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Abstract dress the issue of occlusion. All these systems use super-

We present a method to learn models of human heads forvised t.raining where the training examples are normalized
the purpose of detection from different viewing angles. We&"d @ligned by hand. In the system by Burl et al. an oper-
focus on a model where objects are represented as constelator |nd_|cates the main features of the faces by clicking on
lations of rigid features (parts). Variability is represed them_ W't_h amouse.
by a joint probability density function (pdf) on the shape of It S difficult to assess and compare the performance of
the constellation. In a first stage, the method automatjcall these systems since no common benchmark exists. Baluja
identifies distinctive features in the training set usingmn €t @l. made their system available for testing on the inter-
terest operator followed by vector quantization. The set of "€t [6]. On realistic datasets the detection rates of these
model parameters, including the shape pdf, is then learnedSYStems is above0% of frontally viewed faces, with false
using expectation maximization. Experiments show good2/am rates in the range 6f— 10 in clutter. The computa-
generalization performance to novel viewpoints and unseentiona! time is implementation-dependent and ranges ftom
faces. Performance is abo®6% correct with less thans [0 100 seconds per image. Training on large datasets rang-
computation time per image. ing from10? to 10* images is required.

We address here the problem of detecting human heads
in clutter idependently of their orientation around thetiver
cal axis. We seek to achieve this invariance while presgrvin
the robustness to occlusion of Burl et al. and the mild train-

The human head and face are the most valuable object$ng supervision required by the neural-network approaches
that a computer vision system may detect, track and recog-oyyr starting point is the scheme proposed by Burl et al.
nize. Amongst these tasks, detection is perhaps the mosfyhich we extend along two directions: (a) we obtain view-
challenging; while recognition and tracking have register  noint invariance using two distinct methods: training a sin
considerable progress during the last decade, detect®n hagje detector on multiple views, and combining the output of
so far eluded the efforts of computer vision researchers. Th multiple detectors trained on different views, (b) we weake
main source of hope comes from observing the human vi-ine training paradigm requiring no image normalization,
sual system; it can detect reliably and quickly human headsyegjstration or manual detection of features: We develop

in clutter: independently of scale, viewpoint, in a large va  jgeas for automatic feature selection and shape training.
riety of lighting conditions, and robustly with respect to-o

clusion. .

A number of studies have addressed detection in simpli-2  Overview of the Approach
fied scenarios: Sung and Poggio [8], Baluja, Rowley and
Kanade [5], have proposed neural-network approaches to We model object classes following the work of Burl et
detecting unoccluded frontal views of the face. Schneider-al. [1]. An object is composed gfarts andshape where
man and Kanade [7] have proposed an approach based oparts are image patches which may be detected and char-
histograms of feature detectors to address the same probacterized by appropriate detectors, ahdpedescribes the
lem. Burl, Leung, Weber and Perona [1] additionally ad- geometry of the mutual position of the parts in a way that

1 Introduction and Related Work
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Figure 1. Overview of our method

is invariant with respect to rigid and, possibly, affine gan  In our method, operations (b) and (c) are performed only
formations [4]. A joint probability density on part appear- implicitly in a “soft” way, usingexpectation maximization
ance and shape models the object class. Object detection is The best performing model generated in such fashion is
performed by first running part detectors on the image, thusin the end selected as “the model”.

obtaining a set of candidate part locations. The seconeé stag
consists of forming likely object hypotheses, i.e. coratel
tions of appropriate features (e.g. eyes, nose, mouth); ears
both complete and partial constellations are considered, i In Section 3 we discuss our feature selection procedure
order to allow for partial occlusion. The third stage cotssis based on vector quantization. Section 4 introduces the prob
of using the object’s joint probability density for eitheale abilistic model, explains MAP classification and discusses
culating the likelihood that any hypothesis arises from an how the EM algorithm is used to learn the model parameters
object (object detection), or the likelihood that one sfieci  from example images. In Section 5 we report on the results
hypothesis arises from an object (object localizationprin ~ of experiments that test the ability of the model to gener-
der to train a model we need to decide on the key parts ofalize to unseen viewing angles. The appendix completes
the object, identify those parts in the training images and the theory with some detailed formulas of the learning al-
estimate the joint probability density function on part ap- gorithm.

pearance and shape. The method we present here performs

all three steps automatically. A block diagram is shown in 3 Automatic Feature Selection
Fig. 1.

Our technique for selecting potentially informative fea- The problem of selecting distinctive and well localize-
tures/regions is composed of two steps: first highly texiure apje features is intimately related to the method chosen to
regions are detected in the training images by means of &jgtect these features. Since we need to evaluate a large
standardnterest operatoror keypoint detector. The num-  mper of potential features and thus, detectors, we dettle
ber of those potential features is then reduced in an unsuyn normalized correlation as feature detection method. Fur
pervised clustering step. Appropriate feature detect@g m  hermore, extensive experiments lead us to believe that thi
be trained using the resulting clusters. method offers comparable performance over many more

The second step of our proposed model learning algo-elaborate detection methods.
rithm simultaneously estimates which ones of the features With correlation based detection, every patternin a small
actually are the most informative, and what is the proba- neighborhood in the training images defines a feature de-
bilistic description of the constellation that they tenddom tector. The purpose of the procedure described here is to
when they are associated to an object of interest. This pro-reduce this potentially huge set of features to a reasonable
cess requires iterating four operations: (a) choosingtaten number, such that the model learning algorithm described in
tive model structurei.e. the collection of features (or parts) the next section can then select a few most useful features.
that are associated to the object, (b) establishing a corre\We use a two-step procedure to accomplish this.
spondence between homologous parts across the training In the first step, we identify points of interest in the train-
set, and simultaneously labelling as ‘background’ or ‘ebis  ing images (see Fig. 2). This is done using the interest op-
all parts that are not putin such correspondence, (c) estima erator proposed by Forstner in [3], which is capable of de-
ing the joint model probability density from such a labelled tecting corner points, intersections of two or more lines, a
training set, (d) assessing the performance of such a modelwell as center points of circular patterns. These pattezn ar

Outline of the Paper
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Figure 3. An example of a set of patterns ob-
tained using k-means clustering (vector quan-
tization) of small image patches. The left set
was obtianed from frontal views, the right one
from semi-profile views.

Figure 2. Points of interest identified on a hu-
man head using Forstner’s method. Crosses
denote corner-type patterns while circles mark
circle-type patterns.

easy to localize, since the interest operator assuresiiat t
contain points of large image gradients in more than one di-
rection. This step produces abdutfeature candidates per

parameters are estimated within the loop usrpgectation
maximization([EM). After each iteration, the detection per-
o formance of the model is evaluated using a validation data
training Image. set (disjoint from the test set). Based on the performance,

A significant reduction of the number O_f features can b_e a feature in the configuration might be exchanged against a
achieved by the second step of the selection process, Wh'd?nore promising one

consists in performing vector quantization on the patterns
To this end, we use a standdrdneans clustering algorithm
[2], which we tuned to produce a set of aba00—150 pat-
terns.

In order to further eliminate redundancies, we remove
patterns which are simlilar to others after a shift of up to
two pixels in an arbitrary direction.

Due to the restriction to points of interest and the fact that

In the remainder of this section we discuss the problem
of estimating the parameters of the statistical objectsclas
model, given a fixed model configuration.

We assume that we have at our dispdBataining im-
ages, identified by subscripts We first apply all feature
detectors of the given configuration to the training images
and retain only the positions at which the detectors have
maximal response (locally). The only training data ex-
Ntracted from the images are theszndidate locations In

set exhibits interesting structure, as can be seen in Fjjure order to achieve a high recognition performance, we then

The patterns shown represent the centers of the reSpeCtiV((a)ptimize for themaximum likelihoodit of our object model
clusters and are obtained as averages of aliBi00 orig- to the training data, using the EM algorithm
inal patterns. Since we segment the heads from the training ’ '
images and overlay them on white and black backgrounds4.1 Notation
the most common patterns are simple corners which stem We assume that a model configuration, comprised of
mostly from the silhouette of the heads. But one can alsofeatures, has been chosers a simplification, we derive
readily identify true facial features such as eyes, nastril 4 learning algorithm for a Gaussian density of part po-
earlobes, mouth corners and so forth. sitions in the image. The necessary changes to obtain the

translation invariantversion used in the experiments are
4 Model Training minor?

All information extracted from a training imagé;, is

In order to train an object model we need to solve two — , o L

. . Although an object could, in principle, exhibit severaltigas of the
problems. Firstly, we need to decide on a_sma” subset pfsametype, we assume for now, that every detector is inclindix model
the selected features, to be used as parts in the model, i.eat most once, to avoid further complication of the notatiGhe extension

define themodel configurationSecondly, we need to learn  to “;UltiPk? features of the same type is straightforward.
the parameters of the statistical part of the model. The first, _ S is due to the fact that switching to a representationra/fiea-
. . . .. ture positions are described relative to a reference featwpolves only a
problem is solved in an outer loop throughout which dif- jinear transformation and there is thus no need to depant fre class of

ferent promising configurations are evaluated. The modelGaussian pdf's.



represented in the following “matrix” of feature candidate wherehg denotes thaull hypothesisvhich explains all fea-

positions, tures as background noise. For convenience, we omitted the
variablesh = sign(h) (with sign(0) = 0) andn = N —b,
118125 - -+ 5 T1N which are functions oh. Notice that the ratié;(g—(‘]; can be
X0 = S absorbed into a decision threshold. The sum in the numer-
: ator includes all hypothesis, including the null hypotkesi
TF1TF2, -« ,LFNp since the object could be present but remain undetected by

o N any feature detector. In the denominator, the only consiste
where the superscript® indicates that these positions are ynothesis to explain “object absent” is, of course, thé nul
observed in the image, as opposed to being unobserved Ohypothesis.
missing which will be indicated byn’. Thus, theft" row h del
contains the (two-dimensional) locations of detections of 4.3 The Mode
feature typef. For a given training imagel;, we can write the proba-

We will use the following random variables, which rep- bility density function modeling the data as:
resent either observed or hidden information in image
p(Xzo,in,hunubJ =
Di = {X7?,x",ni, hi, by} p(X?, x|, n;, b;) p(hi[n;, by) p(n;) p(b;).
The entire set,X?, of feature candidates can be divided The probability density over the number of background de-
into candidates which are tieue features of the object tections can be modeled by a Poistdistribution,

(theforeground and noise features coming from thack-

ground This non-observeable fact is conveyed by the ran- L

. . . . . _ M ny —My
dom variableh, a set of indices, which is also called p(n) = H _nf!( e )
hypothesis—for reasons to become evident later. Thus, f=1

h; = j, j > 0, means that point;; is a foreground point. ~ herels; is the average number of background detections
If the true object features has been missed altogether by th‘?oer image. Admitting a different/; for every feature al-
corresponding detector, the correct hypothesis will have ajq\s us to model different detector statistics.

zero-entry at this position. We denote bya binary vec- The binary vectob encodes information about which

tor which has entry; = 1if hy > 0 and zero otherwise,  features have been detected and which have been missed or
indicating whether the relevant feature is hypothesized t0 y¢ccluded. The corresponding probabilityb), is modeled

be detected1( or not (0). The positions of the missed (or explicitely by a table of size” which equals the number
occluded) foreground features are represented by a separaty¢ possible binary vectors of length. If F is large, the

vectorx™. The dimension ok™ varies between 0 and explicit probability table might become unreasonably éarg
depending on the number of unobserved features. Fimally |, this case we can assume independence between the fea-
denotes the number of background detectibns. ture detectors and modg{b) by a product of independent

All variables, exceptX °, are hidden from direct obser- densitiesp(b) = Hf_] p(by). The number of parameters

vation. - is reduced in that case frodf to F.
4.2 Classification The density(h|n, b) is modeled by,
For the experiments in this paper our objective is to clas- 1
H H H “ ” . b h € 7-lb
sify images into the classes “head present” (clagsand p(hjn,b) =< I, N,
“head absent” (clag%)). Given a probability density for the ' 0 otherh

observed datap(X?), the optimal decision—minimizing ] )
the total error probability—is made by choosing the class where?}, denotes the set of all hypotheses consistent with

which has the maximum a posteriori probability (MAP ap- P andn, and Ny denotes the total number of detections
proach, see e.g. [2]). It is therefore convenient to comside of featuref. This expresses the fact that all consistent hy-

the following ratio, potheses, the number of which Hle N;f, are equally
likely in the absence of information on the feature location
p(Ci]X?) > p(X? i)

Finally, we use
x 1 '
PGl X7) * H(X, BolCo) @

p(X?,x"[h,n) = pgg(x?, x™) pog(Xpy),

3Although this representation is redundahtig entirely determined by

h while n is obtained fromh and the total number of detectiorly)), it al- 4Given that we are dealing with a discrete set of pixel locatj@ bino-
lows us to put the parts of the probabilistic model into cep@ndence with mial distribution might seem more natural. However, siree Gaussian
the underlying physical processes, while accurately rifigehe natural foreground density is defined over a continuum of part posstj the Pois-

dependencies between the random variables. son distribution is the natural counterpart for the backgtbprocess.



where we definefk® x™] as the coordinates of tigpothe- each for only one particular viewing direction (frontalppr

sizedforeground detections (observed and missing)sajyd  file and semi-profile). In the second experiment, three mod-

as the coordinates of the background detections. The denels were provided with training images from segments of

Sity peg(x°, x™) is modeled as a joint Gaussian with mean width 30°. Finally, we trained a single model on the entire

u and covarianc&. The positions of the background de- quadrant from frontal to profile view.

tections are modeled by a uniform density, Performance was measured in a classification task where
images had to be labeled as either containing a face or not

G containing a face.
pbg(xbg) = H Ang’
F=1

5.1 Training and Test Images

whereA is the area covered by the image. This also conveys, " Order to produce a large set of images with dif-
ferent but known head orientations, a sufficient num-

our assumption that individual background detections are . X
ber of subjects, as well as different, cluttered back-

independent of each other and of the foreground detections. X )
grounds, we resorted to a synthetic blending of head

4.4 Learning images with background scenes. Subjects were pho-
To estimate the parameters of the generative madel,  tographed in front of a blue background fac@glifferent
{n, ¥, p(b), M}, we will use the expectation maximiza- Vviewing directions {15°,0°(= frontal), 15°,...,90°(=

tion (EM) algorithm to find their maximum likelihood (ML) ~ profile), 105°). The background was then subtracted from
solutions. The EM algorithm is particularly suited for our the images which were converted to grayscale; and the
problem since the variables b, h andx™ are unobserved background was replaced with entirely white or black re-
and must be inferred from the observed data Inthe  gions to produce training images (see Fig. 4 top), as well as

following we will omit reference to the variablasandb with random scenes to produce test images (see Fig. 4 bot-
because they are simple functionslo{see previous sec- tom). From the same set of background scenes images were
tion). selected at random to serve as negative examples in the clas-
In standardEM fashion, we attempt to maximize the sification task. Overall, we used image@fsubjects. This
log-likelihood of the observed data, which is given as set was divided into two non-overlapping, equally large set

for training and testing. Four pictures were taken of each
. N o m . subject at every viewing direction.
L(Xx?|0) = Z 10%2 /p(Xi X", hy|6) dx;". The set of background scenes contaif&@ pictures of
=1 h; landscapes, outdoor scenes of buildings and cars, as well as
Since maximizing sums and integrals of a logarithm is dif- indoor scenes of office and laboratory environments. This
ficult in practice, we choose to iteratively optimize a se- Setwas divided into two sets 66 pictures for training and

guence of cost functions—again in standardl/ fashion: testing. _ S
The resolution of the training images was such that the

N distance from top of the head to chin spanned aB0ynix-
QUOklk—1) = > Ex_1[log p(X7, x]", hy|6y)], els.
i=1

5.2 Automatic Feature Selection
wherek counts iterations and;,_,[.] denotes expectation
with respect to the posterior densityh;, x*| X2, 0_1).
Formally, the E-step amounts to the calculation of this pos-
terior density (or certain sufficient statistics thereoffjle
the M-step maximize®) (6 |61—1) overdy, given this pos-
terior density with parameters from the previous itergtion
A 1. It can be shown that the EM algorithm converges to
a local maximum of the log-likelihood. The respective M-
and E-steps for our model are included in the appendix.

Features were automatically selected according to the
procedure described in Sec. 3. The Forstner interest op-
erator was applied to training images with black and white
background, taken from the same viewing direction(s) as
were used to subsequently train the model.

The idea underlying the choice of pure black and white
backgrounds is that points on the silhouette of the face
might be useful features, if there is a reasonable chante tha
the face is seen, at detection time, against a fairly uniform
) background which is either darker or brighter than the head
5 Experiments itself. Since we used normalized correlation, it is only-nec

essary that the backgrounddlghtly different in brightness

We performed three experiments in order to evaluate thefrom the head, since any difference in a local region will be
performance of the method and, in particular, the ability amplified through the normalization.
of the face detectors to generalize to unseen viewing di- We performed vector quantization on grayscale patches
rections. In the first experiment, we trained three models, of size11 x 11 pixels, cut out at the points of interest. A



Figure 4. Examples from the image database.
Training images (top), background test im-
ages (center) and faces synthetically blended
into different backgrounds (bottom) are shown.
The latter were used for testing and validation.

different code book was produced for every experiment, and
samples are shown in Figure 3.

5.3 Model Training

The experiments described here were carried out using a
translation invariant version of the EM learning algorithm
The algorithm could have been used as described above,
but care would have had to be taken to register the training
images.

We initialized the model configuration with a small ran-
domly drawn set and estimated the model parameters by
running EM on the data from images with black and white
backgrounds22 images per viewing direction were used).
Aside from the fact that black and white backgrounds were
used in the feature selection step, they are used here again,
in order to avoid biasing the model towards backgrounds
darker or brighter than the foreground.

The number of features in all models was limited to three
since we found that, due the limited number of training im-
ages, the learning algorithm was overfitting the traininguda
when four or more features were used. Even with three fea-
ture models, the training error was often close to zero,avhil
the test error was significantly larger. This indicates that
some overfitting remained and that the amount of training
data was not sufficient to estimate all degrees of freedom of
the model. Reducing the degrees of freedom by allowing
only diagonal covariance matrices in the statistical shape
model did not solve this problem. For a larger set of train-
ing images, we expect both errors to approach a common
limit, somewhere between the observed test and training er-
rors.

We found the EM algorithm to converge if-100 iter-
ations. One iteration took abo0f2 seconds using a Mat-
lab implementation. The entire training process took about
three hours on a state of the art PC and, on average, about
250 model configurations were tried in the case of a three
feature model.

5.4 Performance Evaluation

Rather than classifying every image by applying a fixed
decision threshold according to Equation 1, we computed
receiver operating characteristics (ROCs) based on the ra-
tio of posterior probabilities. We determined the point on
the ROC curve corresponding to an equal fraction of mis-
classified foreground and background images and used this
error rate as a performance measure. Error rates are shown
for different viewing directions in the tuning curves in Fig
ure 5.

One can observe that the models trained under only one
viewing direction have indeed narrow tuning characteris-
tics. Also, these models are not superior to more broadly
trained models within their designated viewing range. This
suggests that a more diverse training set is generally ben-
eficial. The models trained ove° segments show the
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Figure 5. Tuning curves showing performance
of models for Experiment 1 (left) and Experi-
ments 2 and 3 (right).

best detection performance and a very good generalizatic
capability. The likely reason for the somewhat disappoint;
ing performance of the model trained on the entire viewingi
range is that the learning algorithm is not able to identify
consistent feature arrangements well in a very diverse da|

set. We have also observed a tendency of the configuratic |

selection strategy to get stuck in local extrema in this case
The computational requirements of our method der
tectionare rather small. The bulk of the processing time is
used to filter the images with the feature templates, whic
takes about.2 seconds in Matlab for three-feature models
and images of siz&60 x 120 pixels.
Detection results are illustrated in Figure 6.

6 Discussion and Conclusion

The system we describe improves upon previous worl
on face and head detection on two counts. It is viewpoin

inco

invariant, rather than restricted to frontal views of theefa ¥

Furthermore, no direct supervision is required for tragnin
the system, unlike previous work where an operator had t
align and normalize the training set and/or click on the mos
distinctive facial features of each training example. More
over: it detects efficiently the head amongst clutter (adoun
0.3 seconds per image on a Pentium 400MHz) and it is ro-
bust with respect to occlusion.

Our experiments indicate that orientation invariance may
be achieved both by combining the output of different mod-
els that were trained on specific views, and by training a
single model on all views. Best performance is achieved
by training on30° viewpoint intervals, possibly achieving
the optimum in a tradeoff between number of training ex-
amples and model specificity. Performance in that case is
aboved0% when training and testing on heads belonging to
different people.

[

=

Figure 6. Examples of correctly and incorrectly
classified images for models trained on 0° (left),

45° (center), and 90° (right) views. Models
are comprised of three features. Feature can-
didates are labeled accordingly with three dif-
ferent markers. Markersize indicates the prob-
ability of a feature candidate to correspond to
the foreground object. This information can be
used to locate the heads. Classification errors
result mostly from failure to detect enough fea-
tures, due to large tilt/slant or scale difference.



Many aspects of the system are susceptible of improve-by summing only over those hypotheses consistent tvith
ment. The choice of the features is far from optimal: it may in the numerator and dividing by(X?). Similarly, E[n;]
be noticed in Figure 2 that a number of features is edge-is calculated by averaging(h) over all hypotheses. For
like rather than corner-like indicating that our implemen- E[z] = (x° E[x™]) we need
tation of the Forstner interest operator in connectiornwit
the clust.erlng method negds to be improved. Anot.her issue x™ G(z|p, 0) dx™ = p™ + NMON0 T (x% — 4°),
concerning feature selection: it should not be restriabeal t
single scale but rather features should be chosen at naultipl
scales of resolution in order to incorporate both fine detail
and coarse ‘lowpass’ aspects of the face. On model train-
ing: our greedy algorithm is not necessarily optimal. Lastl
?t is Iiker.that the performange of the §ys_stem would further E[XmeT] — ymm _ yymoyoo—lymoT 4 E[x™E[x™T.
improve if more and more diverse training examples were
used.

where we definegh = (u° ™) and a similar decomposi-
tion for . For the calculation of[zz”] we need in addi-
tion to the above equation the following result
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