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Abstract

We study the problem of hierarchical clustering on planar graphs. We formulate
this in terms of finding the closest ultrametric to a specified set of distances and
solve it using an LP relaxation that leverages minimum cost perfect matching as
a subroutine to efficiently explore the space of planar partitions. We apply our
algorithm to the problem of hierarchical image segmentation.

1 Introduction

We formulate hierarchical image segmentation from the perspective of estimating an ultrametric
distance over the set of image pixels that agrees closely with an input set of noisy pairwise distances.
An ultrametric space replaces the usual triangle inequality with the ultrametric inequality d(u, v) ≤
max{d(u,w), d(v, w)} which captures the transitive property of clustering (if u and w are in the
same cluster and v and w are in the same cluster, then u and v must also be in the same cluster).
Thresholding an ultrametric immediately yields a partition into sets whose diameter is less than
the given threshold. Varying this distance threshold naturally produces a hierarchical clustering in
which clusters at high thresholds are composed of clusters at lower thresholds.

Inspired by the approach of [1], our method represents an ultrametric explicitly as a hierarchical
collection of segmentations. Determining the appropriate segmentation at a single distance threshold
is equivalent to finding a minimum-weight multicut in a graph with both positive and negative edge
weights [3, 14, 2, 11, 20, 21, 4, 19, 7]. Finding an ultrametric imposes the additional constraint that
these multicuts are hierarchically consistent across different thresholds. We focus on the case where
the input distances are specified by a planar graph. This arises naturally in the domain of image
segmentation where elements are pixels or superpixels and distances are defined between neighbors
and allows us to exploit fast combinatorial algorithms for partitioning planar graphs that yield tighter
LP relaxations than the local polytope relaxation often used in graphical inference [20].

The paper is organized as follows. We first introduce the closest ultrametric problem and the re-
lation between multicuts and ultrametrics. We then describe an LP relaxation that uses a delayed
column generation approach and exploits planarity to efficiently find cuts via the classic reduction
to minimum-weight perfect matching [13, 8, 9, 10]. We apply our algorithm to the task of natural
image segmentation and demonstrate that our algorithm converges rapidly and produces optimal or
near-optimal solutions in practice.

2 Closest Ultrametric and Multicuts

Let G = (V,E) be a weighted graph with non-negative edge weights θ indexed by edges e =
(u, v) ∈ E. Our goal is to find an ultrametric distance d(u,v) over vertices of the graph that is

close to θ in the sense that the distortion
∑

(u,v)∈E ‖θ(u,v) − d(u,v)‖
2
2 is minimized. We begin by

reformulating this closest ultrametric problem in terms of finding a set of nested multicuts in a family
of weighted graphs.
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We specify a partitioning or multicut of the vertices of the graph G into components using a binary

vector X̄ ∈ {0, 1}|E| where X̄e = 1 indicates that the edge e = (u, v) is “cut” and that the vertices
u and v associated with the edge are in separate components of the partition. We use MCUT(G)
to denote the set of binary indicator vectors X̄ that represent valid multicuts of the graph G. For
notational simplicity, in the remainder of the paper we frequently omit the dependence on G which
is given as a fixed input.

A necessary and sufficient condition for an indicator vector X̄ to define a valid multicut in G is that
for every cycle of edges, if one edge on the cycle is cut then at least one other edge in the cycle must
also be cut. Let C denote the set of all cycles in G where each cycle c ∈ C is a set of edges and
c− ê is the set of edges in cycle c excluding edge ê. We can express MCUT in terms of these cycle
inequalities as:

MCUT =

{

X̄ ∈ {0, 1}|E| :
∑

e∈c−ê

X̄e ≥ X̄ê, ∀c ∈ C, ê ∈ c

}

(1)

A hierarchical clustering of a graph can be described by a nested collection of multicuts. We denote
the space of valid hierarchical partitions with L layers by Ω̄L which we represent by a set of L
edge-indicator vectors X = (X̄1, X̄2, X̄3, . . . , X̄L) in which any cut edge remains cut at all finer
layers of the hierarchy.

Ω̄L = {(X̄1, X̄2, . . . X̄L) : X̄ l ∈ MCUT, X̄ l ≥ X̄ l+1 ∀l} (2)

Given a valid hierarchical clustering X , an ultrametric d can be specified over the vertices of the
graph by choosing a sequence of real values 0 = δ0 < δ1 < δ2 < . . . < δL that indicate a distance
threshold associated with each level l of the hierarchical clustering. The ultrametric distance d
specified by the pair (X , δ) assigns a distance to each pair of vertices d(u,v) based on the coarsest
level of the clustering at which they remain in separate clusters. For pairs corresponding to an edge
in the graph (u, v) = e ∈ E we can write this explicitly in terms of the multicut indicator vectors
as:

de = max
l∈{0,1,...,L}

δlX̄ l
e =

L
∑

l=0

δl[X̄ l
e > X̄ l+1

e ] (3)

We assume by convention that X̄0
e = 1 and X̄L+1

e = 0. Pairs (u, v) that do not correspond to an
edge in the original graph can still be assigned a unique distance based on the coarsest level l at
which they lie in different connected components of the cut specified by X l.

To compute the quality of an ultrametric d with respect to an input set of edge weights θ, we measure
the squared L2 difference between the edge weights and the ultrametric distance ‖θ− d‖22. To write
this compactly in terms of multicut indicator vectors, we construct a set of weights for each edge
and layer, denoted θle so that

∑m
l=0 θ

l
e = ‖θe − δm‖2. These weights are given explicitly by the

telescoping series:

θ0e = ‖θe‖
2 θle = ‖θe − δl‖2 − ‖θe − δl−1‖2 ∀l > 1 (4)

We use θl ∈ R|E| to denote the vector containing θle for all e ∈ E.

For a fixed number of levels L and fixed set of thresholds δ, the problem of finding the closest
ultrametric d can then be written as an integer linear program (ILP) over the edge cut indicators.

min
X∈Ω̄L

∑

e∈E

∥

∥

∥

∥

∥

θe −

L
∑

l=0

δl[X̄ l
e > X̄ l+1

e ]

∥

∥

∥

∥

∥

2

= min
X∈Ω̄L

∑

e∈E

L
∑

l=0

‖θe − δl‖2(X̄ l
e − X̄ l+1

e ) (5)

= min
X∈Ω̄L

∑

e∈E

(

‖θe‖
2X̄0

e +

L
∑

l=1

(

‖θe − δl‖2 − ‖θe − δl−1‖2
)

X̄ l
e + ‖θe − δL‖2X̄L+1

e

)

= min
X∈Ω̄L

L
∑

l=0

∑

e∈E

θleX̄
l
e = min

X∈Ω̄L

L
∑

l=0

θl · X̄ l (6)

This optimization corresponds to solving a collection of minimum-weight multicut problems where
the multicuts are constrained to be hierarchically consistent.
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(a) Linear combination of cut vectors (b) Hierarchical cuts

Figure 1: (a) Any partitioning X can be represented as a linear superposition of cuts Z where
each cut isolates a connected component of the partition and is assigned a weight γ = 1

2 [20]. By
introducing an auxiliary slack variables β, we are able to represent a larger set of valid indicator
vectors X using fewer columns of Z. (b) By introducing additional slack variables at each layer of
the hierarchical segmentation, we can efficiently represent many hierarchical segmentations (here
{X1, X2, X3}) that are consistent from layer to layer while using only a small number of cut indi-
cators as columns of Z.

Computing minimum-weight multicuts (also known as correlation clustering) is NP hard even in the
case of planar graphs [6]. A direct approach to finding an approximate solution to Eq 6 is to relax
the integrality constraints on X̄ l and instead optimize over the whole polytope defined by the set of
cycle inequalities. We use ΩL to denote the corresponding relaxation of Ω̄L. While the resulting
polytope is not the convex hull of MCUT, the integral vertices do correspond exactly to the set of
valid multicuts [12].

In practice, we found that applying a straightforward cutting-plane approach that successively adds
violated cycle inequalities to this relaxation of Eq 6 requires far too many constraints and is too
slow to be useful. Instead, we develop a column generation approach tailored for planar graphs that
allows for efficient and accurate approximate inference.

3 The Cut Cone and Planar Multicuts

Consider a partition of a planar graph into two disjoint sets of nodes. We denote the space of
indicator vectors corresponding to such two-way cuts by CUT. A cut may yield more than two
connected components but it can not produce every possible multicut (e.g., it can not split a triangle

of three nodes into three separate components). Let Z ∈ {0, 1}|E|×|CUT| be an indicator matrix
where each column specifies a valid two-way cut with Zek = 1 if and only if edge e is cut in two-
way cut k. The indicator vector of any multicut in a planar graph can be generated by a suitable
linear combination of of cuts (columns of Z) that isolate the individual components from the rest of
the graph where the weight of each such cut is 1

2 .

Let γ ∈ R
|CUT| be a vector specifying a positive weighted combination of cuts. The set CUT△ =

{Zγ : γ ≥ 0} is the conic hull of CUT or “cut cone”. Since any multicut can be expressed as a
superposition of cuts, the cut cone is identical to the conic hull of MCUT. This equivalence suggests
an LP relaxation of the minimum-cost multicut given by

min
γ≥0

θ · Zγ s.t. Zγ ≤ 1 (7)

where the vector θ ∈ R
|E| specifies the edge weights. For the case of planar graphs, any solution to

this LP relaxation satisfies the cycle inequalities (see supplement and [12, 18, 10]).

Expanded Multicut Objective: Since the matrix Z contains an exponential number of cuts, Eq. 7

is still intractable. Instead we consider an approximation using a constraint set Ẑ which is a subset
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of columns of Z. In previous work [20], we showed that since the optimal multicut may no longer

lie in the span of the reduced cut matrix Ẑ, it is useful to allow some values of Ẑγ exceed 1 (see
Figure 1(a) for an example).

We introduce a slack vector β ≥ 0 that tracks the presence of any “overcut” edges and prevents
them from contributing to the objective when the corresponding edge weight is negative. Let θ−e =
min(θe, 0) denote the non-positive component of θe. The expanded multi-cut objective is given by:

min
γ≥0
β≥0

θ · Ẑγ − θ− · β s.t. Ẑγ − β ≤ 1 (8)

For any edge e such that θe < 0, any decrease in the objective from overcutting by an amount βe is
exactly compensated for in the objective by the term −θ−e βe.

When Ẑ contains all cuts (i.e., Ẑ = Z) then Eq 7 and Eq 8 are equivalent [20]. Further, if γ⋆ is the

minimizer of Eq 8 when Ẑ only contains a subset of columns, then the edge indicator vector given

by X = min(1, Ẑγ⋆) still satisfies the cycle inequalities (see supplement for details).

4 Expanded LP for finding the Closest Ultrametric

To develop an LP relaxation of the closest ultrametric problem, we replace the multicut problem at
each layer l with the expanded multicut objective described by Eq 8. We let γ = {γ1, γ2, γ3 . . . γL}
and β = {β1, β2, β3 . . . βL} denote the collection of weights and slacks for the levels of the hierar-
chy and let θ+l

e = max(0, θle) and θ−l
e = min(0, θle) denote the positive and negative components

of θl.

To enforce hierarchical consistency between layers, we would like to add the constraint that
Zγl+1 ≤ Zγl. However, this constraint is too rigid when Z does not include all possible cuts.
It is thus computationally useful to introduce an additional slack vector associated with each level l
and edge e which we denote as α = {α1, α2, α3 . . . αL−1}. The introduction of αl

e allows for cuts
represented by Zγl to violate the hierarchical constraint. We modify the objective so that violations
to the original hierarchy constraint are paid for in proportion to θ+l

e . The introduction of α allows
us to find valid ultrametrics while using a smaller number of columns of Z to be used than would
otherwise be required (illustrated in Figure 1(b)).

We call this relaxed closest ultrametric problem including the slack variable α the expanded closest
ultrametric objective, written as:

min
γ≥0
β≥0
α≥0

L
∑

l=1

θl · Zγl +
L
∑

l=1

−θ−l · βl +
L−1
∑

l=1

θ+l · αl (9)

s.t. Zγl+1 + αl+1 ≤ Zγl + αl ∀l < L

Zγl − βl ≤ 1 ∀l

where by convention we define αL = 0 and we have dropped the constant l = 0 term from Eq 6.

Given a solution (α, β, γ) we can recover a relaxed solution to the closest ultrametric problem (Eq.
6) over ΩL by setting X l

e = min(1,maxm≥l (Zγm)e). In the supplement, we demonstrate that for
any (α, β, γ) that obeys the constraints in Eq 9, this thresholding operation yields a solution X that
lies in ΩL and achieves the same or lower objective value.

5 The Dual Objective

We optimize the dual of the objective in Eq 9 using an an efficient column generation approach based
on perfect matching. We introduce two sets of Lagrange multipliers ω = {ω1, ω2, ω3 . . . ωL−1} and
λ = {λ1, λ2, λ3 . . . λL} corresponding to the between and within layer constraints respectively. For
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Algorithm 1 Dual Closest Ultrametric via Cutting Planes

Ẑl ← {} ∀l, residual← −∞
while residual < 0 do
{ω}, {λ} ← Solve Eq 10 given Ẑ
residual = 0
for l = 1 : L do
zl ← argminz∈CUT(θ

l + λl + ωl−1 − ωl) · z
residual← residual + 3

2 (θ
l + λl + ωl−1 − ωl) · zl

{z(1), z(2), . . . , z(M)} ← isocuts(zl)

Ẑl ← Ẑl ∪ {z(1), z(2), . . . , z(M)}
end for

end while

notational convenience, let ω0 = 0. The dual objective can then be written as

max
ω≥0,λ≥0

L
∑

l=1

−λl · 1 (10)

θ−l ≤ −λl ∀l

− (ωl−1 − ωl) ≤ θ+l ∀l

(θl + λl + ωl−1 − ωl) · Z ≥ 0 ∀l

The dual LP can be interpreted as finding a small modification of the original edge weights θl so
that every possible two-way cut of each resulting graph at level l has non-negative weight. Observe
that the introduction of the two slack terms α and β in the primal problem (Eq 9) results in bounds
on the Lagrange multipliers λ and ω in the dual problem in Eq 10. In practice these dual constraints
turn out to be essential for efficient optimization and constitute the core contribution of this paper.

6 Solving the Dual via Cutting Planes

The chief complexity of the dual LP is contained in the constraints including Z which encodes
non-negativity of an exponential number of cuts of the graph represented by the columns of Z. To
circumvent the difficulty of explicitly enumerating the columns of Z, we employ a cutting plane
method that efficiently searches for additional violated constraints (columns of Z) which are then
successively added.

Let Ẑ denote the current working set of columns. Our dual optimization algorithm iterates over

the following three steps: (1) Solve the dual LP with Ẑ, (2) find the most violated constraint of the

form (θl + λl + ωl−1 − ωl) · Z ≥ 0 for layer l, (3) Append a column to the matrix Ẑ for each
such cut found. We terminate when no violated constraints exist or a computational budget has been
exceeded.

Finding Violated Constraints: Identifying columns to add to Ẑ is carried out for each layer l
separately. Finding the most violated constraint of the full problem corresponds to computing the
minimum-weight cut of a graph with edge weights θl +λl +ωl−1−ωl. If this cut has non-negative
weight then all the constraints are satisfied, otherwise we add the corresponding cut indicator vector
as an additional column of Z.

To generate a new constraint for layer l based on the current Lagrange multipliers, we solve

zl = arg min
z∈CUT

∑

e∈E

(θle + λl
e + ωl−1

e − ωl
e)ze (11)

and subsequently add the new constraints from all layers to our LP, Ẑ ← [Ẑ, z1, z2, . . . zL].
Unlike the multicut problem, finding a (two-way) cut in a planar graph can be solved exactly by a
reduction to minimum-weight perfect matching. This is a classic result that, e.g. provides an exact
solution for the ground state of a 2D lattice Ising model without a ferromagnetic field [13, 8, 9, 10]

in O(N
3

2 logN) time [15].

5



100 101 102 103

10−4

10−2

Time (sec)

B
ou

nd

 

 

UB
LB

0.2 0.4 0.6 0.8 1
0

20

40

60

80

Objective ratio (UCM / UM)

C
ou

nt
s

Figure 2: (a): The average convergence of the upper (blue) and lower-bounds (red) as a function
of running time. Values plotted are the gap between the bound and the best lower-bound computed
(at termination) for a given problem instance. This relative gap is averaged over problem instances
which have not yet converged at a given time point. We indicate the percentage of problem instances
that have yet to terminate using black bars marking [95, 85, 75, 65, .....5] percent. (b) Histogram of
the ratio of closest ultrametric objective values for our algorithm (UM) and the baseline clustering
produced by UCM. All ratios were less than 1 showing that in no instances did UM produce a worse
solution than UCM

Computing a lower bound: At a given iteration, prior to adding a newly generated set of constraints
we can compute the total residual constraint violation over all layers of hierarchy by ∆ =

∑

l(θ
l +

λl + ωl−1 − ωl) · zl. In the supplement we demonstrate that the value of the dual objective plus
3
2∆ is a lower-bound on the relaxed closest ultrametric problem in Eq 9. Thus, as the costs of the
minimum-weight matchings approaches zero from below, the objective of the reduced problem over

Ẑ approaches an accurate lower-bound on optimization over Ω̄L

Expanding generated cut constraints: When a given cut zl produces more than two connected
components, we found it useful to add a constraint corresponding to each component, following the
approach of [20]. Let the number of connected components of zl be denoted M . For each of the M
components then we add one column to Z; one corresponding to the cut that isolates each connected
component from the rest. This allows more flexibility in representing the final optimum multicut as
superpositions of these components. In addition, we also found it useful in practice to maintain a

separate set of constraints Ẑl for each layer l. Maintaining independent constraints Ẑ1, Ẑ2, . . . , ẐL

can result in a smaller overall LP.

Speeding convergence of ω: We found that adding an explicit penalty term to the objective that
encourages small values of ω speeds up convergence dramatically with no loss in solution quality.
In our experiments, this penalty is scaled by a parameter ǫ = 10−4 which is chosen to be extremely
small in magnitude relative to the values of θ so that it only has an influence when other no other
“forces” are acting on a given term in ω.

Primal Decoding: Algorithm 1 gives a summary of the dual solver which produces a lower-bound

as well as a set of cuts described by the constraint matrices Ẑl. The subroutine isocuts(zl) computes
the set of cuts that isolate each connected component of zl To generate a hierarchical clustering,

we solve the primal, Eq 9, using the reduced set Ẑ in order to recover a fractional solution X l
e =

min(1,maxm≥l(Ẑ
mγm)e). We use an LP solver (IBM CPLEX) which provides this primal solution

“for free” when solving the dual in Alg. 1.

We round the fractional primal solution X to a discrete hierarchical clustering by thresholding:
X̄ l

e ← [X l
e > t]. We then repair any cut edges that lie inside a connected component. In our

implementation we test a few discrete thresholds t ∈ {0, 0.2, 0.4, 0.6, 0.8} and take that threshold
that yields X̄ with the lowest cost. After each pass through the loop of Alg. 1 we compute these
upper-bounds and retain the optimum solution observed thus far.
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Figure 3: (a) Boundary detection performance of our closest ultrametric algorithm (UM) and the
baseline ultrametric contour maps algorithm with (UCM+L) and without (UCM) length weighting
[5] on BSDS. Black circles indicate thresholds used in the closest UM optimization. (b) Anytime
performance: F-measure on the BSDS benchmark as a function of run-time. UM, UCM with and
without length weighting achieve a maximum F-measure of 0.728, 0.726, and 0.718 respectively.

7 Experiments

We applied our algorithm to segmenting images from the Berkeley Segmentation Data set (BSDS)
[16]. We use superpixels generated by performing an oriented watershed transform on the output of
the global probability of boundary (gPb) edge detector [17] and construct a planar graph whose are
superpixels with edges connecting neighbors in the image plane whose base distance θ is derived
from gPb.

Let gPbe be the local estimate of boundary contrast given by averaging the gPb classifier output
over the boundary between a pair of neighboring superpixels. We truncate extreme values to enforce

that gPbe ∈ [ǫ, 1 − ǫ] with ǫ = 0.001 and set θe = log
(

1−gPbe
gPbe

)

+ log
(

1−ǫ
ǫ

)

The additive offset

assures that θe ≥ 0. In our experiments we use a fixed set of eleven distance threshold levels {δl}
chosen to uniformly span the useful range of threshold values [9.6, 12.6]. Finally, we weighted edges
proportionally to the length of the corresponding boundary in the image.

We performed dual cutting plane iterations until convergence or 2000 seconds had passed. Lower-
bounds for the BSDS segmentations were on the order of −103 or −104. We terminate when the
total residual is greater than −2 × 10−4. All codes were written in MATLAB using the Blossom
V implementation of minimum-weight perfect matching [15] and the IBM ILOG CPLEX LP solver
with default options.

Baseline: We compare our results with the hierarchical clusterings produced by the Ultrametric
Contour Map (UCM) [5]. UCM performs agglomerative clustering of superpixels and assigns the
length-weighted averaged gPb value as the distance between each pair of merged regions. While
UCM was not explicitly designed to find the closest ultrametric, it provides a strong baseline for
hierarchical clustering. To compute the closest l-level ultrametric corresponding to the UCM clus-
tering result, we solve the minimization in Eq. 6 while restricting each multicut to be the partition
at some level of the UCM hierarchy.

Convergence and Timing: Figure 2 shows the average behavior of convergence as a function of
runtime. We found the upper-bound given by the cost of the decoded integer solution and the lower-
bound estimated by the dual LP are very close. The integrality gap is typically within .01% of the
lower-bound and never more than .04 %. Convergence of the dual is achieved quite rapidly; most
instances require less than 100 iterations to converge with roughly linear growth in the size of the
LP at each iteration as cutting planes are added. In Fig 2 we display a histogram, computed over test
image problem instances, of the cost of UCM solutions relative to those produced by closest ultra-
metric (UM) estimated by our method. A ratio of less than 1 indicates that our approach generated
a solution with a lower distortion ultrametric. In no problem instance did UCM outperform our UM
algorithm.
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Figure 4: The proposed closest ultrametric (UM) enforces consistency across levels while perform-
ing independent multi-cut clustering (MC) at each threshold does not guarantee a hierarchical seg-
mentation (c.f. first image, columns 3 and 4). In the second image, hierarchical segmentation (UM)
better preserves semantic parts of the two birds while correctly merging the background regions.

Segmentation Quality: Figure 3 shows the segmentation benchmark accuracy of our closest ultra-
metric algorithm (denoted UM) along with the baseline ultrametric contour maps algorithm (UCM)
with and without length weighting [5]. In terms of segmentation accuracy, UM performs nearly iden-
tically to the state of the art UCM algorithm with some small gains in the high-precision regime. It
is worth noting that the BSDS benchmark does not provide strong penalties for small leaks between
two segments when the total number of boundary pixels involved is small. Our algorithm may find
strong application in domains where the local boundary signal is noisier (e.g., biological imaging)
or when under-segmentation is more heavily penalized.

While our cutting-plane approach is slower than agglomerative clustering, it is not necessary to wait
for convergence in order to produce high quality results. We found that while the upper and lower
bounds decrease as a function of time, the clustering performance as measured by precision-recall
is often nearly optimal after only ten seconds and remains stable. Figure 3 shows a plot of the
F-measure achieved by UM as a function of time.

Importance of enforcing hierarchical constraints: Although independently finding multicuts at
different thresholds often produces hierarchical clusterings, this is by no means guaranteed. We ran
Algorithm 1 while setting ωl

e = 0, allowing each layer to be solved independently. Fig 4 shows
examples where hierarchical constraints between layers improves segmentation quality relative to
independent clustering at each threshold.

8 Conclusion

We have introduced a new method for approximating the closest ultrametric on planar graphs that
is applicable to hierarchical image segmentation. Our contribution is a dual cutting plane approach
that exploits the introduction of novel slack terms that allow for representing a much larger space of
solutions with relatively few cutting planes. This yields an efficient algorithm that provides rigorous
bounds on the quality the resulting solution. We empirically observe that our algorithm rapidly
produces compelling image segmentations along with lower- and upper-bounds that are nearly tight
on the benchmark BSDS test data set.

Acknowledgements: JY acknowledges the support of Experian, CF acknowledges support of NSF
grants IIS-1253538 and DBI-1262547
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1 Expanded multicut objective and the cycle inequalities

In this appendix we show that for planar graphs, solving the expanded multicut optimization pro-
duces solutions that satisfy the cycle inequalities and have equivalent cost when truncated to lie in
the unit hypercube. This establishes an equivalence between the expanded multicut optimization

min
γ≥0

β≥0

θ · Ẑγ − θ− · β s.t. Ẑγ − β ≤ 1 (1)

and the cycle polytope relaxation
min

X∈CYC

θ ·X (2)

for the case of planar graphs.

1.1 Multicut cone and Cycle cone

Recall that CUT and MCUT denote the set of binary indicator vectors that represent valid two-way
cuts and multicuts respectively for a specified graph G. We denote the conic hulls of these sets by

CUT
△ =

{

∑

i

Xiγi : γi ≥ 0, Xi ∈ CUT

}

(3)

MCUT
△ =

{

∑

i

Xiγi : γi ≥ 0, Xi ∈ MCUT

}

(4)

(5)

Finally, we denote the cone of positive vectors satisfying the cycle inequalities by:

CYC
△ =

{

X ≥ 0,
∑

e∈c−ê

Xe ≥ Xê, ∀c ∈ C, ê ∈ c

}

(6)

We now state a two basic results concerning these cones.

Proposition 1: MCUT
△ = CUT

△

Every cut indicator is a multicut indicator, hence CUT
△ ⊂ MCUT

△. On the other hand, any
multicut X ∈ MCUT can be written as a conic combination of cuts that isolate each connected
component with weight 1

2
so that X = 1

2

∑

i Z
i with Zi ∈ CUT so MCUT ⊂ CUT

△ and hence

MCUT
△ ⊂ CUT

△.

Proposition 2: If G is planar, CUT△ = CYC
△

A stronger version of this result due to [1] states that for a graph G containing no K5 minor, the set
of cycle inequalities over chordless circuits is sufficient to specify the facets of the cut polytope for
G. See [2] (p. 434) for a detailed discussion.
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1.2 The projected solution min(1, Zγ) satisfies the cycle inequalities

As a result of the basic properties of the cut cone, for any γ ≥ 0, we have Zγ ∈ CYC
△ for planar

graphs. Let X = min(1, Zγ) be a solution to the expanded multicut objective and (Zγ)e denote the

value for a particular edge e. It must then be that X ∈ CYC
△ since:

∑

e∈c−ê

min(1, (Zγ)e) ≥ min(1,
∑

e∈c−ê

(Zγ)e) (7)

≥ min(1, (Zγ)ê) ∀c ∈ C, ê ∈ c (8)

The first inequality arises from pulling the min outside the sum. The second inequality holds since

Zγ ∈ CYC
△

1.3 The projected solution min(1, Zγ) achieves an objective cost no greater than that of Zγ

We now demonstrate that the fractional multicut X = min(1, Zγ) given by projecting the solution
Zγ yields a solution with an equal or smaller objective value.

Recall that β is a positive slack variable that allows corresponding edge indicators to take on a value
greater than 1.

Zγ − β ≤ 1 (9)

Since the objective is non-decreasing in β, for a given setting of γ an optimal setting of the slack
variables is given by:

β∗ = max(0, Zγ − 1) (10)

We split the objective into positive and negative edges and write:

θ · Zγ − θ− · β = θ+ · Zγ + θ− · Zγ − θ− · β (11)

= θ+ · Zγ + θ− ·min(1, Zγ) (12)

≥ θ+ ·min(1, Zγ) + θ− ·min(1, Zγ) (13)

= θ ·min(1, Zγ) (14)

= θ ·X (15)

which establishes that projecting Zγ onto the unit cube yields a fractional multicut solution that
does not increase the objective.

2 Expanded ultrametric objective and fractional ultrametrics

Recall the set of fractional ultrametrics is defined as follows

ΩL =
{

{X1, X2, . . . XL} : X l ∈ CYC, X l ≥ X l+1 ∀l
}

(16)

In analogy with the previous appendix, we show the equivalence of the expanded ultrametric round-
ing problem:

min
γ≥0

β≥0
α≥0

L
∑

l=1

θl · Zγl +

L
∑

l=1

−θ−l · βl +

L−1
∑

l=1

θ+l · αl (17)

s.t. Zγl+1 + αl+1 ≤ Zγl + αl ∀l < L

Zγl − βl ≤ 1 ∀l (18)

with the relaxed problem:

min
X∈ΩL

L
∑

l=1

θl ·X l (19)
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Given an optimal solution to the expanded ultrametric rounding problem specified by (γ, α, β), we
produce a fractional ultrametric H by the projection operation:

H l = min(1,max
m≥l

(Zγm)) = max(H l+1,min(1, (Zγl))) (20)

We show that the resulting projection H yields a valid fractional ultrametric H ∈ ΩL whose cost is
no greater than the cost of the corresponding solution to the expanded objective.

2.1 Projecting expanded solutions into ΩL

By construction, H satisfies the hierarchical constraint H l ≥ H l+1. We show that H l ∈ CYC by
induction. In the previous appendix, we established that HL = min(1, ZγL) ∈ CYC. Observe that
each H l for l < L is the coordinate-wise max of H l+1 and min(1, Zγl), both of which are in CYC

so we only need show that CYC is closed under coordinate-wise maximum.

Let X1 and X2 be two elements of CYC and X3 = max(X1, X2). We have ∀c ∈ C, ê ∈ c
∑

e∈c−ê

X3
e =

∑

e∈c−ê

max(X1
e , X

2
e ) (21)

≥ max(
∑

e∈c−ê

X1
e ,

∑

e∈c−ê

X2
e ) (22)

≥ max(X1
ê , X

2
ê ) = X3

ê (23)

(24)

where the first inequality arises from pulling the max outside the sum and the second because X1

and X2 each satisfy the cycle inequality. Hence X3 ∈ CYC.

2.2 The cost of H is no greater than that of {γ, α, β}

Fixing an optimal solution to the expanded ultrametric problem specified by γ we first note that the
optimal values of β and α are given by:

βl = max(0, Zγl − 1) (25)

αl = max
m≥l

(Zγm − Zγl) (26)

The formula for α can be developed by starting from layer L and working down, setting α to the
smallest possible value needed to satisfy the inter-layer constraints for a given γ.

αL = 0

αL−1 = max(0, ZγL − ZγL−1)

αL−2 = max(0, ZγL − ZγL−2, ZγL−1 − ZγL−2)

. . . (27)

Since the objective is non-decreasing in α and β, these values are the smallest values for which the
constraints are satisfied.

Plugging in the settings of the slack variables for each layer l we have:

θl · Zγl − θ−l · βl + θ+l · αl

= (θ+l + θ−l) · Zγl − θ−l ·max(0, Zγl − 1) + θ+l ·max
m≥l

(Zγm − Zγl)

= θ+l · (Zγl +max
m≥l

(Zγm − Zγl)) + θ−l · (Zγl −max(0, Zγl − 1))

= θ+l ·max
m≥l

Zγm + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1,max
m≥l

Zγm)

= θl ·H l
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where the second inequality holds because the max introduced is multiplied by a negative weight.
Since projection can only remain the same or decrease the cost of each layer, the total objective must
also be no greater than the expanded solution:

∑

l

θl · Zγl − θ−l · βl + θ+l · αl ≥
∑

l

θl ·H l

3 Derivation of Dual Problem

Here we give a derivation of the dual objective over the expanded ultrametric cut cone which we
utilize to provide an efficient column generation approach based on perfect matching.

We introduce two sets of Lagrange multipliers {ω1 . . . ωL−1} and {λ1 . . . λL} corresponding to the
positivity constraints in Eq (8) in the main paper.

min
γ≥0

β≥0
α≥0

max
ω≥0,λ≥0

L
∑

l=1

θlZ · γl −

L
∑

l=1

θ−lβl +

L−1
∑

l=1

θ+lαl (28)

+

L−1
∑

l=1

ωl(Z · γl+1 + αl+1 − Zγl − αl)

+
L
∑

l=1

λl(Z · γl − 1− βl)

For notational convenience, we set αL = 0 and ω0 = 0. We reorder the terms of the Lagrangian in
terms of summations over the primal variable indices.

min
γ≥0

β≥0
α≥0

max
ω≥0,λ≥0

L
∑

l=1

−λl1 +

L
∑

l=1

(−θ−l − λl)βl (29)

+

L
∑

l=1

(θ+l + ωl−1 − ωl)αl +

L
∑

l=1

(θl + λl + ωl−1 − ωl) · Zγl

Each primal variable yields a positivity constraint in the dual.

max
ω≥0,λ≥0

L
∑

l=1

−λl1 (30)

s.t. (−θ−l − λl) ≥ 0 ∀l

(θ+l − ωl + ωl−1) ≥ 0 ∀l

(θl + λl + ωl−1 − ωl) · Z ≥ 0 ∀l

This dual LP can be interpreted as finding modification of the original edge weights θl so that every
possible cut of each resulting graph has non-negative weight. Observe that the introduction of the
two slack terms α and β in the primal problem (Eq (8) in the main paper) results in bounds on the
Lagrange multipliers λ and ω in the dual problem. The constraint (−θ−l − λl) ≥ 0 is a result of
the introduction of βl. The constraint ωl−1 − ωl ≤ θ+l is a result of the introduction of αl. In
practice these bounds turn out to be essential for efficient optimization and are a key contribution of
this paper.
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It is also informative to make the substitution µl = ωl−ωl−1 which yields a slightly more symmetric
formulation

max
L
∑

l=1

−λl1 (31)

s.t. 0 ≤ λl ≤ −θ−l ∀l

0 ≤
l

∑

m=1

µm ∀l (32)

µl ≤ θ+l ∀l

(θl + λl − µl) · Z ≥ 0 ∀l

4 Producing a genuine lower bound on the optimal integer solution

Consider optimizing the Lagrangian over the set of integer solutions X ∈ Ω̄L. In this case the α, β
terms disappear. For a given setting of the remaining multipliers ω, λ we have a lower bound on the
optimal integer solution given by:

L(ω, λ) = min
X∈Ω̄L

L
∑

l=1

(θlX̄ l + ωl(X̄ l+1 − X̄ l) + λl(X̄ l − 1))

= min
X∈Ω̄L

L
∑

l=1

(θlX̄ l + ωl−1X̄ l − ωlX̄ l + λlX̄ l − λl1)

= min
X∈Ω̄L

L
∑

l=1

(θl + ωl−1 − ωl + λl)X̄ l − λl1

=

L
∑

l=1

−λl1 + min
X∈Ω̄L

L
∑

l=1

(θl + ωl−1 − ωl + λl)X̄ l

≥
L
∑

l=1

−λl1 +
L
∑

l=1

min
Xl∈MCUT

(θl + ωl−1 − ωl + λl)X̄ l

≥
L
∑

l=1

−λl1 +
L
∑

l=1

3

2
min

X̄l∈CUT

(θl + ωl−1 − ωl + λl)X̄ l (33)

where the first inequality arises from dropping the constraints between layers of the hierarchy and
the second inequality holds for planar graphs where the the optimal multi-cut is bounded below by
3

2
the value of the optimal two-way cut (see [3]).
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