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Abstract

We describe an end-to-end framework for learning parameters of min-cost flow multi-
target tracking problem with quadratic trajectory interactions including suppression of
overlapping tracks and contextual cues about co-occurrence of different objects. Our
approach utilizes structured prediction with a tracking-specific loss function to learn the
complete set of model parameters. Under our learning framework, we evaluate two dif-
ferent approaches to finding an optimal set of tracks under quadratic model objective
based on an LP relaxation and a novel greedy extension to dynamic programming that
handles pairwise interactions. We find the greedy algorithm achieves almost equivalent
accuracy to the LP relaxation while being 2-7x faster than a commercial solver. We eval-
uvate trained models on the challenging MOT and KITTI benchmarks. Surprisingly, we
find that with proper parameter learning, our simple data-association model without ex-
plicit appearance/motion reasoning is able to outperform many state-of-the-art methods
that use far more complex motion features and affinity metric learning.

1 Introduction

Thanks to advances of object detector performance, "tracking-by-detection" approaches that
build tracks on top of a collection of candidate object detections have shown great promise.
Tracking-by-detection avoids some classic difficulties such as drift, and is often able to re-
cover from extended periods of occlusion since it is “self-initializing”. Finding an optimal
set of detections corresponding to each track can be formulated as a discrete optimization
problem of locating low-cost paths through a graph of candidate detections for which there
are often efficient combinatorial algorithms such as min-cost matching or min-cost network-
flow (e.g., [27, 36]). However, unlike generative formulations of multi-target tracking that
estimate and score latent continuous trajectories for each object (e.g., [2, 25, 32]), trajectories
in tracking-by-detection approaches are implicitly defined by the selected set of detections.
This immediately raises difficulties, both in (1) encoding strong trajectory models with only
pairwise potentials and (2) identifying the parameters of these potentials from training data.

One approach to these issues is to first group detections in to candidate tracklets and
then perform scoring and association of these tracklets [5, 30, 33]. This allows tracklets
to be scored with richer trajectory and appearance models. Another approach is to attempt
to include higher-order constraints directly in a combinatorial framework [6, 7]. In either
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Figure 1: Our tracking framework incorporates quadratic interactions between objects in
order to resolve appearance ambiguity and to boost weak detections. The parameters of
the interactions are learned from training examples, allow the tracker to successfully learn
mutual exclusion between cyclist and pedestrian, and boost to intra-class co-occurrence of
nearby people.

case, there are a large number of parameters associated with these richer models which be-
come increasingly difficult to set by hand and necessitate the application of machine learning
techniques.

The contribution of this paper is in demonstrating that aggressively optimizing the pa-
rameters of relatively simple combinatorial models can yield state-of-the-art performance
on difficult tracking benchmarks. We introduce a simple multi-target, multi-category track-
ing model that extends min-cost flow with quadratic interactions between tracks in order to
capture contextual interactions within a frame. To perform inference, we propose a novel,
greedy-dynamic programming algorithm that produces high-quality solutions on par with
linear programming relaxations of the quadratic tracking objective while being substantially
faster than a commercial LP solver. For learning, we use a structured prediction SVM [29]
to optimize the complete set of tracking parameters from labeled data.

Structured prediction has been applied in tracking to learning inter-frame affinity met-
rics [17] and association [23] as well as a variety of other learning tasks such as fitting CRF
parameters for segmentation [28] and word alignment for machine translation [18]. A re-
lated paper [8] also used a structured SVM to learn parameters for multi-target tracking with
quadratic interactions for the purpose of activity recognition. Our work differs in that we
choose a novel loss function that penalizes false transition and id-errors based on the MOTA
tracking score. In particular, we show experimental results that demonstrate the learned
models produce state-of-the-art performance on multi-target, multi-category tracking bench-
marks.

2 Model

We begin by formulating multi-target tracking and data association as a min-cost network
flow problem equivalent to that of [36], where individual tracks are described by a first-order
Markov Model whose state space is spatial-temporal locations in videos. This framework in-
corporates a state transition likelihood that generates transition features in successive frames,
and an observation likelihood that generates appearance features for objects and background.

Tracking by Min-cost Flow For a given video sequence, we consider a discrete set of can-
didate object detection sites V where each candidate site x = (I, 0,¢) is described by its


Citation
Citation
{Taskar, Guestrin, and Koller} 2003

Citation
Citation
{Kim, Kwak, Feyereisl, and Han} 2013

Citation
Citation
{Lou and Hamprecht} 2011

Citation
Citation
{Szummer, Kohli, and Hoiem} 2008

Citation
Citation
{Lacoste-Julien, Taskar, Klein, and Jordan} 2006

Citation
Citation
{Choi and Savarese} 2012

Citation
Citation
{Zhang, Li, and Nevatia} 2008


WANG, FOWLKES: LEARNING MULTI-TARGET TRACKING 3

location, scale and frame number. We write ® = {@,(x)|x € V} for the image evidence (ap-
pearance features) extracted at each corresponding spatial-temporal location in a video. A
single object track consists of an ordered set of these detection sites: T = {xi,...,x,}, each
of which independently generates foreground object appearances at the corresponding sites
according to distribution py,(¢,) while the remaining site appearances are generated by a
background distribution ppe(@q).

The set of optimal (most probable) tracks can be found by solving an integer linear
program (ILP) over flow variables f.

mln Zcf + ch]f‘lj+zclf‘l+z(’f (1
ijeE
s.t. f,+Zf,,— f,+Zﬁ, 2)

where E is the set of valid transitions between sites in successive frames and the costs are
given by

Prg(9a(xi))
Pbg(¢a(xi)) 7

Ps» Pe and p; represent the likelihoods for tracks starting, ending and transitioning between
given sites. This ILP is a well studied problem known as minimum-cost network flow [1].
The constraints satisfy the total unimodularity property and thus can be solved exactly us-
ing any LP solver or via various efficient specialized solvers, including network simplex,
successive shortest path and push-relabel with bisectional search [36].

S _ [ _

c; = —log cij = —logpi(xjlx;), ¢ =—logps(xi), c¢;=—logp.(x:) (4)

Track interdependence The aforementioned model assumes tracks are independent of each
other, which is not always true in practice. In order to allow interactions between multiple
objects, we add a pairwise cost term denoted g;; and g ; for jointly activating a pair of flows
fi and f; corresponding to detections at sites x; = (I;,0;,;) and x; = (I;,0;,¢;). Adding this
term to | yields an Integer Quadratic Program (IQP):

mch Y ciifiy +chﬁ Y ‘Iijfifj‘f‘zci'fit (5)

ijeE ijeEC
st. (Eq.2), (Eq.3)

In our experiments we only consider pairwise interactions between pairs of sites in the same
video frame which we denote by EC = {ij : t; =t;}. One could easily extend such formula-
tion to include transition-transition interaction to model high order dynamics.

The addition of quadratic terms makes this objective hard to solve in general. In the
next section we discuss two different approximations for finding high quality solutions f. In
Section 5 we describe how the costs ¢ can be learned from data.

3 Inference

Unlike min-cost flow (Eq. 1), finding the global minimum of the IQP problem (Eq. 5) is
NP-hard [35] due to the quadratic terms. We evaluate two different schemes for finding
high-quality approximate solutions. The first is a standard approach of introducing auxiliary
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variables and relaxing the integral constraints to yield a linear program (LP) that lower-
bounds the original objective. We also consider a greedy approximation based on successive
rounds of dynamic programming that also yields good solutions while avoiding the expense
of solving a large scale LP. The resulting tracks (encoded by the optimal flows f) are used
for both test-time track prediction as well as for optimizing parameters during learning (see
Section 5).

LP Relaxation and Rounding If we relax the integer constraints and deform the costs as
necessary to make the objective convex, then the global optimum of 5 can be found in poly-
nomial time. For example, one could apply Frank-Wolfe algorithm to optimize the relaxed,
convexified QP while simultaneously keeping track of good integer solutions [16]. However,
for real-world tracking over long videos, the relaxed QP is still quite expensive. Instead we
follow the approach proposed by Chari et al. [7], reformulating the IQP as an equivalent ILP
problem by replacing the quadratic terms f; f; with a set of auxiliary variables u;;:

mfianfff—i— Z c,'jf,'j—i-Zcifi—i— Z qiju,'j—i—ZCEff 6)
l

ijeE 7 ijeEC :
st. (Eq.2), (Eq.3), wij<fiuj<f;i fi+fi<uj+1

The new constraint sets enforce u;; to be 1 only when f; and f; are both 1. By relaxing the
integer constraints, program 6 can be solved efficiently via large scale LP solvers such as
CPLEX or MOSEK. We use two different rounding heuristics proposed by [7] to produce
integral solutions and take the solution with lower cost.

Greedy Sequential Search As an alternative to the LP relaxation, we describe a simple
greedy algorithm inspired by the combination of dynamic programming (DP) and non-
maximal suppression proposed in [27]. The detailed algorithm is described in Algorithm
1. The algorithm sequentially instances tracks by finding shortest paths through a min-cost
flow graph and then updates estimated costs for future tracks to include the quadratic penal-
ties incurred by the instanced track.

Algorithm 1 Greedy Sequential Search (DP with Quadratic Cost Update)

1: Input: A Directed-Acyclic-Graph tracking G with edge weights ¢;, ¢;;
2: initialize 7 « 0

3: repeat

4: Find shortest start-to-end path p on G via dynamic programming

5 track_cost = cost(p)
6 if track_cost < O then
7: for all locations x; in p do
8 cj=cj+qij+qjforallij,jic EC
9: Cj =+
10: end for
11: T+« TUp

12: end if
13: until track_cost > 0
14: Output: track collection 7

In the absence of quadratic terms, this algorithm corresponds to the 1-pass DP approx-
imation of the successive-shortest paths (SSP) algorithm. Hence it does not guarantee an
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optimal solution, but, as we show in the experiments, it performs well in practice. An im-
plementation difference from a pure dynamic programming approach such as [27], is that
updating costs with the quadratic terms when a track is instanced has the (unfortunate) effect
of invalidating cost-to-go estimates which could otherwise be cached and re-used between
successive rounds of dynamic programming.

4 Features for Tracking Potential Functions

In order to learn the tracking potentials (c and q) we parameterize the flow cost objective by
a vector of weights w and a set of features W(X,f) that depend on features extracted from
the video, the spatio-temporal relations between candidate detections, and which tracks are
instanced. With this linear parameterization we write the cost of a given flow as C(f) =
wlW (X ,f) where the vector components of the weight and feature vector are given by:

ws Zi ¢S(xts) ls
Wi Yijer Wi (Xi,x)) fij
w=|w (X, 1) = |Lijeec Ws(xix)) fifj (7N
Wa Y 0a(xi) fi
WE Yioe(x)fi

Here w, represents local appearance template for the tracked objects of interest, w; repre-
sents weights for transition features, w, represents weights for pairwise interactions, wg and
wg represents weights associated with track births and deaths. ¥(X,f) are corresponding
features, which are described as below:

Local appearance and birth/death model We make use of off-the-shelf detectors [10, 11,
31] to capture local appearance. Our local appearance feature thus consists of the detector
score along with a constant 1 to allow for a variable bias. In applications with static cameras
it can be useful to learn a spatially varying bias to model where tracks are likely to appear or
disappear. However, most videos in our experiments are captured from moving platforms,
we thus use a single constant value 1 for the birth and death features.

Transition model We connect a candidate x; at time #; with another candidate x; at a later
time #; +n, only if the overlap ratio between x;’s window and x;’s window exceeds 0.3. The
overlap ratio is defined as two windows’ intersection over their union. We use this overlap
ratio as a feature associated with each transition link. The transition link’s feature will be 1
if this ratio is lower than 0.5, and 0 otherwise. In our experiments we allow up to 7 frames
occlusion for all the network-flow methods. We append a constant 1 to this feature and bin
these features according to the length of transition. This yields a 16 dimensional feature for
each transition link.

Pairwise interactions w; is a weight vector that encodes valid geometric configurations
of two objects. ;(x;,x;) is a discretized spatial-context feature that bins relative location
of detection window at location x; and window at location x; into one of the D relations
including on top of, above, below, next-to, near, far and overlap (similar to the spatial con-
text of [9]). To mimic the temporal NMS described in [27] we add one additional rela-
tion, strictly overlap, which is defined as the intersection of two boxes over the area of the
first box; we set the corresponding feature to 1 if this ratio is greater than 0.9 and O other-
wise. Now assume that we have K classes of objects in the video, then w; is a DK 2 vector,
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Wws = Wi Wigs s Whis s wikg]”, in which wy; is a length of D column vector that en-
codes valid geometric configurations of object of class i w.r.t. object of class j. In such way
we can capture intra- and inter-class contextual relationships between tracks.

S Learning

We formulate parameter learning of tracking models as a structured prediction problem. With
some abuse of notation, assume we have N training videos (X,,f,) € X x F,n=1,...,N.
Given ground-truth tracks in training videos specified by flow variables f,,, we discrimina-
tively learn tracking model parameters w using a structured SVM with margin rescaling:

1
w" = argmin f||w||2+CZ<§n (8)
Ww,6n>0 2 n

st WX, B) —wIW(X,.£,) > L(E, £) — &, Vn,f

where W(X,,,f,) are the features extracted from nth training video. L(f,,,f) is a loss func-
tion that penalizes any difference between the inferred label T and the ground truth label £,
and which satisfies L(f,,f,) = 0. The constraint on the slack variables &, ensure that we
pay a cost for any training videos in which the cost of the flow associated with ground-truth
tracks under model w is higher than some other incorrect flow f. We use a standard cutting
plane approach [15] to optimize the objective by performing loss-augmented inference to
find flows f that violate the constraint. We note that this formulation allows for constraints
corresponding to non-integral flows f so we can directly use the LP relaxation (Eq. 6) to gen-
erate violated constraints during training. [12] points out that besides optimality guarantees,
including non-integral constraints naturally pushes the SVM optimization towards solutions
that produce integer solution even before rounding.

Tracking Loss Function We find that a critical aspect for successful learning is to use a loss
function that closely resembles major tracking performance criteria, such as Multiple Object
Tracking Accuracy (MOTA [4]). Metrics such as false positive, false negative, true positive,
true negative and true/false birth/death can be easily incorporated using a standard Hamming
loss on the flow vector. However, id switches and fragmentations [21] are determined by
looking at labels of two consecutive transition links simultaneously, and hence cannot be op-
timized by our inference routine which only considers pairwise relations between detections
within a frame. Instead, we propose a decomposable loss for transition links that attempts
to capture important aspects of MOTA by taking into account the length and localization of
transition links rather than using a constant (Hamming) loss on mislabeled links.

We define a weighted Hamming loss to measure distance between ground-truth tracks f
and inferred tracks f that includes detections/birth/death, f;, and transitions, f;;. Let

LEf) =Y fij =i

fi_ﬁ’ +Zlij
ij

where 1 = {l1,....1;, ..., lij, ...,l‘ﬂ} is a vector indicating the penalty for differences between

the estimated flow f and the ground-truth f.
In order to describe our transition loss, let us first denote four types of transition links:
NN is the link from a false detection to another false detection, PN is the link from a true
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detection to a false detection, NP is the link from a false detection to a true detection, PP*
is the link from a true detection to another true detection with the same identity, and PP~ is
the link from a true detection to another true detection with a different identity. For all the
transition links, we interpolate detections between its start detection and end detection (if
their frame numbers differ more than 1); the interpolated virtual detections are considered
either true virtual detection or false virtual detection, depending on whether they overlap
with a ground truth label or not. Loss for different types of transition is defined as:

1. For NN links, the loss will be (number of true virtual detections + number of false
virtual detections)

2. For PN and NP links, the loss will be (number of true virtual detections + number of
false virtual detections + 1)

3. For PP links, the loss will be (number of true virtual detections)

4. For PP~ links, the loss will be (number of true virtual detections + number of false
virtual detections + 2)

Training data Available training datasets specify ground-truth bounding boxes that need to
be mapped onto ground-truth flow variables f;, for each video. To do this mapping, we first
consider each frame separately. We take the highest scoring detection window that overlaps a
ground truth label as true detection and assigned it a track identity label which is the same as
the ground truth label it overlaps. Next, for each track identity, we run a simplified version
of the dynamic programming algorithm to find the path that claims the largest number of
true detections. After we iterate through all id labels, any instanced graph edge will be a true
detection/transition/birth/death while the remainder will be false.

An additional difficulty of training which arises on the KITTI tracking benchmark are
special evaluation rules for ground truth labels such as small/truncated objects and vans for
cars, sitting persons for pedestrians. This is resolved in our training procedure by removing
all detection candidates that correspond to any of these “ambiguous” ground truth labels
during training; in this way we avoid mining hard negatives from those labels. To speed up
training on both MOT and KITTTI dataset, we partition full-sized training sequences in to
10-frame-long subsequences with a 5-frame overlap, and define losses on each subsequence
separately.

6 Experimental results

We have focused our experiments on two challenging datasets: the Multiple Object Tracking
Benchmark! [19], which focuses primarily on pedestrian tracking; and the KITTI Tracking
Benchmark” [13], which involves multi-category tracking of cars, pedestrians and cyclists.
For both datasets we allow occlusion of up to 7 frames in our tracking graph. Best regu-
larization parameters are obtained via leave-one-video-out cross-validation on training data.
All results on test set were submitted to the respective test servers only once.

The MOT Benchmark For the MOT Benchmark, we only use a subset of contextual features
that includes the overlap and near relationships due to the varying view angle of benchmark
videos. Surprisingly, we achieve the best tracking results on MOTA among all published

Ihttp://nyx.ethz.ch/
2nttp://www.cvlibs.net /datasets/kitti/eval_tracking.php
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MOT dataset
Benchmark on test set Cross-validation on training set

Method MOTA | MOTP | MT | ML |IDSW | FRAG Method MOTA |[MOTP| MT | ML |IDSW |FRAG
TC_ODAL [3]]| 15.1% | 70.5% | 3.2% [ 55.8% | 637 | 1716 SSP 28.7% | 72.9% | 15.1% | 50.5% | 440 | 541
RMOT [34] | 18.6% | 69.6% |5.3% |53.3% | 684 | 1282 | LP+Hamming | 25.3% | 72.4% | 17.4% | 46.5% | 567 604
CEM [24] 19.3% | 70.7% | 8.5% | 46.5% | 813 | 1023 LP 28.5% | 72.8% | 15.1% | 48.9% | 440 | 563
SegTrack [26] | 22.5% | 71.7% | 5.8% | 63.9% | 697 | 737 DP 27.6% | 72.4% | 15.5% | 49.1% | 492 | 626
MotiCon [20] | 23.1% | 70.9% | 4.7% | 52.0% | 1018 | 1061

Ours(LP) 25.2% | 71.7% | 5.8% | 53.0% | 646 849

Table 1: Benchmark and cross-validation results on MOT dataset. We denote variants of
our model as follows: 1) SSP are models without pairwise terms, learned and tested with
successive shortest path algorithm. 2) LP are models with pairwise terms, learned with LP-
Relaxation while tested with LP-Rounding. 3) DP are models with pairwise terms, learned
with LP-Relaxation while tested with Greedy Sequential Search. 4) LP+Hamming is the
same as LP, except that models are learned using Hamming loss instead of the loss described
in Section 5.

results, without employing any explicit appearance/motion model. We expect this is not be-
cause appearance/motion features are useless but rather that the parameters in these features
have not been optimally learned/integrated into in competing tracking methods.

The KITTI Tracking Benchmark Due to the high speed motion of vehicle platforms, for
the KITTI dataset we use pre-computed frame-wise optical flow [22] to predict candidates’
locations in future frames in order to generate candidate links between frames. We evaluated
two different detectors, DPM and the regionlets detector [31] which produced the best result
in terms of MOTA, IDs and FRAG during cross-validation. Result on test set is summarized
in the upper part of Table 2.

Diagnostic Analysis We conduct cross-validations on the training set for each dataset to
study the effect of quadratic terms, loss function and inference algorithm. The results are
summarized in Table 1 and 2. As shown in right side of Table 1, our novel loss function
is superior to traditional Hamming loss in terms of maximizing MOTA. The DP algorithm
proposed in section 3 achieves 2-7x speedup (Fig 2) with negligible loss in most metrics; it
is even slightly better than LP inference when tracking cars with DPM detector (Table 2).

We found SSP (min-cost flow without quadratic terms) achieves slightly better overall
accuracy on the MOT dataset. MOT only contains a single object category and includes
videos from many different viewpoints (surveillance, vehicle, street level) which limits the
potential benefits of simple 2D context features. However, by properly learning the detector
confidence and transition smoothness in the SSP model, many false tracks can be pruned
even without contextual knowledge.

For traditional multi-category detector such as DPM [11], quadratic interactions were
very helpful to improve the tracking performance on KITTTI; this is most evident for tracking
cyclist, as shown in Table 2. However, this benefit seems to disappear when we switch to
the more powerful regionlets-based detector where the SSP approach (min-cost flow with-
out quadratic terms) achieves best performance by a noticeable margin. We conclude that
when the detector itself is good enough to resolve ambiguity caused by similar appearance
or limited resolution, the benefits of quadratic terms are outweighed by the difficulties of
approximate inference. Unlike the LP relaxation or greedy sequential search, SSP always
produces a globally optimal set of tracks which appears to benefit parameter learning.
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Benchmark on KITTI test set
Benchmark on Car, DPM detections Benchmark on Pedestrian, DPM detections
Method |MOTA [MOTP| MT | ML |[IDSW |FRAG| Method |MOTA |MOTP| MT | ML |IDSW [FRAG
TBD [14] | 51.7% | 78.5% | 13.8% | 34.6% | 33 540 TBD NA NA NA NA NA NA
CEM 47.8% | 771.3% | 14.4% | 34.0% | 125 401 CEM 36.2% | 74.6% | 8.0% |53.0% | 221 | 1011
RMOT | 49.3% | 75.3% | 15.2% | 33.5% | 51 389 RMOT | 39.9% | 72.9% | 10.0% | 47.5% | 132 | 1081
Ours(LP) | 57.3% | 77.2% | 27.9% | 23.4% | 18 449 | Ours(LP) | 43.7% | 74.1% | 10.4% | 43.4% | 87 1291
Benchmark on Car, Regionlet detections Benchmark on Pedestrian, Regionlet detections

RMOT [ 60.3% [ 75.6% [ 27.0%[ 11.4%[ 216 [ 755 RMOT [ 51.1% [ 74.2% [ 16.9% | 41.3% [ 372 [ 1515
Ours(SSP) [ 70.4% [ 77.7% [ 41.6% [ 9.4% [ 73 [ 579 | Ours(SSP) [ 56.5% [ 75.4% [ 18.7% | 33.7% [ 181 [ 1448

Cross-validation result on KITTI training set

Benchmark on Car, DPM detections Benchmark on Car, Regionlet detections
Method | MOTA | MOTP | MT | ML |IDSW | FRAG | Method | MOTA | MOTP| MT | ML |IDSW | FRAG
SSP | 63.4% | 78.3% |27.4% |20.0% | 2 179 SSP [ 78.9% | 80.8% | 45.0% | 8.1% | 22 308
LP | 64.5% | 78.1% |30.1% |189% | 4 206 LP |774% | 80.2% |44.1% |8.1% | 152 | 515
DP | 65.1% | 78.0% | 30.3% | 18.7% | 16 224 DP | 76.2% | 80.2% |42.7% | 8.4% | 163 517

Benchmark on Pedestrian, DPM detections Benchmark on Pedestrian, Regionlet detections

Method | MOTA | MOTP | MT | ML |IDSW | FRAG | Method | MOTA | MOTP| MT | ML |IDSW | FRAG
SSP | 51.2% | 73.2% | 19.2% | 24.6% | 16 230 SSP | 73.0% | 76.6% | 58.1% |7.8% | 67 369
LP | 53.0% | 72.9% | 22.8% |21.0% | 24 263 LP 69.5% | 76.1% | 51.5% | 8.4% | 130 | 493
DP | 52.7% | 73.0% | 19.2% | 21.0% | 30 269 DP | 67.8% |76.2% |55.7% |7.8% | 138 470

Benchmark on Cyclist, DPM detections Benchmark on Cyclist, Regionlet detections
Method | MOTA | MOTP | MT | ML |IDSW | FRAG | Method | MOTA | MOTP| MT | ML |IDSW | FRAG
SSP | 47.4% [ 79.7% |35.1% |32.4% | 5 10 SSP | 83.7% | 82.5% |75.7% |2.7% | 8 18
LP |58.1% |79.5% |40.5% [29.7% | 8 15 LP |799% |81.9% |73.0% |2.7% | 8 28
DP | 57.8% | 79.5% |40.5% |32.4% | 7 13 DP | 78.1% | 81.9% |70.3% |5.4% | 15 34

Table 2: Benchmark and cross-validation results on KITTI data set. We evaluate two differ-
ent detectors (DPM and Regionlet) and three different inference models (SSP,LP,DP) each
trained using SSVM.
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Figure 2: Visualization of the weight vector learned on KITTI dataset for the DPM detector.
Yellow has small cost, blue has large cost. (a) shows transition weights for different length of
frame jumps. (b) shows learned pairwise contextual weights between objects. The model en-
courages intra-class co-occurrence when objects are close but penalizes overlap and objects
on top of others. Note the strong negative interaction learned between cyclist and pedes-
trian (two classes which are easily confused by their respective detectors.). (c) Speed and
quality comparison of proposed DP and traditional LP approximation. Over the 21 training
sequences in KITTT dataset, LP+rounding produces solutions with an upper-bound cost that
is very close to relaxed global optimum. Sequential DP with quadratic cost estimates gives
an upper-bound that is within 1% of relaxed global optimum, while being 2 to 7 times faster
than a commercial LP solver (MOSEK). Figure best be viewed in color.


Citation
Citation
{Geiger, Lauer, Wojek, Stiller, and Urtasun} 2014


10 WANG, FOWLKES: LEARNING MULTI-TARGET TRACKING

7 Conclusion and Future Work

In summary, our underlying tracking model is a rather straight-forward extension of previ-
ously published approaches [27, 36], yet it is able to outperform many far more complex
state-of-the-art methods on both MOT and KITTI benchmarks. However, we note that sim-
ple application of the DP-based tracker described in [27] does quite poorly on these datasets
(e.g., MOTA=14.9 on the MOT benchmark). We thus attribute the performance boost to our
learning framework which produce much better parameters than those estimated by hand-
tuning or piece-wise model training.

We want to stress that our work is also complimentary to other existing methods. While
we did not see significant benefits to adding simple appearance-based affinity features (e.g.,
RGB histogram or HOG) to our model, many state-of-the-art systems perform hierarchical
or streaming data-association which involves collecting examples from extended period of
trajectory to train target specific appearance models in an online fashion. Such models can
potentially fit into our framework, providing a way to explore more complicated affinity fea-
tures while estimating hyper-parameters automatically from data. One could also introduce
richer, trajectory level contextual features under such a hierarchical learning framework.
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