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Abstract

We formulate a layered model for object detection and
multi-class segmentation. Our system uses the output of a
bank of object detectors in order to define shape priors for
support masks and then estimates appearance, depth order-
ing and labeling of pixels in the image. We train our system
on the PASCAL segmentation challenge dataset and show
good test results with state of the art performance in sev-
eral categories including segmenting humans.

1. Introduction
Object detection is a fundamental task in computer vi-

sion. Most approaches formulate the problem as that of
predicting a bounding box enclosing the object of interest
- this is, for example, the evaluation criteria in the popular
PASCAL Visual Object Recognition Challenge (VOC) [3].
However, a bounding-box output is clearly limited. For
many objects, particularly those with complex, articulated
shapes, a bounding box provides a poor description of the
support of the object in the image. At the other extreme,
one can attempt to produce an object class label for every
pixel in the image. This is usually termed multi-class seg-
mentation.

Object detection and multi-class segmentation have typ-
ically been approached as separate problems and tackled
using substantially different techniques. Candidate bound-
ing boxes are often generated using a scanning window ap-
proach and scored using a classifier trained on positive and
negative examples[24, 2, 4]. In contrast, multi-class seg-
mentation models have largely been built on top of Markov
Random Field (MRF) models which enforce smoothness
across pixel labels [6, 21, 13, 20, 22].

We posit that these two problems should be addressed
jointly. Per-pixel labels in multi-class segmentation should
benefit from highly discriminative template-based object
detectors. Similarly, object detections should be consistent
with some underlying segmentation of the image. In com-
bining these approaches, two important issues arise:

1. Multi-class, multi-object pixel labeling benchmarks

pose interesting challenges that are not captured by
bounding-box detection benchmarks.

2. Producing per-pixel labels points to the need for a
layered representation to reconcile overlapping detec-
tions.

Representing detections as a multi-class segmentation
rather than a collection of bounding boxes has a significant
impact on the way detection performance is measured. In
some sense, multi-class segmentation benchmarks are more
difficult than bounding box benchmarks since the latter al-
lows for pixels to belong to multiple overlapping object in-
stances, while the former forces pixels to have a single class
or instance label. Suppose, for example, that cat and dog
detectors tend to respond to similar image regions. One
could artificially increase the recall rate on standard detec-
tion benchmarks by reporting overlapping cat and dog de-
tections even though such a configuration may never exist.
On the other hand, a segmentation output is necessarily self-
consistent since each pixel may only take on a single label.

A simple approach for generating self-consistent detec-
tions is to paste box-shaped masks on top of one another to
create a multi-class segmentation. This is the default proce-
dure used by PASCAL to automatically generate segmen-
tations from object detection systems [3]. Such a segmen-
tation, though, depends on the details of how the detectors
are calibrated. Even a good detector will produce poor seg-
mentations if the detection threshold is set too low or too
high.

Performance also depends crucially on what order detec-
tions are “pasted down”. If boxes are composited in order
of detector score, then it is essential that the detectors for
different classes are calibrated relative to each other. Ex-
plicitly representing object detection with a layered repre-
sentation not only captures this ordering but can also be ad-
vantageous in guiding more precise segmentation. Layering
allows for one to link disjoint object segments separated by
an occluder (Fig.1) based on estimating the layer appear-
ance (e.g. color and texture).

In this paper, we describe a simple probabilistic model
that captures the shape, appearance and depth ordering of a
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Figure 1. Our framework. Multi-class object detections algorithms typically predict bounding box locations and class labels (left). Such
reports only provide relatively coarse reports about objects. Multi-class segmentation algorithms provide class labels for every pixel
(center). We propose to use object-specific bounding box representations to guide multi-class segmentation algorithms. To do so, we
introduce layered representations (right) that reason about relative depth orderings of objects. Layered representations are helpful, for
example, to link object segments separated by an occluder (e.g., the center person occluded by the horse).

collection of detections within an image. It explicitly rep-
resents the shape of a detected object in terms of a layered,
per-pixel segmentation. This shape estimate is driven by a
novel deformable spatial prior for object shape that adapts
to particular instances based on the response of a mixture of
part-based detectors. Given an ordering of layers, these ob-
ject detections are composited to yield a generative “expla-
nation” of the image in terms of a multi-class segmentation.

After a brief discussion of related work, we describe this
layered representation in detail in Section 3, discuss how
to perform inference in Section 4 and how parameters are
learned from training data in Section 5. We then show ex-
perimental results on the 2009 PASCAL Segmentation chal-
lenge which demonstrate that the proposed method achieves
state-of-the art results in many categories.

2. Related work
The reconciliation of recognition and segmentation has

been an active area of research. Early approaches bias a seg-
mentation engine using the output of object models [27, 17],
while others iterate between bottom-up and top-down cues
[14, 15, 23]. Our work is most similar to the ObjCut frame-
work [11] that uses a part-based model to bias a bottom-up
grouping process. Our work differs in that we focus on seg-
menting images of multiple instances of multiple types of
objects.

Our work is also inspired by image representations that
reason about occlusion through the use of “2.5D” models.
Such approaches are typically explored in the video do-
main and include examples such as layered motion mod-
els [25], video sprites [10], and layered pictorial structures
[12]. In the image domain, such layered approaches are
less common but have been explored in e.g., [16, 5]. One
approach of capturing rough depth ordering is to estimate
occlusion boundaries, typically done in a Markov Random
Field framework [26, 8, 9]. At the other extreme, one can
attempt to recover full three-dimensional models from sin-

gle images as in [9, 19]. Our goal is to explore more inter-
mediate three-dimensional representations based on relative
depth orderings of object segmentations.

3. Model
We now describe our layered generative model for object

detection.
Detections: For a particular image, let dn encode the

class, score, and bounding box coordinates of the nth detec-
tion, where 1 ≤ n ≤ N . We assume that the detectors have
been calibrated on training data so that detections across
classes have comparable scores and thresholding scores at 0
yields an appropriate number of detections on average (we
describe details of this calibration in the experimental re-
sults section).

Importantly, we model each detection in “2.5D” and or-
der them from back to front with some permutation π so
that dπ(N) is the front-most detection, dπ(N−1) is the sec-
ond, etc. We define dπ(0) to be a default background de-
tection associated with a background layer that is included
for all images. Let θn be the parameters of the appearance
model associated with the nth detection. We will model
appearance with a color histogram.

Pixel Labels: Let xi be the feature value associated with
the ith pixel. Because there is a one-to-one correspondence
between a detection and a layer, we write zi ∈ {0 . . . N}
for a label that simultaneously specify both the layer and
detection associated with pixel i. Each layer also has its
own binary segmentation mask denoted by bin ∈ {0, 1},
where we define bi0 = 1. Note that a pixel i may belong
to multiple segmentation masks but can only have one final
object label (e.g., both bin and bim are 1 but due to occlu-
sion, either zi = n or zi = m)

Joint model: By convention, we use the lack of sub-
script to denote the set obtained by including all instances
of the omitted subscript - e.g., bi = {bi0 . . . biN}. Our first
assumption is that, given the set of ordered detections d and



appearance models θ, the joint probability of pixel features
x and labels z factors into a product over pixels:

P (z, x|θ, dπ) =
∏
i

P (zi, xi|θ, dπ), (1)

The model for each pixel can be further factored:

P (zi = n, xi|θ, dπ) = P (zi = n|dπ)P (xi|θn), (2)

where n ∈ {0 . . . N}. The second term is a standard “like-
lihood” model that scores pixel xi under the appearance
model for detection n. The first term is a distribution over
labels induced by the detections.

3.1. Layered Label Distributions

We obtain the distribution over labels by integrating over
all layered binary segmentations:

P (zi = m|dπ) =
∑
bi

P (zi = m|bi)p(bi|dπ) (3)

where P (zi = m|bi) = bim

N∏
n=m+1

(1− bin), (4)

and P (bi|dπ) =
N∏
n=0

P (bin|dπ(n)). (5)

We define bi0 = 1. This defaults all pixels to be labeled
as background when not explicitly covered by a detection.
Combining the previous three equations, and noting that the
occlusion model from (4) only requires us to integrate (3)
over binary segmentations in layers in front ofm, we obtain
the simplified expression:

P (zi = m|dπ) = βim

N∏
n=m+1

(1− βin) (6)

where βin = P (bin = 1|dπ(n)) (7)

3.2. Shape prior

In this section, we consider different models for the
shape prior βin. Arguably the simplest notion of a shape
prior is to define a “soft” mask or alpha-matte which records
the probability of a pixel at some location relative to the
center of the detection belonging to the object.

Let kn as the class label of the nth detection and i′ =
Tn(i) be the index of a pixel i which has been mapped by
some transformation Tn (e.g., translation and scaling) into
the coordinate system of the nth detection. We can then
specify a per-class shape prior by:

βin = αi′,kn (8)

We visualize examples of such priors in in Fig.2.

Object Pose: Local detectors based on mixture models
return a mixture component label ln for each detection. This
label often captures the pose of an object - e.g., side versus
frontal cars. It is natural to define a shape prior for each
discrete pose as:

βin = αi′,kn,ln (9)

Part Pose: Finally, part-based detectors also return a
vector of part locations {p1 . . . pT } for each detection. As-
suming that parts are layered in depth, we can derive a
model similar to Sec.3.1 that composites the contributions
of overlapping parts onto one another. Part t will contribute
the labeling of a pixel so long as the T − t parts in front do
not account for that pixel:

βin =
T∑
t=1

αi′,kn,ptn

T∏
s=t+1

(1− αi′,kn,psn) (10)

where i′ = Ttn(i), the location of pixel i in the coordinate
system of the tth part in detection n. One can also define
a shape prior from a mixture of part models by adding an
additional mixture index ln to (10).

3.3. Order prior

The previous model is conditioned on the ordering d =
{dπ(0) . . . dπ(N)}. To examine different orderings, it will be
useful to model π as a random variable by writing:

P (x, z, π|d, θ) = P (x, z|π, d, θ)P (π|d) (11)

The first term is on the right equivalent to (1). The sec-
ond term is a prior over orderings of detections. One choice
would be an uninformative prior – we may not favor one
depth ordering over another. However, it is reasonable to
assume that most local object models produce higher scores
on unoccluded instances compared to occluded instances.
This assumption suggests that one should favor depth order-
ings that place high scoring objects in front of lower scoring
objects. A second feature which is useful in ordering detec-
tions is that when multiple objects rest on a ground-plane,
the object whose bottom edge is lower in the image is typi-
cally closer to the camera.

Writing the score for detection n as sn and the coordi-
nate as yn, we define a conditional Markov Random Field
(MRF) prior on permutations by:

P (π|d) =
1

Z(d)

∏
m<n

e−φ(dπ(m),dπ(n))

with φ(dπ(m), dπ(n)) = ws1[sπ(m)<sπ(n)]

+ wy1[yπ(m)<yπ(n)]

where 1 is the indicator function, ws and wy are model pa-
rameters, and Z is a normalizing constant.
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Figure 2. We show examples of our shape prior α. Shape priors are represented as soft segmentation masks. We show priors derived from a
mixture model of deformable parts including both “root” and “part” templates. Note that the mixture models capture shapes corresponding
to different aspects, and part-based shape models tend to be more peaked than the root. For example, the horse’s legs are blurred out in
the first mixture component, but are visible in the composited part model. This is because part models are learned from deformable part
annotations, while root shape models are learned from rigid bounding boxes.

Figure 3. We show examples of our order-dependant layered label distribution P (z|dπ). We show the original image with overlaid
candidate detections on the left. In the top row, we show the composited layered distribution iteratively built from detections ordered
back to front. For visualization purposes, we color distributions according to the object type. In the bottom row, we show the distribution
built from part-based detections which deform to better match the shape of the detected instance. In general the part composites are more
accurate. For example, the front car wheel is better modeled with parts. One notable exception is the mislocalized head in the first instanced
person.

3.4. Exploiting Bottom-up Grouping

The model as described makes no use direct use of
bottom-up grouping constraints such as the presence of con-
tours separating object boundaries. A simple way to incor-
porate such information is to utilize a segmentation engine
which generates superpixels (we use [1]) and assign super-
pixels to layers instead of pixels. In this case, we can use the
same notation but let i index a superpixel instead of a pixel.
For example, zi will indicate the label of superpixel i and
xi a feature vector (e.g. color distribution) extracted from i.
Since superpixels are image dependent, we still maintain a
per-pixel alpha-matte which we use to define a distribution
over zi:

P (zi = m|dπ) ∝
∏
j∈Si

βjm

N∏
n=m+1

(1− βjn) (12)

The superpixel-constrained label distribution is equiva-
lent to the label distribution from Sec.3.1 conditioned on
the fact that groups of pixels in the same superpixel must
share the same label. This conditioning requires the use of

Figure 4. We show an example superpixel grouping from [1] tuned
to return roughly 200 superpixels. We use this bottom up informa-
tion in our probabilistic model by conditioning on the fact that all
pixel labels from within a superpixel must share be identical.

a proportionality sign in (12) to ensure that the left-hand
side is a proper probability distribution.

4. Inference
Given an image and a set of detections, we would like to

infer the class labels for each pixel zi. Ideally, one would
like to estimate the binary labels z by marginalizing out over
the color models θ. Exact inference is difficult because θ is
continuous and the induced joint potential between θ and z



is non-Gaussian. Furthermore, there may be large cliques
in the associated junction tree due to multiple overlapping
detections, making it difficult to explicitly discretize and
search over θ. Instead, it is natural to pursue approximate
the distribution over θ by its MAP value using coordinate
descent or the Expectation-Maximization (EM) algorithm.
We first consider inference for the simpler case of a fixed
ordering of detections.

4.1. Coordinate ascent

We outline here a coordinate ascent algorithm for maxi-
mizing (1) by iterating between updates for z and c:

1. max
z
P (x, z|θ, dπ) by computing max

zi
P (xi, zi|θ, dπ)

2. max
θ
P (x, z|θ, dπ) by computing max

θn

∏
i:zi=n

P (xi|θn)

Step 1 is performed by computing P (zi = n, xi|θ, d) for
each pixel i and possible label n. Step 2 corresponds to stan-
dard maximum likelihood estimation (MLE). In our case,
we use color histogram models and so use frequency counts
to estimate θn. One could also define a EM algorithm that
learns histograms using weighted MLE, where the weight
of pixel i for histogram θn is given by P (zi = n|x, θ, d).
We found simple coordinate ascent to work well.

4.2. Orderings

The previous sections assumed that the ordering was
fixed. We would now also like to optimize over the ordering
as well:

max
z,θ,π

P (x, z|θ, d, π)P (π|d) = max
π

P (π|d) max
z,θ

P (x, z|θ, d, π)

For each ordering π, we can compute the inner maximiza-
tion by coordinate ascent as previously described or utilize
a soft formulation that replaces the inner maximization with
EM.

Because the number of detections in an image is often
small, it is often practical to perform a brute force search
over orderings. The search space for the maximization over
π can be further restricted by noting it is only necessary to
enumerate those orderings that generate distinct label pri-
ors P (z|d). If an image only contains two detections that
do not overlap, then either order generates the same label
prior. A simple method for exploiting this observation is
to construct a N × N adjacency graph of overlapping de-
tections, and ignore the relative ordering between different
connected components.

5. Learning
In Section 3.2 we describe a MLE procedure for learning

the shape priors α from labeled training data. For simplic-

ity, we include equations for estimating αi′k from a sin-
gle training image but the extension to multiple images and
pose/part-based shape priors are straightforward.

Bernoulli models: First consider the fully observed case
in which layered segmentation masks bin are given. Learn-
ing corresponds to standard Bernoulli MLE:

αi′,k = argmax
∑
n

logP (bin|d) where i = T−1
n (i′)

= argmax
γ

∑
n:cn=k

bin log γ + (1− bin) log(1− γ)

In this case, αi′,k is set to the fraction of times the ith pixel
for class k is ‘on’.

Layered Bernoulli models: In practice, it is easier to la-
bel z rather than b because one does not need to estimate the
spatial extent of occluded objects. Fortunately, one can still
compute MLE estimate of α by marginalizing out labels for
occluded regions:

αi′,k = argmax
∑
n

logP (zi|d) where i = T−1
n (i′)

= argmax
γ

∑
n:cn=k

1[zi=n] log γ + 1[zi<n] log(1− γ)

The above formulation is very similar to standard
Bernoulli MLE except that occluded pixels are ignored.

6. Experimental Results
In this section, we present results on the PASCAL VOC

2009 segmentation competition [3]. PASCAL is widely-
acknowledged as the most difficult available testbed for
both object detection and multi-class segmentation. The
competition contains 1500 training and validation images
along with ground-truth labelings which give per-pixel la-
belings for 3200 instances of 20 object categories. Test an-
notations for the dataset are not released. Instead, bench-
marking algorithm performance is done on a held-back test
set through a web interface.

6.1. Implementation

To generate detections, we used the part-based detector
of [4] which was trained using the PASCAL VOC training
dataset. These detectors, which are trained independently
for each object class using a support vector machine (SVM),
produce scores which are not directly comparable. In order
to calibrate the detectors with respect to segmentation, we
estimated an optimal threshold for each detector by eval-
uating the segmentation benchmark at different threshold
settings. To perform this search over thresholds, we consid-
ered only detections for a single class at a time and used a
simple segmentation model which labeled all pixels inside
the object bounding box.



We found that the optimal threshold varies widely across
different classes (as does the maximal detector perfor-
mance). The inability of the SVM to learn consistent bias
terms for each detector presumably relates to the discon-
nect between the segmentation benchmark and the detection
benchmark. We utilized the per class threshold by simply
subtracting the optimal threshold from the detector score
and only utilizing detections which scored greater than 0.
The offset detector scores were also used in the layering
model.

Given an image x and a set of calibrated detections d,
our final algorithm is as follows:

For each ordering π, iterate until convergence:

1. zSi := argmax
m

∏
j∈Si

P (zj = m|dπ)P (xj |θm)P (π|d)

2. θm(j) :=
∑

1[xi=j and zi=m]∑
1[zi=m]

Output superpixel labels zSi with most probable ordering π

6.2. Benchmark Results

Figure 5 shows the quantitative performance of our sys-
tem on the 2009 PASCAL segmentation challenge. We
compare our results to other top results reported at the PAS-
CAL 2009 workshop [3], ignoring our own previous entry
that was a preliminary version of the system described here.
Our system performs quite well compared to the average
performance across entries into the competition. Specifi-
cally, our system performed ranks first over all other entries
in the “person”, “bicycle”, and “car” categories. Because
people are the overwhelmingly common object in the PAS-
CAL dataset, our system tends to produce quite reasonable
segmentations for many images. We present example image
segmentation results in Fig.7.

Figure 5 documents experiments where we analyzed the
contribution of different model components to the overall
performance. These performance results were computed on
the set of “trainval” segmentation images (rather than the
official test protocol). To avoid testing on data used to train
the local detectors, we removed the subset of images that
were also present in the detection training set.

Bottom-up grouping: Overall, the bottom-up grouping
constraints tend to provide an improvement for instances
of objects with strong boundaries. We observe this phe-
nomena for many bicycles detections. Bicycles have a wiry
shape that is hard to model using our pixel-based shape
prior. However, boundary edges tend to provide a strong
bottom-up signal that greatly constraints the grouping pro-
cess. This is evident by looking at the performance of our
bicycle pixel classifier with bottom-up grouping removed
(Fig.5).

Instance-specific appearance model: Our instance-

specific appearance model estimation tends to provide an
improvement for instances whose color differs from the
background. This is true of people, whose appearance
varies due to clothing. By estimating an instance-specific
color model, our system is able to use clothing-specific cues
to help segment out the person. Because only a single model
is estimated, our system oftentimes will segment out regions
associated with one dominant color. This suggests a useful
extension is learning a part-specific color model that can
capture the difference in appearance between the torso and
legs, for example.

Mixture-of-deformable-parts shape prior: The
mixture-of-deformable part spatial prior also tends to help,
but to a smaller degree. We hypothesize this is the case
because part locations can be inaccurate, as shown in the
first detection in Fig.3. We hypothesize the integrating
the instance-specific appearance model into the dynamic
programming search over part deformations [4] would im-
prove part location estimates, and in turn, the improvement
due to part-based shape priors.

Layering: While our layered model provides an elegant
approach to dealing with overlapping detections, we found
that in practice there seems to be relatively little benefit to
searching over depth orderings in the PASCAL dataset. We
hypothesize this holds for two reasons. Firstly, because im-
ages are sparsely labeled with 20 object categories, it is
relatively rare for two objects of different classes to over-
lap. Only 40% of images had overlaps in the ground-truth
bounding boxes, of which half only had a single overlap.
Secondly, our local detectors often fail to detect partially
occluded objects. Both these facts suggest there are rel-
atively few “interesting” cases where occlusion reasoning
might help.

Can ordering help? To verify our hypothesis, we con-
ducted a further experiment using a set of true positive
detections culled from the subset of “interesting” images
where ordering affected the final segmentation. On this set,
we ran our iterative coordinate ascent algorithm for each
possible ordering. On average, the worst-scoring ordering
produced a score 54.8%, the best possible scored 61.2%,
and our system scored 57.7%. This indicates that depth-
order reasoning can be useful (given accurate detectors and
densely-labeled images), and that our model captures some,
but not all, of the gain to be had.

7. Conclusion
We have proposed a simple model which performs this

pixel labeling based on the output of scanning window clas-
sifiers. There is clearly room for improvement, particularly
in better models for determining depth ordering and occlu-
sion (e.g., figure-ground cues[18] or geometric context[7]).
It also seems that integration of detection could be taken fur-
ther by re-scoring detections based on segmentation and by



¬ordering ¬color ¬superpixel ¬parts all
background 79.37 78.93 78.65 79.62 79.36
aeroplane 35.26 32.39 30.61 37.22 35.26

bicycle 25.46 23.12 20.7 24.58 25.45
bird 2.81 2.78 2.68 2.79 2.81
boat 9.87 9.16 9.64 9.14 9.87

bottle 41.44 39.73 41.76 40.19 41.29
bus 49.83 48.52 48.54 48.72 49.87
car 46.88 45.66 44.25 46.14 47.03
cat 18.4 17.68 16.81 15.06 18.4

chair 10.05 9.06 9.57 8.37 10
cow 17.74 16.83 18.1 15.91 17.77

diningtable 6.94 6.8 6.79 6.85 7.27
dog 11.53 10.55 11.18 10.91 11.53

horse 16.07 14.6 15.33 15.19 16.21
motorbike 25.72 24.38 24.46 24.88 25.62

person 36.88 34.98 35.3 32.4 36.81
pottedplant 15.55 14.92 15.17 14.32 15.55

sheep 21.09 18.77 20.33 17.77 21.1
sofa 12.63 12.2 12.14 12.05 12.63
train 28.6 27.43 27.88 27.86 28.6

tvmonitor 46.41 46.01 46.36 43.67 46.28
average 26.6 25.45 25.53 25.41 26.6

Figure 5. We analyze different components of our system on the
2009 segmentation training and validation data. The rightmost col-
umn is our full system, while the middle four represent our full
system minus particular components, such as ordering, instance-
specific color estimation, bottom-up grouping, and part-based pri-
ors. Our system performs quite for segmenting bicycles and peo-
ple. Because people represent the overwhelmingly common ob-
ject in PASCAL, our system tends to produce quite reasonable
segmentations overall. For bicycle, bottom-up grouping provides
a clear improvement. For people, the color estimation and de-
formable part-based prior provides a strong improvement. This
is likely because people tend to vary in appearance due to cloth-
ing, and our instance-specific color model is able to guide the final
pixel labeling to more accurate configurations. Similarly people
articulate their limbs, and so our part-based prior is able to better
bias the grouping process. Overall, we see that each component
improves our average score.

utilizing richer bottom-up segmentation information (e.g.,
richer appearance models, hierarchical superpixel segmen-
tations).

Accurately explaining a scene in terms of multiple ob-
jects of different classes requires resolving conflicting de-
tector outputs into a single coherent explanation. The multi-
class segmentation problem forces this issue since each
pixel must be assigned a single discrete label. This make
it a much more challenging and rewarding problem than re-
turning a ranked list of possible detections.
Acknowledgements Funding for this research was pro-
vided by a gift from Microsoft Research, a UC Labs re-
search program grant and NSF Grant IIS-0812428.
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