance (Track. f1 .54 to

.81). This confirms what our hallucination experiments suggested: improving the detector

will greatly increase tracking performance.

145

Identity Appearance Features
TINF [50] Tracker SP [259] Tracker

Figure 7.6: Appearance feature quality: Here we consider four real systems: a SOT and
an IAMOT combined with color features or ResNet features. The marked points indicate
the real system’s performance. While, the lines correspond to simulated performance (as
described in the text), for IAMOT and SOT, respectively. In the red region, SOT beats out
IAMOT. But, IAMOT outperforms SOT in the blue region.

Figure 7.7: Our new head detector , trained from our large-scale annotated training
set, performs much better than prior art on surveillance videos. We make two improvements
over state-of-the-art deep head detection [238]. First, we adopt the deep appearance features
of ResNet [81], labled as Our-CNN-window. Second, we adopt a scanning rectified window
detector [14] instead of a translation invariant object proposal architecture as Our-CNN-rect.

146

Figure 7.8: Our deep detector predicts a segmentation mask and overall confidence for
each (a) rectified window using a CNN. (b) We extract pre-trained ResNet [81] features
(res4fx), shown in red and written as x[i, j, k] in (7.12). (c) We found an outer-product
layer (b[i, j, k] in (7.13), shown in gold) helpful because it allows the detector to reason about
similarities in appearance between spatial locations. For example, all features on the chest
should have the same appearance (i.e. the shirt color). (d) We train a simple two-layer
fully-connected model to make the final predictions (shown in green and written as a hidden
layer c[u] in (7.14) and final predictor d[p] in (7.15)).

Figure 7.9: Occlusion impacts detection, as shown above. We define a detection as
correct if it sufficiently overlaps a bounding-box (blue) or if its segmentation mask sufficiently
overlaps the ground-truth segmentation mask (red). Note, that when considering bounding-
boxes, precision goes to one when the person is totally visible or totally occluded by another
person, in which case we’re likely detecting the occluder.

Appearance features: Instead of using RGB histograms, we characterize appearance

using deep ResNet features [81]. In Fig. 7.6, moving from color histogram features to deep

appearance features demonstrates a clear boost in performance for all tracking algorithms,

evaluation metrics, and datasets. Prior work has shown improvement by training MOT

specific deep appearance features [250]. However, our results show that off-the-shelf deep

features readily adapt to IAMOT. This modification improves the f1 score of the K + 1 way

identity classifier from .30 to .54 which increased the tracking f1 score from .69 to .81.

147

Figure 7.10: Segmentation masks can improve mutual-exclusion constraints. We propose
extended mutual-exclusion constraints which enforce this rule: two detections can overlap
only if one is occluded. Therefore, two trackers cannot claim two overlapping fully-visible
detections, as shown in (a). But in (b), the blue mask was predicted as partially occluded. In
this case, the blue and orange detections can be in close proximity and still both be correct.

Pixel-level segmentation: We augment our detection framework to also predict a seg-

mentation mask, as shown in Fig. 7.8. Inspired by [132], our segmentation network uses an

outer-product layer to reason about correlations between spatial locations. For example, the

color of a person’s left-arm skin tends to be similar to their right-arm skin. In Fig. 7.9 we

evaluate our segmentation network on our test set’s pixel-level ground truth — segmentation

remains significantly harder than bounding-box prediction. We provide details for our train-

ing & evaluation procedures in Sec. 7.5.4. But, first we describe how we use segmentation

to improve tracking.

Occlusion-Aware Min-Cost Flows (OAMCF): As our preliminary results suggested,

our better detector improves tracking performance. But, we can also exploit the predicted

segmentation masks to improve mutual-exclusion reasoning by defining a min-cost max-

flow algorithm, much like TINF (Fig. 7.3), but with different mutual-exclusion constraints.

Broadly speaking, two detections can only coexist if the intersection-over-union of the two

masks is less than 15%. Our OAMCF algorithm outperforms our improved TINF++ (Ta-

ble 7.1), proving the value of incorporating segmentation mask compatibility into mutual

exclusion.

148

Formalizing mutual exclusion: Recall Eq. 7.5, where the mutual exclusion constraint

limits the flow through any detection edge to be at most one: In practice, because many de-

tections can overlap, TINF enforces the linear inequality constraint across sets of overlapping

detections. This allows the MCF problem to naturally enforce non-maximal suppression dur-

ing network-flow optimization. We formally write this as follows: let M = {mk} be the set of

overlapping detection pairs, which can be represented by the incompatible edges {(i, j) ∈ m}:

C(fk) =
K∑
k=1

∑
(i,j)∈E

cki,jf
k
i,j s.t. ∀m∈M

 ∑
(i,j)∈m

K∑
k=1

fki,j

 ≤ 1 (7.11)

The off-the-shelf implementation of TINF uses a 50% bounding-box (intersection-over-union)

overlap to define incompatible detection pairs in M . Instead, we make use of our predicted

segmentation masks to define a much more precise notion of overlap: a pair of detections are

incompatible if their segmentation masks overlap by more than 15%. Fig. 7.10 illustrates

how we use segmentation masks (as opposed to bounding-box overlap) to prevent two targets

from claiming the same pixels. The optimization algorithm used by the TINF tracker [50]

actually solves this modified objective. Further, we can even modify it for online tracking.

Online optimization: K-SOT solutions are often trivially scalable, being linear in the

number of frames and linear in the number of objects, as well as being online algorithms (so

that they do not require storing the entire video). Traditional IAMOT solutions are typically

offline and require access to an entire video (or at least the detections from all frames) at

once, making them cumbersome to apply to long-duration video. Motivated by the strong

performance of K-SOT, we explore a simple online variant of TINF that optimizes Lagrange

multipliers one frame at a time, holding all Lagrange multipliers and flow estimates from

previous frames fixed. In practice, this is equivalent to running the Kuhn-Munkres algorithm

at each frame to extend the previous tracks. In theory, one could generalize the approach to

149

optimizing over a fixed memory of past M frames, but we found a single frame performed

quite well.

7.5.4 Implementing Deep Detection and Occlusion Prediction

Using our large-scale automatically-annotated dataset, we train a CNN to predict if a given

rectified image patch contains a person (as shown in Fig. 7.8). If the patch does contain

a person, our model attempts to predict the person’s segmentation mask. For both tasks,

we begin with the pretrained ResNet [81] features from layer res4fx. Given that we rectify

patches to a fixed size of 224× 224 pixels, the resulting res4fx feature can be written as a

multidimensional array x ∈ R5×5×256, where the first two dimensions correspond to spatial

locations and the last dimension corresponds to feature “channels”. Our dataset provides

a large collection of training examples x with labels y ∈ {−1, 1} (indicating person or not-

person), as well as binary segmentation masks y[p] ∈ {−1, 1}, for each pixel p in a rectified

image of a person.

Detection: Given training examples of features x and binary labels y, we learn a fully-

connected layer with a hinge loss objective function:

Ldet(x, y) = max(0, 1− y
∑
ijk

w[i, j, k]x[i, j, k]), w, x ∈ R5×5×256 (7.12)

Given that we use off-the-shelf features, weights can be learned with a standard linear SVM

package (we use liblinear).

Segmentation: Our segmentation model is similar, but predicts a heatmap of foreground

confidences instead of a scalar detection confidence. We write d[p] for the confidence that

pixel p should be foreground. To capture second-order appearance statistics across different

150

spatial locations, we make use of an “outer-product” layer inspired by [132]. These might

capture the fact that the left and right shoulder have similar appearances. Specifically, for

each feature channel k and image location (i, j), we compute a weighted sum of correlations

with other locations (l,m):

b[i, j, k] =
∑
l,m

wb[i, j, l,m, k]x[i, j, k]x[l,m, k], b ∈ R5×5×256 (7.13)

To produce our final heatmap, we process our outer-product layer with 2 additional fully-

connected layers with rectified linear units:

c[u] = max(0,
∑
ijk

wc[u, i, j, k] b[i, j, k]), c ∈ R1024 (7.14)

d[p] =
∑
u

wd[p, u]C[u], d ∈ R80×30 (7.15)

where c[u] contains our hidden layer activations and d[p] contains our final foreground con-

fidences for each pixel p. We produce predictions for pixels on an 80x30 output grid. We

again use a simple hinge loss to train this model:

Lseg(x, y[p]) = max(0, 1− y[p]d[p]) (7.16)

where we resize the segmentation masks y[p] to be the same size as our heatmap d[p]. We

train the parameters of our segmentation model (wb, wc, wd) using MatConvNet, restricting

our train set to patches x containing people (with an associated segmentation mask y[p]).

7.6 Analysis

We now examine some of the interesting empirical results that motivated our large-scale

analysis. Recall that Table 7.1 revealed the surprising result that multiple instances of

151

single-object tracking (specifically, FCNT [240]) outperformed state-of-the-art IAMOT [259,

50]. But, after improving our detection and appearance models, we see the “natural order”

restored (Fig. 7.3). We further analyze the state-of-affairs here.

Figure 7.11: Mutual exclusion can be harmful! With bad detections (top), enforcing
exclusion (IAMOT) finds only a single track (1b) — it misses two detections at the cross-
over point (indicated by the red Xs), so only one track could pass through. Instead, allowing
for overlapping detections (k-SOT) may outperform (1a). However, with good detections,
IAMOT (2b) beats k-SOT because it never produces impossible tracks, where two target
identities coexist at the same place and time (2a).

Simulated versus actual accuracy: Our analysis relies heavily on simulated detectors

and appearance features. So we first verify the accuracy of our simulations; for verification,

we compare results using actual components versus cross sections (of the simulated perfor-

mance) on the same plots. Fig. 7.5 illustrates the simulated performance of IAMOT as the

detector is improved and shows the actual IAMOT performance using our new (in-house)

trained detector. Fig. 7.6 illustrates the improvement from using better appearance features.

In this case, we use our improved detections and swap in the new deep appearance features.

Recall that we can convert either SP or TINF into a SOT (Sec. 7.2.2) with trivial modifica-

tions to their objective functions. Our plots compare simulated performance of both the SOT

152

and MOT versions of the SP and TINF trackers (holding all else constant). In all cases, the

impact of the improved detector or appearance feature is fairly accurately simulated, though

the simulated f1 score is sometimes over-estimated.

Crossover of SOT vs. IAMOT: We use the aforementioned plots (Fig. 7.5 and 7.6) also

to delineate the regime for which IAMOT outperforms SOT. As we can see, without accurate

detection (with f1 . .72) and appearance model classification (with f1 . .45), independent

single-object tracking outperforms global methods for multi-object tracking. This is because

mutual-exclusion constraints may force inaccurate detections to be mislabeled (Fig. 7.11).

Remarkably, the advent of deep features has fundamentally “changed the game”. We now

have access to strong detectors and appearance models that surpass the cross-over point in

our simulations, (finally!) revealing the benefit of truly global tracking.

Human experiments: Because SOT can sometimes (surprisingly!) outperform IAMOT,

we conclude that single-object trackers provide an important baseline when benchmarking

multiple object trackers. SOTs are trivially scalable and often make use of state-of-the-art

detectors and appearance features. Inspired by the annotation experiments from [236], we

conduct an in-house psychophysics experiment verifying the appeal of SOT: we ask human

subjects to track 15 objects moving in a video in one of two ways: (1) repeatedly view

the video 15 times, tracking one object at a time (with a frame rate of 1 fps) or (2) view

the video once and track all objects simultaneously (with a frame rate of 15 fps). Human

subjects found “one-at-a-time” tracking significantly easier, both qualitatively and in terms

of performance (Table 7.4). We argue that these results support the viability of using SOT

for IAMOT tasks (at least until computers outperform humans).

Full simulation results: Finally, we itemize some general insights from our complete

simulation experiments (Fig. 7.12). We begin with an off-the-shelf detector [139] and the

153

original appearance model proposed by TINF, which is a color histogram model. Starting

from these models, we plot the results of simulating performance by interpolating with

the ground truth (Sec. 7.4). We investigated the impact of better detectors and identity

classifiers for both the MOT3D datasets, as well as our new dataset. Additionally, for our

more complex dataset, we also investigated how sensitive each of the identity-aware trackers

(SP & TINF) were to more reliable detectors and identification features. Last, we conducted

simulations with respect to two starting points: RGB and deep appearance features. The

simulation results reveal some interesting trends.

• The performance of TINF on MOT3D is quite good. Although tracking performance

improves as detector and identifier performance increases, the performance at the origin

(off the shelf detector with RGB features) is high. In contrast, on our much more

cluttered dataset, the initial performance is extremely low, showing a massive gap

between current state-of-the-art performance and the performance obtainable with

improved detection, identification, and mutual-exclusion models.

• Generally, the improvement from better identification performance is marginal. Many

graphs exhibit minimal variation along the identity axis. Instead, there are significant

changes along the detection axis implying there is a bigger benefit to pursuing a better

detector.

• In general, improving detector performance has a much greater impact than the choice

of the IAMOT algorithm. Perhaps SP and TINF suffer similarly from bad detections

because they both enforce the same hard mutual-exclusion constraint.

154

7.7 Conclusion

In this chapter, we focused on the problem of identity-aware multiple-object tracking. We

contributed a new dataset for IAMOT with very accurate, pixel-level labels automatically

generated from UWB tags and depth maps. Our new data allowed us to glean new insights

into the problem. One surprising finding was that ignoring mutual exclusion constraints

can sometimes help performance. Inspired by our simulation analysis, we use our dataset

to train new detection, appearance, and scalable mutual-exclusion models that significantly

improve performance on both our data and standard benchmarks. Finally, we enable prac-

tical applications by demonstrating an online greedy variant of our approach which achieves

similar performance at substantially higher frame rates (Table 7.3).

155

Dataset Type Tracker Year f1 MTBF MOTA FPS

Ours IAMOT TINF [50] 2015 .42 .10 .35 6
Ours IAMOT SP [259] 2016 .27 .08 .42 13
Ours SOT FCNT [240] 2015 .60 .18 .48 7
Ours SOT FCNT++ Proposed .67 .23 .51 7
Ours IAMOT TINF++ Proposed .81 .76 .71 6
Ours IAMOT OAMCF-Offline Proposed .89 .86 .74 6
Ours IAMOT OAMCF-Online Proposed .85 .85 .69 81

Table 7.3: Diagnostic analysis: We summarize the improvements of our various modules.
Starting with a single-object-tracker FCNT that achieves a f1 of .60, we improve its accuracy
to .69 by adding the ability to detect occlusions (and prevent appearance model updates)
reinitialize. Adding mutual-exclusion reasoning and geometry-aware detectors then signifi-
cantly improves accuracy to .81. Adding segmentation masks to facilitate mutual exclusion
further boosts performance to .89. Finally, making the algorithm online marginally reduces
performance (.85), but increases speed and reduces memory storage. See supplementary
material for further diagnostics of individual components, as well as a similar evaluation on
the MOT3D dataset.

Dataset Type Tracker MOTA f1 MTBF
Ours SOT Human .51 .98 .97
Ours MOT Human .11 .46 .23

MOT3D SOT Human .71 .91 .87
MOT3D MOT Human .33 .43 .33

Table 7.4: Humans are quite good a single-target tracking but fail at multiple object
tracking.

156

Color Hist Deep App.

M
O

T
3D

[1
45

]

(a1) TINF - f1 (a2) TINF - MTBF (a3) TINF - f1 (a4) TINF - MTBF

O
u
r

N
ew

D
at

a

(b1) SP - f1 (b2) SP - MTBF (b3) SP - f1 (b4) SP - MTBF

(c1) TINF - f1 (c2) TINF - MTBF (c3) TINF - f1 (c4) TINF - MTBF

(d1) TINF++ - f1 (d2) TINF++ - MTBF (d3) TINF++ - f1 (d4) TINF++ - MTBF

Figure 7.12: Simulation Results: The expected improvement in IAMOT performance
as better detectors and appearance features† are used is shown for two different datasets.
The origin (near-side/bottom-center) of each plot corresponds to the baseline solution (e.g.
, current detector results) and the opposite corner (back-center/far-side) uses ground-truth.
Contrasting with the first column, we see that our collected data poses considerably more
difficulty for state-of-the-art trackers than the previous MOT3D challenge. † In these per-
formance simulations, “Frm. per Id.” serves as a proxy for identifier performance. When
Frm. per Id. is one, we train our appearance model using all frames; this leads to 100%
identification performance. When Frm. per Id. is 512, we use one of every 512 frames for
training our identity model; this is a more realistic scenario for the initial identity models.

157

Chapter 8

Conclusions

James Steven Supančič III

In this thesis, we have examined the task of long-term tracking in detail. In conclusion, we

posit that we must strongly consider two decisions: First, when should a tracker reinitialize?

And second, when should a tracker update its appearance model? In the past, these two

decisions have been under appreciated [242].

Deciding when to reinitialize: Looking at the specific problem of hand tracking, we

explored reinitialization under new and more challenging scenarios (such as cluttered and

egocentric scenes). In particular, our work investigated synthetic training data and semi-

automatic annotation [183, 218, 184]. We proposed the first approaches for robust reinitial-

ization in these difficult scenarios. However, much work remains to be done: better training

data and better model generalization will continue to push hand tracking forward. More

precise and robust hand models will ultimately enable exciting applications in augmented

reality.

158

Deciding when to update: Long-term trackers must also decide when to adapt their

appearance model at test time, for several reasons: to build instance specific models [101],

track new objects [111], or to track objects whose appearances change [25]. Traditionally,

trackers used hand-designed heuristics to decide when to update their appearance model

during tracking [242, 216]. We propose this: trackers should instead update appearance

models according to learned decision policies. However, learning such a policy is hard because

annotating training videos is hard; labeling a single training video requires labeling hundreds,

if not thousands, of individual image frames. As a result, training data is scarce. To train

policies from data, we mitigate this lack of training data by using a reinforcement learning

formulation [217] and sensored annotation [219].

Conclusion: Throughout this research, we have repeatedly observed the crucial impor-

tance of appearance models during long-term tracking. By introducing appearance models

for new and more challenging scenarios, we have advanced the fields of hand tracking and

identity-aware multiple-object tracking. We specifically trained reinitialization models for

cluttered scenes (Chapter 2), egocentric viewpoints (Chapter 3), and object manipulations

(Chapter 4). But labeling training videos proved difficult. So, we explored trackers which

update and improve their appearance models without supervision. Specifically, we proposed

to learn from unlabeled data using self-paced learning (Chapter 5), reinforcement learning

(Chapter 6) and sensored annotation (Chapter 7). By using these techniques to obtain

more precise appearance models, our future work will integrate hand-pose estimation and

long-term tracking with exciting applications in virtual and augmented reality.

159

Bibliography

[1] CAVIAR dataset. 2004. URL http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and
Sabine Susstrunk. SLIC superpixels compared to state-of-the-art superpixel methods.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(11):2274–2282,
2012.

[3] A. Adam, E. Rivlin, and I. Shimshoni. Robust fragments-based tracking using the
integral histogram. In Computer Vision and Pattern Recognition (CVPR), volume 1,
pages 798–805. IEEE, 2006.

[4] Sander Adam, Lucian Busoniu, and Robert Babuska. Experience replay for real-time
reinforcement learning control. IEEE Transactions on Systems, Man, and Cybernetics,
42(2):201–212, 2012.

[5] Aseem Agarwala, Aaron Hertzmann, David H Salesin, and Steven M Seitz. Keyframe-
based tracking for rotoscoping and animation. ACM Transactions on Graphics (ToG),
23(3):584–591, 2004.

[6] Irshad Ali and Matthew N Dailey. Multiple human tracking in high-density crowds.
Image and vision computing, 30(12):966–977, 2012.

[7] S. Allin and D. Ramanan. Assessment of Post-Stroke Functioning using Machine
Vision. IAPR Machine Vision and Applications (MVA), Tokyo, Japan, 2007.

[8] Brenna D Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems, 57(5):469–483,
2009.

[9] Vassilis Athitsos and Stan Sclaroff. Estimating 3d hand pose from a cluttered image.
In CVPR (2), pages 432–442, 2003.

[10] S. Avidan. Support vector tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 26(8):1064–1072, 2004.

[11] S. Avidan. Ensemble tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(2):261–271, 2007.

160

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/.

[12] B. Babenko, M.H. Yang, and S. Belongie. Robust object tracking with online multiple
instance learning. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
33(8):1619–1632, 2011.

[13] Y. Bai and M. Tang. Robust tracking via weakly supervised ranking svm. In Computer
Vision and Pattern Recognition (CVPR), pages 1854–1861. IEEE, 2012.

[14] Slawomir Bak, Sofia Zaidenberg, Bernard Boulay, and François Bremond. Improv-
ing person re-identification by viewpoint cues. In Advanced Video and Signal Based
Surveillance (AVSS), 2014 11th IEEE International Conference on, pages 175–180.
IEEE, 2014.

[15] Luca Ballan, Aparna Taneja, Jürgen Gall, Luc J. Van Gool, and Marc Pollefeys. Motion
capture of hands in action using discriminative salient points. In ECCV (6), 2012.

[16] Loris Bazzani, Nando de Freitas, and Jo-Anne Ting. Learning attentional mechanisms
for simultaneous object tracking and recognition with deep networks. In NIPS 2010
Deep Learning and Unsupervised Feature Learning Workshop, volume 32, 2010.

[17] Apurva Bedagkar-Gala and Shishir K Shah. A survey of approaches and trends in
person re-identification. Image and Vision Computing, 32(4):270–286, 2014.

[18] Ben Benfold and Ian Reid. Stable multi-target tracking in real-time surveillance video.
In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on,
pages 3457–3464. IEEE, 2011.

[19] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning. In ICML,
pages 41–48. ACM, 2009.

[20] Jerome Berclaz, Francois Fleuret, Engin Turetken, and Pascal Fua. Multiple object
tracking using k-shortest paths optimization. IEEE transactions on pattern analysis
and machine intelligence, 33(9):1806–1819, 2011.

[21] Tamara Berg and Alexander C Berg. Finding iconic images. Computer Vision and
Pattern Recognition (CVPR), 2009.

[22] M. Betke, D. E. Hirsh, A. Bagchi, N. I. Hristov, N. C. Makris, and T. H. Kunz.
Tracking large variable numbers of objects in clutter. In Computer Vision and Pattern
Recognition (CVPR), 2007.

[23] Reinaldo AC Bianchi, Carlos HC Ribeiro, and Anna HR Costa. Accelerating au-
tonomous learning by using heuristic selection of actions. Journal of Heuristics, 14(2):
135–168, 2008.

[24] Reinaldo AC Bianchi, Carlos HC Ribeiro, and Anna Helena Reali Costa. Heuristically
accelerated reinforcement learning: Theoretical and experimental results. European
Conference on Artificial Intelligence, pages 169–174, 2012.

161

[25] David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. Visual object
tracking using adaptive correlation filters. In Computer Vision and Pattern Recognition
(CVPR), 2010 IEEE Conference on, pages 2544–2550. IEEE, 2010.

[26] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D human pose
annotations. In International Conference on Computer Vision, 2009.

[27] Mourad Bouzit, Grigore Burdea, George Popescu, and Rares Boian. The Rutgers
master ii-new design force-feedback glove. Mechatronics, IEEE/ASME Transactions
on, 7(2):256–263, 2002.

[28] Matthieu Bray, Esther Koller-Meier, Pascal Müller, Luc Van Gool, and Nicol N Schrau-
dolph. 3D hand tracking by rapid stochastic gradient descent using a skinning model.
In 1st European Conference on Visual Media Production (CVMP), 2004.

[29] Aeron Buchanan and Andrew Fitzgibbon. Interactive feature tracking using kd trees
and dynamic programming. In Computer Vision and Pattern Recognition (CVPR),
volume 1, pages 626–633. IEEE, 2006.

[30] Ian M Bullock, Student Member, Joshua Z Zheng, Sara De La Rosa, Charlotte
Guertler, and Aaron M Dollar. Grasp Frequency and Usage in Daily Household and
Machine Shop Tasks. Haptics, IEEE Transactions on, 2013.

[31] Ian M. Bullock, Thomas Feix, and Aaron M. Dollar. The Yale human grasping dataset:
Grasp, object, and task data in household and machine shop environments. I. J.
Robotic Res., 34(3):251–255, 2015.

[32] Minjie Cai, Kris M. Kitani, and Yoichi Sato. A scalable approach for understanding
the visual structures of hand grasps. In ICRA, 2015.

[33] Massimo Camplani and Luis Salgado. Efficient spatio-temporal hole filling strategy for
kinect depth maps. In Proceedings of SPIE, 2012.

[34] Peter Carr and Robert T Collins. Assessing tracking performance in complex scenarios
using mean time between failures. In 2016 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 1–10. IEEE, 2016.

[35] Claudio Castellini, Tatiana Tommasi, Nicoletta Noceti, Francesca Odone, and Barbara
Caputo. Using object affordances to improve object recognition. Autonomous Mental
Development, IEEE Transactions on, 2011.

[36] Chiho Choi, Ayan Sinha, Joon Hee Choi, Sujin Jang, and Karthik Ramani. A col-
laborative filtering approach to real-time hand pose estimation. In Proceedings of the
IEEE International Conference on Computer Vision, pages 2336–2344, 2015.

[37] Leanne Chukoskie, Joseph Snider, Michael C Mozer, Richard J Krauzlis, and Terrence J
Sejnowski. Learning where to look for a hidden target. Proceedings of the National
Academy of Sciences, 110(Supplement 2):10438–10445, 2013.

162

[38] Robert T. Collins. Multitarget data association with higher-order motion models. In
Computer Vision and Pattern Recognition (CVPR), 2012.

[39] R.T. Collins, Y. Liu, and M. Leordeanu. Online selection of discriminative tracking
features. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):
1631–1643, 2005.

[40] D. Comaniciu, V. Ramesh, and P. Meer. Kernel-based object tracking. Pattern Anal-
ysis and Machine Intelligence, IEEE Transactions on, 25(5), 2003.

[41] Helen Cooper. Sign language recognition using sub-units. The Journal of Machine
Learning Research, 2012.

[42] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer.
Online passive-aggressive algorithms. Journal of Machine Learning Research, 7(Mar):
551–585, 2006.

[43] Mark R. Cutkosky. On grasp choice, grasp models, and the design of hands for man-
ufacturing tasks. IEEE T. Robotics and Automation, 5(3):269–279, 1989.

[44] T.H. Yu D. Tang and T-K. Kim. Real-time articulated hand pose estimation using
semi-supervised transductive regression forests. In International Conference on Com-
puter Vision (ICCV), 2013.

[45] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detection.
In Computer Vision and Pattern Recognition (CVPR), 2005.

[46] Dima Damen, Andrew P. Gee, Walterio W. Mayol-Cuevas, and Andrew Calway. Ego-
centric real-time workspace monitoring using an RGB-D camera. In IROS, 2012.

[47] Dima Damen, Teesid Leelasawassuk, Osian Haines, Andrew Calway, and Walterio W.
Mayol-Cuevas. You-do, I-learn: Discovering task relevant objects and their modes of
interaction from multi-user egocentric video. In British Machine Vision Conference,
2014.

[48] Grace Davie. Youll never walk alone. In Pilgrimage in popular culture, pages 201–219.
Springer, 1993.

[49] Daz3D. Every-hands pose library. http://www.daz3d.com/

everyday-hands-poses-for-v4-and-m4, 2013.

[50] Afshin Dehghan, Yicong Tian, Philip HS Torr, and Mubarak Shah. Target identity-
aware network flow for online multiple target tracking. In 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages 1146–1154. IEEE, 2015.

[51] Quentin Delamarre and Olivier Faugeras. 3D articulated models and multiview track-
ing with physical forces. Computer Vision and Image Understanding, March 2001.
ISSN 10773142.

163

http://www.daz3d.com/everyday-hands-poses-for-v4-and-m4
http://www.daz3d.com/everyday-hands-poses-for-v4-and-m4

[52] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In Computer Vision and Pattern Recognition
(CVPR). IEEE, 2009.

[53] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro Perona. Pedestrian detection:
An evaluation of the state of the art. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2012.

[54] Mario Edoardo Maresca and Alfredo Petrosino. The Matrioska tracking algorithm on
LTDT2014 dataset. CVPR workshop on LTDT, 2014.

[55] Ali Erol, George Bebis, Mircea Nicolescu, Richard D. Boyle, and Xander Twombly.
Vision-based hand pose estimation: A review. Computer Vision and Image Under-
standing, October 2007. ISSN 10773142.

[56] Ali Erol, George Bebis, Mircea Nicolescu, Richard D. Boyle, and Xander Twombly.
Vision-based hand pose estimation: A review. CVIU, 2007.

[57] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The PASCAL visual object classes (VOC) challenge. International journal
of computer vision, 2010.

[58] R.E. Fan, K.W. Chang, C.J. Hsieh, X.R. Wang, and C.J. Lin. Liblinear: A library for
large linear classification. JMLR, 9:1871–1874, 2008.

[59] Clément Farabet, Camille Couprie, Laurent Najman, and Yann LeCun. Learning
hierarchical features for scene labeling. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 2013.

[60] A. Fathi, A. Farhadi, and J.M. Rehg. Understanding egocentric activities. In Interna-
tional Conference on Computer Vision, 2011.

[61] Alireza Fathi, Xiaofeng Ren, and James M Rehg. Learning to recognize objects in
egocentric activities. In Computer Vision and Pattern Recognition (CVPR), 2011
IEEE Conference On, pages 3281–3288. IEEE, 2011.

[62] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories.
Computer Vision and Image Understanding, April 2007. ISSN 10773142.

[63] T. Feix, R. Pawlik, H. Schmiedmayer, J. Romero, and D. Kragic. A comprehensive
grasp taxonomy. In RSS Workshop on Understanding the Human Hand for Advancing
Robotic Manipulation, 2009. URL http://grasp.xief.net.

[64] T. Feix, J. Romero, C. H. Ek, H Schmiedmayer, and D. Kragic. A Metric for Com-
paring the Anthropomorphic Motion Capability of Artificial Hands. Robotics, IEEE
Transactions on, February 2013.

164

http://grasp.xief.net

[65] Pedro F Felzenszwalb, Ross B Girshick, David McAllester, and Deva Ramanan. Ob-
ject detection with discriminatively trained part-based models. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 2010.

[66] Alistair R Fielder and Merrick J Moseley. Does stereopsis matter in humans? Eye, 10
(2):233–238, 1996.

[67] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of Robotics Research, page
0278364913491297, 2013.

[68] Michael Girard and Anthony A Maciejewski. Computational Modeling for the Com-
puter Animation of Legged Figures. ACM SIGGRAPH Computer Graphics, 1985.

[69] Afzal Godil, Roger Bostelman, Kamel Saidi, Will Shackleford, Geraldine Cheok,
Michael Shneier, and Tsai Hong. 3D ground-truth systems for object/human recog-
nition and tracking. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, pages 719–726, 2013.

[70] Michael A Goodrich and Alan C Schultz. Human-robot interaction: a survey. Foun-
dations and trends in human-computer interaction, 1(3):203–275, 2007.

[71] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-line boosting. In
Proc. BMVC, volume 1, 2006.

[72] H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust
tracking. ECCV, pages 234–247, 2008.

[73] S. Gu, Y. Zheng, and C. Tomasi. Efficient visual object tracking with online nearest
neighbor classifier. ACCV, pages 271–282, 2011.

[74] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jitendra Malik. Learning rich
features from RGB-D images for object detection and segmentation. In European
Conference on Computer Vision (ECCV). Springer, 2014.

[75] H. Hamer, J. Gall, R. Urtasun, and L. Van Gool. Data-driven animation of hand-
object interactions. In 2011 IEEE International Conference on Automatic Face Gesture
Recognition and Workshops (FG 2011), pages 360–367, .

[76] H. Hamer, J. Gall, T. Weise, and L. Van Gool. An object-dependent hand pose prior
from sparse training data. In 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 671–678, .

[77] H. Hamer, K. Schindler, E. Koller-Meier, and L. Van Gool. Tracking a hand manip-
ulating an object. In 2009 IEEE 12th International Conference on Computer Vision,
pages 1475–1482, .

[78] S. Hare, A. Saffari, and P.H.S. Torr. Struck: Structured output tracking with kernels.
In International Conference on Computer Vision, 2011.

165

[79] Randall P Harrison. Nonverbal communication. Human Communication As a Field
of Study: Selected Contemporary Views, 113, 1989.

[80] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially observ-
able MDPs. arXiv:1507.06527, 2015.

[81] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[82] Zhibin Hong, Zhe Chen, Chaohui Wang, Xue Mei, Danil Prokhorov, and Dacheng
Tao. Multi-store tracker (muster): a cognitive psychology inspired approach to object
tracking. Computer Vision and Pattern Recognition (CVPR), pages 749–758, 2015.

[83] Ren-Ching Hua and Tzyh-Ghuang Ma. A printed dipole antenna for ultra high fre-
quency (uhf) radio frequency identification (rfid) handheld reader. IEEE Transactions
on Antennas and Propagation, 55(12):3742–3745, 2007.

[84] Yang Hua, Karteek Alahari, and Cordelia Schmid. Occlusion and motion reasoning
for long-term tracking. In European Conference on Computer Vision, pages 172–187.
Springer, 2014.

[85] Yang Hua, Karteek Alahari, and Cordelia Schmid. Online object tracking with proposal
selection. International Conference on Computer Vision, pages 3092–3100, 2015.

[86] De-An Huang, Wei-Chiu Ma, Minghuang Ma, and Kris M. Kitani. How do we use our
hands? discovering a diverse set of common grasps. In Computer Vision and Pattern
Recognition (CVPR), 2015.

[87] Intel. Perceptual computing SDK, 2013.

[88] M. Isard and A. Blake. Condensation-conditional density propagation for visual track-
ing. International Journal of Computer Vision, 1998.

[89] Youngkyoon Jang, Seungtak Noh, Hyung Jin Chang, Tae-Kyun Kim, and Woontack
Woo. 3d finger CAPE: clicking action and position estimation under self-occlusions in
egocentric viewpoint. IEEE Trans. Vis. Comput. Graph., 21(4):501–510, 2015.

[90] Allison Janoch, Sergey Karayev, Yangqing Jia, Jonathan T Barron, Mario Fritz, Kate
Saenko, and Trevor Darrell. A category-level 3d object dataset: Putting the kinect to
work. In Consumer Depth Cameras for Computer Vision. Springer London, 2013.

[91] A.D. Jepson, D.J. Fleet, and T.F. El-Maraghi. Robust online appearance models for
visual tracking. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 25
(10):1296–1311, 2003.

[92] Ming Jiang, Xavier Boix, Gemma Roig, Juan Xu, Luc Van Gool, and Qi Zhao. Learning
to predict sequences of human visual fixations. IEEE transactions on neural networks
and learning systems, 27(6):1241–1252, 2016.

166

[93] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and
acting in partially observable stochastic domains. Artificial intelligence, 101(1):99–134,
1998.

[94] Samira Ebrahimi Kahou, Vincent Michalski, and Roland Memisevic. RATM: Recurrent
attentive tracking model. arXiv preprint arXiv:1510.08660, 2015.

[95] Samira Ebrahimi Kahou, Vincent Michalski, and Roland Memisevic. RATM: Recurrent
attentive tracking model. Computer Vision and Pattern Recognition (CVPR), 2016.

[96] Z. Kalal, K. Mikolajczyk, and J. Matas. Forward-Backward Error: Automatic Detec-
tion of Tracking Failures. ICPR, 2010.

[97] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-Detection. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 2011.

[98] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas. Tracking-learning-detection.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34(7):1409–1422,
2012.

[99] Cem Keskin, Furkan Kıraç, Yunus Emre Kara, and Lale Akarun. Hand pose estima-
tion and hand shape classification using multi-layered randomized decision forests. In
European Conference on Computer Vision (ECCV). 2012.

[100] S. Khamis, Taylor J., Shotton J., Keskin C., Izadi S., and A. Fitzgibbon. Learning an
efficient model of hand shape variation from depth images. In Computer Vision and
Pattern Recognition (CVPR), 2015.

[101] Sameh Khamis, Jonathan Taylor, Jamie Shotton, Cem Keskin, Shahram Izadi, and
Andrew Fitzgibbon. Learning an efficient model of hand shape variation from depth
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 2540–2548, 2015.

[102] Zia Khan, T. Balch, and F. Dellaert. MCMC-based particle filtering for tracking a
variable number of interacting targets. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 27(11):1805–1819, 2005.

[103] Sarang Khim, Sungjin Hong, Yoonyoung Kim, and Phill kyu Rhee. Adaptive visual
tracking using the prioritized q-learning algorithm: MDP-based parameter learning
approach. Image and Vision Computing, 32(12):1090–1101, 2014.

[104] Chanho Kim, Fuxin Li, Arridhana Ciptadi, and James M Rehg. Multiple hypothesis
tracking revisited. In Proceedings of the IEEE International Conference on Computer
Vision, pages 4696–4704, 2015.

[105] T Klinger, F Rottensteiner, and C Heipke. Probabilistic multi-person tracking using
dynamic bayes networks. ISPRS Annals of Photogrammetry, Remote Sensing & Spatial
Information Sciences, 2015.

167

[106] T Klinger, F Rottensteiner, and C Heipke. A Gaussian process based multi-person
interaction model. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial
Information Sciences, pages 271–277, 2016.

[107] W Bradley Knox and Peter Stone. Augmenting reinforcement learning with human
feedback. In ICML 2011 Workshop on New Developments in Imitation Learning (July
2011), volume 855, 2011.

[108] Mathias Kölsch. An appearance-based prior for hand tracking. In ACIVS (2), pages
292–303, 2010.

[109] Mathias Kölsch and Matthew Turk. Hand tracking with flocks of features. In CVPR
(2), 2005.

[110] Matej Kristan, Jiri Matas, Ales Leonardis, Michael Felsberg, Luka Cehovin, Gustavo
Fernandez, Tomas Vojir, Gustav Hager, Georg Nebehay, and Roman Pflugfelder. The
visual object tracking VOT2015 challenge results. International Conference on Com-
puter Vision, pages 1–23, 2015.

[111] Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg, Roman Pflugfelder, Luka
Čehovin, Tomas Vojir, Gustav Häger, Alan Lukežič, and Gustavo Fernandez. The
visual object tracking vot2016 challenge results. Springer, Oct 2016. URL http:

//www.springer.com/gp/book/9783319488806.

[112] Paul G Kry and Dinesh K Pai. Interaction capture and synthesis. In ACM Transactions
on Graphics (TOG), volume 25, pages 872–880. ACM, 2006.

[113] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[114] M.P. Kumar, B. Packer, and D. Koller. Self-paced learning for latent variable models.
NIPS, 2010.

[115] Takeshi Kurata, Takekazu Kato, Masakatsu Kourogi, Keechul Jung, and Ken Endo.
A functionally-distributed hand tracking method for wearable visual interfaces and its
applications. In MVA, pages 84–89, 2002.

[116] J. Kwon and K.M. Lee. Visual tracking decomposition. In Computer Vision and
Pattern Recognition (CVPR), pages 1269–1276. IEEE, 2010.

[117] Nikolaos Kyriazis and Antonis A. Argyros. Physically plausible 3d scene tracking: The
single actor hypothesis. In Computer Vision and Pattern Recognition (CVPR), 2013.

[118] Nikolaos Kyriazis and Antonis A. Argyros. Scalable 3d tracking of multiple interacting
objects. In Computer Vision and Pattern Recognition (CVPR), 2014.

[119] Kevin Lai, Liefeng Bo, and Dieter Fox. Unsupervised feature learning for 3d scene
labeling. In ICRA, 2014.

168

http://www.springer.com/gp/book/9783319488806
http://www.springer.com/gp/book/9783319488806

[120] Laura Leal-Taixé, Gerard Pons-Moll, and Bodo Rosenhahn. Everybody needs some-
body: Modeling social and grouping behavior on a linear programming multiple people
tracker. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on, pages 120–127. IEEE, 2011.

[121] Laura Leal-Taixé, Anton Milan, Ian Reid, Stefan Roth, and Konrad Schindler.
MOTchallenge 2015: Towards a benchmark for multi-target tracking.
arXiv:1504.01942, 2015.

[122] K.C. Lee, J. Ho, M.H. Yang, and D. Kriegman. Visual tracking and recognition using
probabilistic appearance manifolds. CVIU, 99(3):303–331, 2005.

[123] L Adrián León, Ana C Tenorio, and Eduardo F Morales. Human interaction for
effective reinforcement learning. In European Conf. Mach. Learning and Principles
and Practice of Knowledge Discovery in Databases (ECMLPKDD 2013), 2013.

[124] Annan Li, Min Lin, Yi Wu, Ming-Hsuan Yang, and Shuicheng Yan. NUS-PRO: A new
visual tracking challenge. 2015.

[125] Cheng Li and Kris M. Kitani. Pixel-Level Hand Detection in Ego-centric Videos.
Computer Vision and Pattern Recognition (CVPR), June 2013.

[126] Cheng Li and Kris M. Kitani. Model recommendation with virtual probes for egocentric
hand detection. In International Conference on Computer Vision, 2013.

[127] Cheng Li and Kris M. Kitani. Pixel-level hand detection in ego-centric videos. In
Computer Vision and Pattern Recognition (CVPR), 2013.

[128] Cheng Li and Kris M. Kitani. Model recommendation with virtual probes for egocentric
hand detection. In International Conference on Computer Vision, 2013.

[129] Hanxi Li, Yi Li, Fatih Porikli, et al. Deeptrack: Learning discriminative feature rep-
resentations by convolutional neural networks for visual tracking. British Machine
Vision Conference, 1(2):3, 2014.

[130] Peiyi Li, Haibin Ling, Xi Li, and Chunyuan Liao. 3d hand pose estimation using
randomized decision forest with segmentation index points. In Proceedings of the IEEE
International Conference on Computer Vision, pages 819–827, 2015.

[131] Yuan Li, Chang Huang, and Ramakant Nevatia. Learning to associate: Hybridboosted
multi-target tracker for crowded scene. Computer Vision and Pattern Recognition
(CVPR), pages 2953–2960, 2009.

[132] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for
fine-grained visual recognition. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1449–1457, 2015.

[133] B. Liu, J. Huang, L. Yang, and C. Kulikowsk. Robust tracking using local sparse ap-
pearance model and k-selection. In Computer Vision and Pattern Recognition (CVPR).
IEEE, 2011.

169

[134] Jia Liu, Fangxiaoyu Feng, Yuzuko C. Nakamura, and Nancy S. Pollard. A taxonomy
of everyday grasps in action. In 14th IEEE-RAS International Conf. on Humanoid
Robots, Humanoids 2014.

[135] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang. Hierarchical con-
volutional features for visual tracking. International Conference on Computer Vision,
pages 3074–3082, 2015.

[136] Chao Ma, Xiaokang Yang, Chongyang Zhang, and Ming-Hsuan Yang. Long-term
correlation tracking. Computer Vision and Pattern Recognition (CVPR), pages 5388–
5396, 2015.

[137] Santiago Manen, Radu Timofte, Dengxin Dai, and Luc Van Gool. Leveraging single
for multi-target tracking using a novel trajectory overlap affinity measure. In 2016
IEEE Winter Conference on Applications of Computer Vision (WACV), pages 1–9.
IEEE, 2016.

[138] Steve Mann, Jason Huang, Ryan Janzen, Raymond Lo, Valmiki Rampersad, Alexan-
der Chen, and Taqveer Doha. Blind navigation with a wearable range camera and
vibrotactile helmet. In ACM International Conf. on Multimedia, MM ’11, 2011.

[139] Manuel Jesús Maŕın-Jiménez, Andrew Zisserman, Marcin Eichner, and Vittorio Fer-
rari. Detecting people looking at each other in videos. International Journal of Com-
puter Vision, 106(3):282–296, 2014.

[140] David R Martin, Charless C Fowlkes, and Jitendra Malik. Learning to detect natural
image boundaries using local brightness, color, and texture cues. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 2004.

[141] Stefan Mathe, Aleksis Pirinen, and Cristian Sminchisescu. Reinforcement learning for
visual object detection. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 2894–2902, 2016.

[142] L. Matthews, T. Ishikawa, and S. Baker. The template update problem. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 2004.

[143] X. Mei and H. Ling. Robust visual tracking and vehicle classification via sparse repre-
sentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(11):
2259–2272, 2011.

[144] Stan Melax, Leonid Keselman, and Sterling Orsten. Dynamics based 3D skeletal hand
tracking. Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics
and Games - I3D ’13, 2013.

[145] A. Milan, L. Leal-Taixé, I. Reid, S. Roth, and K. Schindler. MOT16: A benchmark
for multi-object tracking. arXiv:1603.00831 [cs], March 2016. URL http://arxiv.

org/abs/1603.00831. arXiv: 1603.00831.

170

http://arxiv.org/abs/1603.00831
http://arxiv.org/abs/1603.00831

[146] George A Miller. Wordnet: a lexical database for english. Communications of the
ACM, 38(11):39–41, 1995.

[147] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual atten-
tion. NIPS, pages 2204–2212, 2014.

[148] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature, 518
(7540):529–533, 2015.

[149] Zhenyao Mo and Ulrich Neumann. Real-time hand pose recognition using low-
resolution depth images. In Computer Vision and Pattern Recognition, 2006 IEEE
Computer Society Conference on, volume 2, pages 1499–1505. IEEE, 2006.

[150] Tomas Moller. A fast triangle-triangle intersection test. Journal of Graphics Tools, 2:
25–30, 1997.

[151] Andrew W Moore, Andy J Connolly, Chris Genovese, Alex Gray, Larry Grone, Nick
Kanidoris II, Robert C Nichol, Jeff Schneider, Alex S Szalay, Istvan Szapudi, et al.
Fast algorithms and efficient statistics: N-point correlation functions. In Mining the
Sky. Springer, 2001.

[152] Marius Muja and David G. Lowe. Scalable Nearest Neighbor Algorithms for High
Dimensional Data. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, November 2014. ISSN 0162-8828.

[153] James Munkres. Algorithms for the assignment and transportation problems. Journal
of the society for industrial and applied mathematics, 5(1):32–38, 1957.

[154] Hyeonseob Nam and Bohyung Han. Learning Multi Domain Convolutional Neural
Networks for Visual Tracking. arXiv:1510.07945, 2015.

[155] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Hands Deep in Deep Learning
for Hand Pose Estimation. Computer Vision Winter Workshop (CVWW), 2015.

[156] Markus Oberweger, Paul Wohlhart, and Vincent Lepetit. Training a feedback loop
for hand pose estimation. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3316–3324, 2015.

[157] Markus Oberweger, Gernot Riegler, Paul Wohlhart, and Vincent Lepetit. Efficiently
creating 3d training data for fine hand pose estimation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 4957–4965, 2016.

[158] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand Gesture Recognition in Real Time
for Automotive Interfaces: A Multimodal Vision-Based Approach and Evaluations.
Intelligent Transportation Systems, IEEE Transactions on, 2014. ISSN 1524-9050.

171

[159] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Hand gesture recognition in real time
for automotive interfaces: A multimodal vision-based approach and evaluations. IEEE
transactions on intelligent transportation systems, 15(6):2368–2377, 2014.

[160] I. Oikonomidis, N. Kyriazis, and A. Argyros. Efficient model-based 3D tracking of hand
articulations using kinect. In British Machine Vision Conference (BMVC), 2011.

[161] Iason Oikonomidis, Nikolaos Kyriazis, and Antonis A. Argyros. Tracking the Artic-
ulated Motion of Two Strongly Interacting Hands. In Computer Vision and Pattern
Recognition (CVPR), 2012.

[162] K. Okuma, A. Taleghani, N. Freitas, J.J. Little, and D.G. Lowe. A boosted particle
filter: Multitarget detection and tracking. ECCV, pages 28–39, 2004.

[163] Lars Otten. LaTeX template for thesis and dissertation documents at UC Irvine.
https://github.com/lotten/uci-thesis-latex/, 2012.

[164] Lucas Paletta, Gerald Fritz, and Christin Seifert. Q-learning of sequential attention
for visual object recognition from informative local descriptors. ICML, pages 649–656,
2005.

[165] Stephen Palmer, Eleanor Rosch, and Paul Chase. Canonical perspective and the per-
ception of objects. Attention and performance, 1(4), 1981.

[166] Yu Pang and Haibin Ling. Finding the Best from the Second Bests - Inhibiting Sub-
jective Bias in Evaluation of Visual Tracking Algorithms. International Conference on
Computer Vision (ICCV), December 2013.

[167] D.W. Park, J. Kwon, and K.M. Lee. Robust visual tracking using autoregressive
hidden markov model. In Computer Vision and Pattern Recognition (CVPR), pages
1964–1971. IEEE, 2012.

[168] Federico Pernici and Alberto Del Bimbo. Object tracking by oversampling local fea-
tures. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(12):
2538–2551, 2014.

[169] Tu-Hoa Pham, Abderrahmane Kheddar, Ammar Qammaz, and Antonis A. Argyros.
Towards force sensing from vision: Observing hand-object interactions to infer manip-
ulation forces. In Computer Vision and Pattern Recognition (CVPR), 2015.

[170] A. Pieropan, G. Salvi, K. Pauwels, and H. Kjellstrom. Audio-visual classification and
detection of human manipulation actions. In International Conference on Intelligent
Robots and Systems (IROS), 2014.

[171] Hamed Pirsiavash and Deva Ramanan. Detecting activities of daily living in first-
person camera views. In Computer Vision and Pattern Recognition (CVPR), 2012.

[172] Hamed Pirsiavash, Deva Ramanan, and Charless C Fowlkes. Globally-optimal greedy
algorithms for tracking a variable number of objects. In Computer Vision and Pattern
Recognition (CVPR), 2011 IEEE Conference on, pages 1201–1208. IEEE, 2011.

172

https://github.com/lotten/uci-thesis-latex/

[173] Gerard Pons-Moll, Andreas Baak, Thomas Helten, Meinard Müller, Hans-Peter Seidel,
and Bodo Rosenhahn. Multisensor-fusion for 3d full-body human motion capture. In
Computer Vision and Pattern Recognition (CVPR), pages 663–670, 2010.

[174] Prashan Premaratne, Quang Nguyen, and Malin Premaratne. Human computer inter-
action using hand gestures. Springer, 2010.

[175] PrimeSense. Nite2 middleware, 2013. Version 2.2.

[176] Chen Qian, Xiao Sun, Yichen Wei, Xiaoou Tang, and Jian Sun. Realtime and robust
hand tracking from depth. In Computer Vision and Pattern Recognition (CVPR),
2014.

[177] Donald Reid. An algorithm for tracking multiple targets. IEEE Transactions on
Automatic Control, 24(6):843–854, 1979.

[178] Xiaofeng Ren, Charless C Fowlkes, and Jitendra Malik. Figure/ground assignment in
natural images. In Computer Vision–ECCV 2006, pages 614–627. Springer, 2006.

[179] Zhou Ren, Junsong Yuan, and Zhengyou Zhang. Robust hand gesture recognition
based on finger-earth mover’s distance with a commodity depth camera. In Proceedings
of the 19th ACM international conference on Multimedia. ACM, 2011.

[180] Grégory Rogez, Maryam Khademi, James Supancic, José Maŕıa Mart́ınez Montiel,
and Deva Ramanan. 3d hand pose detection in egocentric RGB-D images. In ECCV
Workshop on Consumer Depth Camera For Computer Vision, 2014.

[181] Gregory Rogez, Maryam Khademi, J.S Supancic, J.M.M. Montiel, and Deva Ramanan.
3d hand pose detection in egocentric rgbd images. In ECCV Workshop on Consuper
Depth Camera for Vision (CDC4V), pages 1–11, 2014.

[182] Grégory Rogez, James Steven Supancic III, and Deva Ramanan. First-person pose
recognition using egocentric workspaces. In Computer Vision and Pattern Recognition
(CVPR), 2015.

[183] Grégory Rogez, James Supancic, III, and Deva Ramanan. First-person pose recognition
using egocentric workspaces. In Computer Vision and Pattern Recognition (CVPR),
2015.

[184] Grégory Rogez, James S Supancic, and Deva Ramanan. Understanding everyday hands
in action from RGB-D images. In Proceedings of the IEEE International Conference
on Computer Vision, pages 3889–3897, 2015.

[185] Grgory Rogez, Maryam Khademi, James Supancic, III, J. M. M. Montiel, and Deva
Ramanan. 3D hand pose detection in egocentric RGB-D images. CDC4CV Workshop,
European Conference on Computer Vision (ECCV), 2014.

173

[186] J. Romero, H. Kjellstrom, and D. Kragic. Hands in action: real-time 3D reconstruc-
tion of hands in interaction with objects. In 2010 IEEE International Conference
on Robotics and Automation (ICRA), pages 458–463. doi: 10.1109/ROBOT.2010.
5509753.

[187] Javier Romero, Hedvig Kjellstr, and Danica Kragic. Monocular Real-Time 3D Artic-
ulated Hand Pose Estimation. Humanoid Robots, International Conference on, 2009.

[188] Javier Romero, Thomas Feix, H Kjellstrom, and Danica Kragic. Spatio-temporal
modeling of grasping actions. In IROS, 2010.

[189] Javier Romero, Hedvig Kjellstrom, Carl Henrik Ek, and Danica Kragic. Non-
parametric hand pose estimation with object context. Image and Vision Computing,
2013.

[190] D.A. Ross, J. Lim, R.S. Lin, and M.H. Yang. Incremental learning for robust visual
tracking. International Journal of Computer Vision, 77(1), 2008.

[191] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling language refer-
ence manual, the. Pearson Higher Education, 2004.

[192] Olga Russakovsky, Jia Deng, Zhiheng Huang, Alexander C Berg, and Li Fei-Fei. De-
tecting avocados to zucchinis: what have we done, and where are we going? In
International Conference on Computer Vision (ICCV). IEEE, 2013.

[193] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252, 2015. doi: 10.1007/
s11263-015-0816-y.

[194] Stuart Jonathan Russell, Peter Norvig, John F Canny, Jitendra M Malik, and Dou-
glas D Edwards. Artificial intelligence: a modern approach. Prentice Hall, 2003.

[195] Zafer Sahinoglu, Sinan Gezici, and Ismail Guvenc. Ultra-wideband positioning systems.
Cambridge, New York, 2008.

[196] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof. Prost: Parallel robust
online simple tracking. In Computer Vision and Pattern Recognition (CVPR), pages
723–730. IEEE, 2010.

[197] Ashutosh Saxena, Justin Driemeyer, Justin Kearns, and Andrew Y Ng. Robotic grasp-
ing of novel objects. In NIPS, 2006.

[198] Daniel Scharstein. A Taxonomy and Evaluation of Dense Two-Frame Stereo. Interna-
tional journal of computer vision, 2002.

[199] Gregory Shakhnarovich, Paul Viola, and Trevor Darrell. Fast pose estimation with
parameter-sensitive hashing. In International Conference on Computer Vision (ICCV).
IEEE, 2003.

174

[200] Toby Sharp, Cem Keskin, Duncan Robertson, Jonathan Taylor, Jamie Shotton, David
Kim, Christoph Rhemann, Ido Leichter, Alon Vinnikov, Yichen Wei, Daniel Freedman,
Pushmeet Kohli, Eyal Krupka, Andrew Fitzgibbon, and Shahram Izadi. Accurate,
robust, and flexible real-time hand tracking. In Computer-Human Interaction, ACM
Conference on, April 2015.

[201] J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore,
P. Kohli, A. Criminisi, A. Kipman, and A. Blake. Efficient human pose estimation
from single depth images. 35(12):2821–2840. ISSN 0162-8828. doi: 10.1109/TPAMI.
2012.241.

[202] Jamie Shotton, Toby Sharp, Alex Kipman, Andrew Fitzgibbon, Mark Finocchio, An-
drew Blake, Mat Cook, and Richard Moore. Real-time human pose recognition in
parts from single depth images. Communications of the ACM, 2013.

[203] Guang Shu, Afshin Dehghan, Omar Oreifej, Emily Hand, and Mubarak Shah. Part-
based multiple-person tracking with partial occlusion handling. In Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on, pages 1815–1821. IEEE,
2012.

[204] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[205] Arnold WM Smeulders, Dung M Chu, Rita Cucchiara, Simone Calderara, Afshin De-
hghan, and Mubarak Shah. Visual tracking: An experimental survey. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 36(7):1442–1468, 2014.

[206] Andres Solis Montero, Jochen Lang, and Robert Laganiere. Scalable kernel correlation
filter with sparse feature integration. ICCV Workshops, December 2015.

[207] Shuran Song and Jianxiong Xiao. Tracking revisited using RGBD camera: Unified
benchmark and baselines. International Conference on Computer Vision, pages 233–
240, 2013.

[208] Shuran Song and Jianxiong Xiao. Sliding Shapes for 3D Object Detection in Depth
Images. European Conference on Computer Vision (ECCV), 2014.

[209] Shuran Song and Jianxiong Xiao. Sliding shapes for 3D object detection in RGB-D
images. In European Conference on Computer Vision, 2014.

[210] Srinath Sridhar, Antti Oulasvirta, and Christian Theobalt. Interactive Markerless Ar-
ticulated Hand Motion Tracking Using RGB and Depth Data. International Conference
on Computer Vision (ICCV), 2013.

[211] Srinath Sridhar, Franziska Mueller, Antti Oulasvirta, and Christian Theobalt. Fast
and robust hand tracking using detection-guided optimization. In Computer Vision
and Pattern Recognition (CVPR), 2015.

175

[212] B. Stenger, A. Thayananthan, P. H. S. Torr, and R. Cipolla. Model-based hand tracking
using a hierarchical bayesian filter. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 2006.

[213] Bjorn Stenger, Arasanathan Thayananthan, Philip H S Torr, and Roberto Cipolla.
Model-based hand tracking using a hierarchical Bayesian filter. Pattern Analysis and
Machine Intelligence, IEEE transactions on, September 2006. ISSN 0162-8828.

[214] William C Stokoe. Sign language structure: An outline of the visual communication
systems of the american deaf. Journal of deaf studies and deaf education, 2005.

[215] Xiao Sun, Yichen Wei, Shuang Liang, Xiaoou Tang, and Jian Sun. Cascaded hand pose
regression. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 824–832, 2015.

[216] James Supancic and Deva Ramanan. Self-paced learning for long-term tracking. Com-
puter Vision and Pattern Recognition (CVPR), pages 2379–2386, 2013.

[217] James Supancic and Deva Ramanan. Tracking as online decision-making: Learning a
policy from streaming videos with reinforcement learning. In International Conference
on Computer Vision, 2017.

[218] James Supancic, Gregory Rogez, Yi Yang, Jamie Shotton, and Deva Ramanan. Depth-
based hand pose estimation: data, methods, and challenges. In International Confer-
ence on Computer Vision, 2015.

[219] James Supancic, Peter Carr, and Deva Ramanan. Why can’t we all just get along?
effective identity-aware multi-object tracking from sensored annotation? In Interna-
tional Conference on Computer Vision, 2017.

[220] Danhang Tang, Hyung Jin Chang, Alykhan Tejani, and Tae-Kyun Kim. Latent regres-
sion forest: Structured estimation of 3D articulated hand posture. Computer Vision
and Pattern Recognition (CVPR), 2014.

[221] Danhang Tang, Jonathan Taylor, Pushmeet Kohli, Cem Keskin, Tae-Kyun Kim, and
Jamie Shotton. Opening the black box: Hierarchical sampling optimization for esti-
mating human hand pose. In Proceedings of the IEEE International Conference on
Computer Vision, pages 3325–3333, 2015.

[222] Shuai Tang, Xiaoyu Wang, Xutao Lv, Tony X Han, James Keller, Zhihai He, Marjorie
Skubic, and Shihong Lao. Histogram of oriented normal vectors for object recognition
with a depth sensor. In ACCV 2012. 2013.

[223] Siyu Tang, Mykhaylo Andriluka, and Bernt Schiele. Detection and tracking of occluded
people. International Journal of Computer Vision, 110(1):58–69, 2014.

[224] Siyu Tang, Bjoern Andres, Miykhaylo Andriluka, and Bernt Schiele. Subgraph decom-
position for multi-target tracking. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 5033–5041, 2015.

176

[225] Jonathan Taylor, Richard Stebbing, Varun Ramakrishna, Cem Keskin, Jamie Shotton,
Shahram Izadi, Aaron Hertzmann, and Andrew Fitzgibbon. User-specific hand mod-
eling from monocular depth sequences. In Computer Vision and Pattern Recognition
(CVPR). IEEE, 2014.

[226] Jonathan Taylor, Lucas Bordeaux, Thomas Cashman, Bob Corish, Cem Keskin, Toby
Sharp, Eduardo Soto, David Sweeney, Julien Valentin, Benjamin Luff, et al. Efficient
and precise interactive hand tracking through joint, continuous optimization of pose
and correspondences. ACM Transactions on Graphics (TOG), 35(4):143, 2016.

[227] Andrea Lockerd Thomaz, Guy Hoffman, and Cynthia Breazeal. Real-time interactive
reinforcement learning for robots. In AAAI 2005 workshop on human comprehensible
machine learning, 2005.

[228] Jonathan Tompson, Murphy Stein, Yann Lecun, and Ken Perlin. Real-time contin-
uous pose recovery of human hands using convolutional networks. Graphics, ACM
Transactions on, August 2014.

[229] Antonio Torralba and Alexei A Efros. Unbiased look at dataset bias. Computer Vision
and Pattern Recognition (CVPR), pages 1521–1528, 2011.

[230] Dimitrios Tzionas and Juergen Gall. A comparison of directional distances for hand
pose estimation. In Joachim Weickert, Matthias Hein, and Bernt Schiele, editors,
Pattern Recognition, number 8142 in Lecture Notes in Computer Science. Springer
Berlin Heidelberg, January 2013.

[231] Dimitrios Tzionas, Abhilash Srikantha, Pablo Aponte, and Juergen Gall. Capturing
hand motion with an RGB-D sensor, fusing a generative model with salient points.
In German Conference on Pattern Recognition (GCPR), Lecture Notes in Computer
Science. Springer, September 2014.

[232] V. Vapnik. The nature of statistical learning theory. springer, 1999.

[233] Vladimir Vezhnevets, Vassili Sazonov, and Alla Andreeva. A survey on pixel-based
skin color detection techniques. In Proc. Graphicon. Moscow, Russia, 2003.

[234] Tomas Vojir, Jana Noskova, and Jiri Matas. Robust scale-adaptive mean-shift for
tracking. Image Analysis, pages 652–663, 2013.

[235] Carl Vondrick and Deva Ramanan. Video annotation and tracking with active learning.
In NIPS, pages 28–36, 2011.

[236] Carl Vondrick, Donald Patterson, and Deva Ramanan. Efficiently scaling up crowd-
sourced video annotation. International Journal of Computer Vision, 101(1):184–204,
2013.

[237] Marin Šarić. Libhand: A library for hand articulation, 2011. Version 0.9.

177

[238] Tuan-Hung Vu, Anton Osokin, and Ivan Laptev. Context-aware cnns for person head
detection. In Proceedings of the IEEE International Conference on Computer Vision,
pages 2893–2901, 2015.

[239] Chengde Wan, Angela Yao, and Luc Van Gool. Hand pose estimation from local surface
normals. In European Conference on Computer Vision, pages 554–569. Springer, 2016.

[240] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. Visual Tracking with
Fully Convolutional Networks. Computer Vision and Pattern Recognition (CVPR),
2015.

[241] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. STCT: Sequentially
training convolutional networks for visual tracking. CVPR, 2016.

[242] Naiyan Wang, Jianping Shi, Dit-Yan Yeung, and Jiaya Jia. Understanding and diag-
nosing visual tracking systems. International Conference on Computer Vision, pages
3101–3109, 2015.

[243] Robert Wang and Jovan Popovic. Real-time hand-tracking with a color glove. ACM
Trans on Graphics, 2009.

[244] Aaron Wetzler, Ron Slossberg, and Ron Kimmel. Rule of thumb: Deep derotation for
improved fingertip detection. In British Machine Vision Conference (BMVC). BMVA
Press, September 2015.

[245] Bo Wu and Ram Nevatia. Detection and tracking of multiple, partially occluded
humans by bayesian combination of edgelet based part detectors. International Journal
of Computer Vision, 75(2):247–266, 2007.

[246] Y. Wu and T.S. Huang. Color tracking by transductive learning. In Computer Vision
and Pattern Recognition (CVPR), volume 1, pages 133–138. IEEE, 2000.

[247] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark.
Computer Vision and Pattern Recognition (CVPR), pages 2411–2418, 2013.

[248] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object tracking benchmark. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015.

[249] Yu Xiang, Alexandre Alahi, and Silvio Savarese. Learning to track: Online multi-
object tracking by decision making. International Conference on Computer Vision,
pages 4705–4713, 2015.

[250] Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learning deep feature
representations with domain guided dropout for person re-identification. arXiv preprint
arXiv:1604.07528, 2016.

[251] Chi Xu and Li Cheng. Efficient Hand Pose Estimation from a Single Depth Image.
International Conference on Computer Vision (ICCV), December 2013.

178

[252] Chi Xu and Li Cheng. Efficient hand pose estimation from a single depth image. In
International Conference on Computer Vision, 2013.

[253] Yi Yang and Deva Ramanan. Articulated pose estimation with flexible mixtures-of-
parts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2013.

[254] Mao Ye, Xianwang Wang, Ruigang Yang, Liu Ren, and Marc Pollefeys. Accurate 3d
pose estimation from a single depth image. In International Conference on Computer
Vision, pages 731–738, 2011.

[255] Qi Ye, Shanxin Yuan, and Tae-Kyun Kim. Spatial attention deep net with partial pso
for hierarchical hybrid hand pose estimation. In European Conference on Computer
Vision, pages 346–361. Springer, 2016.

[256] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A survey. Acm Computing
Surveys (CSUR), 38(4):13, 2006.

[257] Shoou-I Yu, Yi Yang, and Alexander Hauptmann. Harry potter’s marauder’s map:
Localizing and tracking multiple persons-of-interest by nonnegative discretization. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 3714–3720, 2013.

[258] Shoou-I Yu, Deyu Meng, Wangmeng Zuo, and Alexander Hauptmann. The solution
path algorithm for identity-aware multi-object tracking. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 3871–3879, 2016.

[259] Shoou-I Yu, Yi Yang, Xuanchong Li, and Alexander G Hauptmann. Long-term
identity-aware multi-person tracking for surveillance video summarization. arXiv
preprint arXiv:1604.07468, 2016.

[260] Y. Zha, Y. Yang, and D. Bi. Graph-based transductive learning for robust visual
tracking. Pattern Recognition, 43(1):187–196, 2010.

[261] Xiangxin Zhu, Carl Vondrick, Deva Ramanan, and Charless Fowlkes. Do we need
more training data or better models for object detection?. In British Machine Vision
Conference (BMVC), 2012.

179

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	CURRICULUM VITAE
	ABSTRACT OF THE DISSERTATION
	Decisions in Long-Term Tracking
	Model-Based Hand Pose Estimation
	Introduction
	Testing Data
	Training Data
	libhand training set:

	Methods
	Taxonomy
	Architectures
	Volumetric exemplars

	Protocols
	Evaluation
	Annotation
	Interpretation

	Results

	Models for Egocentric Hand Pose
	Introduction
	Related work

	Training data
	Formulation
	Perspective-aware depth features
	Global pose classification
	Joint feature extraction and classification

	Experiments
	Conclusions

	Models for Hand Grasps
	Introduction
	Related Work
	GUN-71: Grasp UNderstanding Dataset
	Data capture

	Synthetic (training) data generation
	Recognition pipeline
	Segmentation
	Fine-grained classification

	Experiments
	Conclusions

	Self-Paced Learning for Tracking
	Introduction
	Related work

	Approach
	Learning appearance with a SVM
	Tracking as shortest-paths
	Selecting good frames

	Algorithm
	Online (causal) tracker
	Offline tracker

	Implementation
	Results
	Diagnostics
	Conclusion

	Learning to Make Decisions
	Introduction
	Related Work
	POMDP Tracking
	Interactive Training and Evaluation
	Implementation
	Experiments
	Comparative Evaluation
	System Diagnostics

	Multiple-Object Tracking with Sensored Annotation
	Introduction
	Related Work
	Literature Review
	Theoretical Background

	Dataset, Task, and Evaluation
	Preliminary Analysis
	Methods
	Hallucinating Better Detections
	Hallucinating Better Identifications
	Extensions to TINF
	Implementing Deep Detection and Occlusion Prediction

	Analysis
	Conclusion

	Conclusions
	Bibliography

