
Unsupervised Learning of Modelsfor Visual Objet Class ReognitionM. Webery M. Wellingz P. PeronayzyDept. of Computation and Neural SystemszDept. of Eletrial EngineeringCalifornia Institute of TehnologyPasadena, CA 91125AbstratWe present a method to learn objet lass models forthe purpose of objet reognition. We fous on a par-tiular type of model where objets are represented asonstellations of rigid features (parts). The variabil-ity within a lass is represented by a joint probabilitydensity funtion (pdf) on the shape of the onstella-tion and the output of feature detetors. The pdf maybe estimated from training data one a model struture(type and number of features) has been spei�ed. Themethod automatially identi�es distintive features inthe training set and learns the statistial shape model.It is assumed that a set of generi feature detetorsis available for the learning algorithm to hoose from.The entire set of model parameters is learned usingexpetation maximization.1 Introdution and Related WorkWe are interested in the problem of reognizingmembers of objet lasses, where we de�ne an objetlass as a olletion of objets whih share harateris-ti parts or features that are visually similar and ourin similar spatial on�gurations.Several solutions to this problem have reently beenproposed. In partiular, Amit and Geman have devel-oped a method for visual seletion whih learns a hier-arhial model with a simple type of feature detetor(edge elements) at the lowest level [1℄. The method as-sumes that training images are registered with respetto a referene grid. After an exhaustive searh throughall possbile loal feature detetors, a global model isbuilt, under whih shape variability is enoded in theform of small regions in whih loal features an movefreely.We have proposed a statistial model in whihshape variability is modeled in a probabilisti settingusing Dryden-Mardia shape spae densities [2, 3℄.One should also mention the ative appearanemodels of Taylor et al. [4, 6℄ whih model global de-formations using Eigenspae methods, as well as theDynami Link Arhiteture of v. der Malsburg and

olleagues, who onsider deformation energy of a gridthat links landmark points on the surfae of objets[7℄. Also Yuille has proposed a reognition methodbased on gradient desent on a deformation energyfuntion in [9℄.In this paper, we are onerned with several short-omings of the above methods, related, in partiular,to the training of suh models. Learning models likethe ones desribed above, typially requires a super-vised stage in whih the following questions need tobe answered:� Whih objets are to be reognized?� Whih objet features are distintive and stable?� What are the parameters of the global geometryor shape model that best desribe the trainingdata?By the �rst question we mean that target objets mustbe identi�ed in training images, be it by seletion ofpoints or regions on the surfae of the objets or bysegmenting the objets from the bakground. Thequestion of whih objet features are distintive as wellas stable aross di�erent objets of the same lass isoften left unanswered or approahed by heuristis orproedures of hand-seletion by a trained human op-erator. However, it is generally not established, thatfeatures that appear distintive to the human observerwill also lend themselves to suessful detetion by amahine. A notable exeption represents the work byWalker et al. who address this problem in [8℄, albeitoutside the realm of statistial shape models. Thethird problem is ommonly solved through some opti-mization tehnique.We propose in this paper a method whih addressesall three problems at one. A ompelling reason totreat these problems jointly, is the existing trade-o�between loalizability and distintiveness. A very dis-tintive feature an be a strong ue, even if it appearsin an arbitrary loation on the surfae of an objet|think e.g. of a manufaturer's logo on a ar. On the



other hand, a less distint feature an only ontributeinformation if it ours in a stable spatial relationshiptrelative to other features.2 ApproahWe assume that instanes of an objet lass are de-sribed through a harateristi set of features (parts),whih an our at variable spatial loations. Theparts are modeled as rigid, photometri patterns andthe positional variability is represented using a prob-ability density funtion over the point loations ofthe objet features. Although our previously intro-dued objet model allows to treat part onstellationsin shape spae, and thus ahieves pose invariant dete-tion, the learning method presented here inorporatesonly invariane with respet to translation, not rota-tion and sale. We assume that the part positions,after translation has been eliminated by desribing allfeature positions relative to one referene feature, arewell represented by a Gaussian pdf.Formally, the detetion problem amounts to deid-ing whether an instane of the lass (the foreground)is present in the image, or whether the image ontainsonly lutter (bakground). The problem of detetingthe exat position of the objet in the image an betreated under the same framework.The two stages of our reognition method are anindependent detetion of objet features, using di�er-ent types of feature detetors, followed by a hypothesisevaluation stage. During the latter, small sets of an-didate loations in the image, whih have been labeledby the feature detetors, are evaluated as to their like-lihood of atually orresponding to an instane of theobjet lass.We assume that the feature detetor responsesevoked by the bakground (the false detetions) aredistributed uniformly aross the image and are inde-pendent of eah other and of the foreground. Thisassumption is key to our method, whih, in a nut-shell, an be seen as �tting a mixture density modelto the data, whih onsists of a joint Gaussian densityover all foreground detetor reponses and a uniformdensity over bakground responses.The problem we are addressing in this paper isthree-fold, although we propose a single algorithm tosolve it.Firstly, we would like to avoid segmentation or la-beling of training images by hand. Ideally, the trainingalgorithm should determine whih parts of the imageontain the objets of interest. This may sound on-traditory, as deteting the objets was preisely theproblem we set out to solve in the �rst plae, but ourexperiments show that it is possible under ertain on-ditions. Seondly, we want to selet from a larger setof feature detetors the ones whih are able to on-sistently identify a shared feature of the objet lass.Finally, also the global shape representation should be

learned autonomously.We assume that we have at our disposal T trainingimages, identi�ed by subsripts � , and we suppose thata large number of simple generi detetors for featuressuh as orners, dots or other points of high textureontent is available.The problem then beomes to selet a subset offeature detetors, i.e. to hoose a model on�guration,and to learn the parameters of the global geometrymodel, with the �nal goal of maximizing reognitionperformae.To solve this problem, we �rst apply all feature de-tetors to the training images and retain only the posi-tions at whih a given detetor has maximal response(loally) on a given image. The only training data ex-trated from the images are these andidate loations.In order to ahieve a high reognition performane,we then optimize for the maximum likelihood �t ofour objet model to the training data, using the EMalgorithm.2.1 NotationFor the remainder of this paper, we assume thata number, F , of feature detetors has been seletedto be part of the model. Although an objet ould, inpriniple, exhibit several features of the same type, weassume for now, that every detetor is inluded in themodel at most one, to avoid further ompliation ofthe following presentation. The extension to multiplefeatures of the same type is straightforward. As a fur-ther simpli�ation, we derive the learning algorithmfor a Gaussian density of part positions in the image.The neessary hanges to obtain the translation ivari-ant version used in the experiments are minor. Thisis due to the fat that swithing to a representationwhere feature positions are desribed relative to a ref-erene feature, involves only a linear transformationand there is thus no need to depart from the lass ofGaussian pdf's.All information extrated from a training image,I� , is represented in the following matrix of featureandidate positions,Xo = 0BBB� x11x12; : : : ; x1N1x21x22; : : : ; x2N2...xF1xF2; : : : ; xFNF :Every row ontains the (two dimensional) loations ofdetetions of feature type f .We will use the following random variables, whihrepresent either expliit or unobserved information,D = fXo� ;xm� ;n� ;h� ;b�g:Here, h denotes a set of indies, also alled a hypoth-esis, for reasons to beome evident later, indiating



whih points in Xo are from the foreground distri-bution (i.e. on the surfae of the objet), so thathi = j; j > 0, means that point xij is a foregroundpoint, while j = 0 indiates that the orrespondingfeature has not been inluded in Xo beause it is hasnot been deteted. We denote by b a binary vetorwhih has entry bf = 1 if hf > 0 and zero otherwise.The positions of the oluded or missed foregroundfeatures are olleted in a separate vetor xm. Thesize of xm varies between 0 and F depending on thenumber of unobserved features. Finally n� denotesthe number of bakground detetions. All variables,exept Xo are onsidered hidden.2.2 The ModelFor a given training image, I� , we an write theprobability density funtion modeling the data as:p(Xo� ;xm� ;h� ;n� ;b� ) =p(n� ) p(b� ) p(h� jn� ;b� )�p(Xo� ;xm� jh� ;n� ;b� ):The probability density over the number of bak-ground detetions is modeled by a Poisson1 distribu-tion, p(n) = FYf=1 1nf ! (Mf )nf e�Mf ;whereMf is the average number of bakground dete-tions per image. Admitting a di�erent Mf for everyfeature allows us to model di�erent detetor statistisand, ultimately, to distinguish between more or lessreliable detetors.The probability p(b) is modeled expliitely by atable of size 2F whih equals the number of possiblebinary vetors of length F . If F is large, the expliitprobability mass-table of length 2F might beome un-reasonably long. In that ase we an assume indepen-dene between the feature detetors and model p(b)by a produt of independent densities,p(b) = FYf=1 p(bf ):The number of parameters redues in that ase from2F to F .The density p(hjn;b) is modeled by,p(hjn;b) = ( 1QFf=1 Nbff h 2 Hb0 other hwhere Hb denotes the set of all hypotheses onsistentwith b and n, and Nf denotes the total number ofdetetions of feature f .1Given that we are dealing with a disrete set of pixel loa-tions, a binomial distribution might seem more natural. How-ever, sine the Gaussian foreground density is de�ned over aontinuum of part positions, the Poisson distribution is the nat-ural ounterpart for the bakground proess.

Finally, we usep(Xo;xmjh;n) = G(zj�;�)U(xbg);where we de�ned zT = (xo xm) as the oordinates ofthe hypothesized foreground detetions (observed andmissing) and xbg as the oordinates of the bakgrounddetetions. G(zj�;�) denotes a Gaussian with mean� and ovariane �. The positions of the bakgrounddetetions are modeled by a uniform density,U(xbg) = FYf=1 1Anf ;where A is the area overed by the image.3 The EM algorithmSine our detetion method relies on the maximuma posteriori probability (MAP) priniple, we will ob-tain maximum detetion performane for those pa-rameters whih optimize the joint data likelihood. Asmentioned above, we treat as missing data the h, theb and the n. The positions of unobserved foregroundfeatures, i.e. those orresponding to zero entries in h,are olleted in xm and are, quite naturally, onsideredmissing as well.In standard EM fashion, we attempt to maximizethe log-likelihood of the observed data, whih is givenas L(Xoj~�) =TX�=1 logXh� Xb� Xn� Z p(Xo� ;xm� ;h� ;n� ;b� j�) dxm� ;where � represents the set of all parameters of themodel. Sine maximizing sums and integrals of a log-arithm is diÆult in pratie, we hoose to omputeQ(~�j�) = TX�=1E[log p(Xo� ;xm� ;h� ;n� ;b� j~�)℄:where E[:℄ denotes taking the expetation withrespet to p(h� ;xm� ;n� ;b� jXo� ; �). Throughout thissetion, a tilde denotes parameters we are optimizingfor, while no tilde implies that the values from theprevious iteration are substituted. EM theory [5℄guarantees that the maximum of Q(~�j�) is at themaximum of the log-likelihood. The EM algorithmis a reipe to �nd this maximum (or at least a loalmaximum) iteratively.Let us now derive update rules that will be used inthe M-step of the EM algorithm. The parameters weneed to onsider are those of the Gaussian governingthe distribution of the foreground features, i.e. � and�, the parameters of the density p(b) whih we willmodel expliitly as a table of probability masses and



the parameters governing the bakground densities,M. It will be helpful to deompose Q into four partsQ(~�j�) = Q1(~�j�) +Q2(~�j�) +Q3(~�j�) +Q4(�)= TX�=1E[log p(n� j�)℄ + TX�=1E[log p(b� j�)℄+ TX�=1E[log p(Xo� ;xm� jh� ;n� ; �)℄+ TX�=1E[log p(h� jn� ;b� )℄The �rst three terms ontain parameters that will beupdated in the EM, while the last term ontains nonew parameters.Update rule for �Sine only Q3 depends on ~�, taking the derivative ofthe expeted likelihood yields��~�Q3(~�j�) = TX�=1E h~��1(z� � ~�)i ;where zT = (xo xm) aording to our de�nition above.Setting the derivative to zero yields the following up-date rule ~� = 1T TX�=1E[z� ℄:Update rule for �Similarly, we obtain for the derivative with respet tothe inverse ovariane matrix�� ~��1Q3(~�j�) = TX�=1E �12 ~�� 12(z� � ~�)(z� � ~�)T� :Equating with zero leads to~� = 1T TX�=1E[(z��~�)(z��~�)T ℄ = 1T TX�=1E[z�zT� ℄�~�~�T :Update rule for p(b)To �nd the update rule for the 2F probability massesof p(b), we need to onsiderQ2(~�j�) beause this is theonly term that depends on these parameters. Takingthe derivative with respet to ~p(�b) we �nd,��~p(�b)Q2(~�j�) = TX�=1 E[Æb;�b℄~p(�b)Imposing the onstraint P�b2B ~p(�b) = 1, for instaneby adding a Lagrange multiplier term), we �nd the

following update rule for ~p(�b),~p(�b) = 1T TX�=1E[Æb;�b℄:Update rule for MFinally, we notie that Q3(~�j�) is the only term on-taining information about the mean number of bak-ground points per featureMf . Di�erentiating Q3(~�j�)with respet to ~M we �nd,�� ~MQ3(~�j�) = TX�=1 E[n� ℄~M � I:Equating to zero gives the intuitive result,~M = 1T TX�=1E[n� ℄:Computing the SuÆient StatistisIn the previous setions we alulated the expressionsneeded for the M-step in the EM algorithm. All up-dates rules are expressed in terms of the so alled `suf-�ient statistis' E[z℄; E[zzT ℄; E[Æb;�b℄ and E[n℄. Wewill now alulate these suÆient statistis in what isformally alled the E-step of the EM algorithm. Inorder to do this we need to onsider the posterior den-sity. It is given by,p(h� ;xm� ;n� ;b� jXo� ; �) =p(h� ;xm� ;n� ;b� ; Xo� j�)Ph�2HbPb�2BP1n�=0 R p(h� ;xm� ;n� ;b� ; Xo� j�) dxm�We will �rst simplify the `zoo' of variables a bit by ob-serving that if we perform summations in the followingorder, Xh�2Hb Xb�2B 1Xn�=0we may replae n = N � b, where N is the to-tal number of detetions per feature type, and forgetthe summation over n. Furthermore, we may replaeb = sign(h) (with sign(0) = 0) and forget the sum-mation over b. In the following we will assume thissimpli�ation and treat n and b as funtions of h. Thedenominator in the expression above, p(Xo� ), is alu-lated as follows. Choose a hypothesis onsistent withthe observed data. Integrate out the missing data inthat hyposthesis2. Calulate b(h) and n(h) and insertthem into the joint density. Finally, sum over all pos-sible hypothesis. The expetations of the statistis arealulated in a similar fashion. E[Æb;�b℄ is alulated by2Integrating out dimensions of a Gaussian is simply done bydeleting the means and ovarianes of those dimensions



summing only over those hypotheses onsistent with�b in the numerator and dividing by p(Xo� ). Similarly,E[n� ℄ is alulated by averaging n(h) over all hypothe-ses. The ase E[z℄ is slightly more ompliated. Forevery hypothesis we make the split zT = (xo xm).E[xo℄ = xo beause there is no dependene on hiddeninformation. For E[xm℄ one needs to alulate,Z xm G(zj�; �) dxm = �m +�mo�oo�1(xo � �o);where we de�ned,� = � �o�m � � = � �oo �om�mo �mm �Doing this for every onsistent hypothesis, summingand dividing by p(Xo� ) establishes the result. Finallywe need to alulateE[zzT ℄ = � xoxoT xoE[xm℄TE[xm℄xoT E[xmxmT ℄ �Only the part E[xmxmT ℄ has not been onsidered.Again, we will make the split zT = (xo xm) for eveyonsistent hypothesis. Integrating out the missing di-mensions, xm, now involves,Z xmxmT G(zj�; �) dxm =�mm � �mo�oo�1�moT +E[xm℄E[xm℄T :Looping through all possible hypotheses and dividingby p(Xo� ) again provides the desired result. This on-ludes the E-step of the EM algorithm.As desribed so far, our method assumes that amodel on�guration (the number and types of featuredetetors) has been hosen prior to the EM phase.Without any further elaborate strategy, we would haveto �t a model for every possible model on�guration,hoping to �nd a model with satisfatory reognitionperformane. We will present, in the next setion, amethod to avoid this exhaustive searh through on-�guration spae.4 ExperimentsFor the experiments desribed in this setion, weused a translation invariant extension of the abovederivations. The algorithm ould have been used asdesribed above, if the training images had been pre-pared suh that the target objet is in the same loa-tion in every image. This is inonvenient, espeiallysine our goal is to eliminate the need for user inter-vention.4.1 Choie of DetetorsFor a general reognition task, the set of featuredetetors should ontain a large number of simplegeneri detetors of basi features suh as orners, T-juntions, line endings, line rossings et. However,

Detector 1 Detector 2 Detector 3 Detector 4

Detector 5 Detector 6 Detector 7 Detector 8

Detector 9 Detector 10 Detector 11 Detector 12

Detector 13 Detector 14Figure 1: The above 14 templates were used as or-relation masks for the letter reognition experiment.The templates are normalized suh that the mean isequal to zero.it is of ourse possible to add more spei� detetors,in the ase where prior knowledge about the possibletarget objets is available.For the following demonstration of our method, weused a set of 14 simple orrelation templates, whihare shown in Figure 1.4.2 Learning LettersWe performed a reognition experiment on a set of30 \Dilbert" omi strips. The artoons had a sizeof 500 � 200pixels. Sine the original resolution wasfairly low, we applied the templates only at the high-est available resolution. To illustrate the feasability ofour method we attempted to learn several letters (`E',`T', `H' and `L') from the text segments of the omistrips. This hoie was in part motivated by the fatthat the letters are hand-written, whih ensures a er-tain degree of variability aross eah lass. We used6 strips for training, whih provided us with 40{60training samples per letter. We presented eah letterin a window of approximately 12 times the area of asingle letter. Every letter was thus seen in its \natu-ral surrounding" (Fig. 2). The main limitation for theamount of bakground area in the training images isthe number of feature andidates enountered in thebakground and the resulting omputational ost dueto the large number of hypothesis that need to be on-sidered during model learning.Greedy Con�guration SearhAfter applying all feature detetors to the trainingsamples, we hose the following greedy strategy to ex-plore di�erent model on�gurations.In a �rst step, we explore on�gurations with afew (e.g. three) di�erent features. The on�gura-tion whih yields the smallest training error (measuredas the probability of mislassi�ation), is hosen andaugmented by one feature, trying all possible types.The best of these augmented models is then retainedfor subsequent augmentation. This proess should be
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Figure 2: A text segment of a artoon is shown onthe top. One strip typially ontains up to six suhsegments. The frame in the upper image illustratesthe size of a training image. On the bottom we show aolletion of 9 training \pathes" for eah letter. Notethat adjaent letters are inluded together with thetarget letter, whih is appearing in a di�erent loationin every training image.stopped as soon as a riterion for model omplexity(suh as an MDL measure) or desired detetion per-formane is met. In our ase we simply hose a totalnumber of �ve features in the model as a omplexitythreshold. It is possible, that no further improvementin detetion performane is obtained even before themaximum number of features is reahed. This was thease for the `L' and `T' models presented below.We found the EM algorithm to onverge rapidly in10 - 100 iterations. One iteration took about a seondusing a Matlab implementation of the method.Two of the learned models are presented in Fig-ure 3.Performane EvaluationWe measured detetion performane using 20 omistrips that were not inluded in the training set. Here,
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Figure 3: We show the models learned for the letters`E' and `T'. Ellipses are shown at a one standard de-viation distane from the mean feature positions. Thefeature position are measured relative to a referenefeature. No variane is shown for this feature, as theattahed variability would orrespond to overall trans-lation of the objet. The features hosen for the `E'are of types 3, 5 and 8, those for the `T' are of types1 to 3 and 12.we used the entire strips, inluding not only the textregions but also the line drawings whih omprisedsome textured regions.Rather than lassifying every loation in the imageby applying a �xed threshold, we omputed reeiveroperating harateristis (ROCs), whih are shown inFig. 4.The overall detetion performane was good. Thisis, in part, due to the fat that line drawings do notsu�er from the typial hanges in appearane due todi�erent lighting onditions or hanges of pose in threedimensions, so that a reliable detetion of the featureswas obtained even with the simple detetors. The per-formane on individual letters seems to be governed bythe performane of the feature detetors. In partiu-lar, objets tend to be missed when individual featuresare not deteted. This oured mostly when letterswere too lose to adjaent ones.As an be seen in the �gure, the performane of the`L'-detetor was onsiderably worse than that of theother three. This is due to the fat that the modelof the `L' ontains only three features. The result aremany false negatives, sine the letter is missed easilyas soon as one feature is missed.We present examples of image pathes with a highprobability of being mislassi�ed (see Figs. 5 and 6).Without settling on a partiular deision threshold, wean identify those by piking the foreground sampleswith the lowest likelihood and the bakground loa-tions with the highest likelihood.A omplete strip with detetions of the letter 'E' isshown in Fig. 7.An interesting observation made during these ex-periments is that the model sometimes inluded fea-tures from neighboring letters. If we suppose that thebakground patterns in the training set resemble those



0 4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms

P
d

ROC Performance "E"−Detector

0 4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms
P

d

ROC Performance "T"−Model

0 4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms

P
d

ROC Performance ’H’−Detector

0 4 8 12 16 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of False Alarms

P
d

ROC Performance "L"−Detector

Figure 4: ROC urves show the detetion performaneof all four letter detetors. The probability of falsealarm is resaled to reet the expeted performaneon an image of the size of the artoon strips. The prob-abilities of error at an operating point where the pro-bilities of false positives and false negatives are equal,are 3:9% for `E', 4:2% for `T', 2:0% for `H' and 9:2%for `L'.enountered when the model is �nally put to work,then knowledge about the neighbors of a letter to bedeteted an and should be used to improve the per-formane.5 Conlusion and Future WorkWe have presented a method whih an learn anoptimal objet lass model|in a maximum likeli-hood sense|with respet to the set of employed fea-ture detetors, as well as all other model parameters.The method signi�antly failitates model aquisition,sine human supervision is redued to a minimum.Limitations are the remaining need for normaliza-tion for rotation and sale. The greedy strategy usedto searh possible model on�gurations also proved tobe relatively slow, whih is why we are urrently in-vestigating a method whih dynamially introdues orsuppresses Gaussian lusters during the maximizationproess. We are also investigating the possiblity to di-retly learn a true shape model instead of a pdf overfeature position in the image plane.Referenes[1℄ Yali Amit. A neural network arhite-ture for visual seletion. Available athttp://galton.uhiago.edu/~amit, November1998.
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Figure 5: Shown are, for every letter, the 16 loationson the bakground of test images whih yielded thehighest likelihood.
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Figure 6: For every letter, we show the 16 lowest sor-ing orret loations.
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