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Abstract

We describe a new technique for comput-
ing lower-bounds on the minimum energy
configuration of a planar Markov Random
Field (MRF). Our method successively adds
large numbers of constraints and enforces
consistency over binary projections of the
original problem state space. These con-
straints are represented in terms of subprob-
lems in a dual-decomposition framework that
is optimized using subgradient techniques.
The complete set of constraints we consider
enforces cycle consistency over the original
graph. In practice we find that the method
converges quickly on most problems with the
addition of a few subproblems and outper-
forms existing methods for some interesting
classes of hard potentials.

1 Introduction

A standard approach to finding maximum a poste-
riori (MAP) solutions (or equivalently minimum en-
ergy configurations) in a pairwise Markov random field
(MRF) is to relax the combinatorial problem to a lin-
ear program while enforcing constraints that try to
assure integrality of the resulting solution. The chief
difficulty is that there are a huge number of possible
constraints and only a small subset can possibly be en-
forced. The best understood case is that of imposing
consistency constraints on each pair of variables along
an edge. This set of constraints is known as the local
polytope. As shown by Wainwright et al. (2005), such
a relaxation is directly related to another optimization
technique known as dual-decomposition. In particular,
the set of pairwise constraints can be derived by con-
sidering a lower-bound for the minimum energy con-
structed by allocating the parameters of the original
MRF across a set of overlapping trees that cover every

edge of the original graph.

While enforcing consistency over pairs is sufficient
to guarantee an integral solution for tree-structured
graphs, it may yield non-integral results for more gen-
eral graphs. In the search for more accurate solutions,
one is led to consider higher-order constraints such
as cycles. Although explicitly enforcing constraints
over all cycles can be done with O(n3) additional con-
straints, even this can quickly become impractical in
large-scale inference problems. Instead, various au-
thors have proposed using cutting-plane or cycle-repair
techniques (Sontag and Jaakkola, 2007; Sontag et al.,
2008; Komodakis and Paragios, 2008). These meth-
ods first solve the problem with a subset of constraints
and then analyze the resulting non-integral solution in
order to select additional, violated constraints to be
added to the active set. This process is repeated with
these additional constraints until an integral solution is
found (or the set of possible constraints is exhausted).

In this paper we propose a new class of constraints
for general planar MRFs which capture consistency
over cycles using tractable binary planar problems as
a subroutine. Our approach works directly in the dual-
decomposition framework, successively adding sub-
problems that tighten the lower-bound. Furthermore,
these sub-problems are efficient to solve but typically
encode many constraints simultaneously.

2 Lower-bounds on MRF energy

Consider the problem of minimizing the energy func-
tion E(X) associated with an MRF defined over a col-
lection of variables (X1, X2, . . . , XN ) ∈ {1, . . . , D}N
with specified unary and pairwise potentials. We write

E(X, θ) =
∑
i

θi(Xi) +
∑
i,j

θij(Xi, Xj) (1)



where the pairwise and unary functions are described
by the collection of parameters θ = {θi;u, θij;uv} with

θi(Xi) =
∑
u

θi;uXi;u

and
θij(Xi, Xj) =

∑
u,v

θij;uvXi;uXj;v

respectively, and Xi;u = [Xi = u] denotes a binary
indicator that variable Xi takes on state u.

Finding a minimum energy configuration is intractable
for general E(X, θ). In this paper we exploit two spe-
cific cases in which minima can be found efficiently.
Consider the undirected graph G(θ) over the N vari-
able nodes that contains edges (i, j) for those θij that
are non-zero. If G(θ) is a tree then an exact solution
can be found in O(ND2) time using dynamic program-
ming. If G(θ) is a planar graph, the problem is binary
(D = 2) and E includes only symmetric pairwise po-
tentials (i.e., θij(Xi, Xj) only depends on whether a
pair of nodes Xi, Xj are in the same or different states)
then an exact solution can be found in O(N3/2 logN)
by reduction to planar matching (Kasteleyn, 1961;
Fisher, 1961; Shih et al., 1990), and an efficient imple-
mentation of this technique is available (Schraudolph
and Kamenetsky, 2008).

For the planar symmetric case, the energy function can
be written more simply as

E(X,ϑ) =
∑
i>j

ϑij [Xi 6= Xj ] + C (2)

where ϑij is a scalar that captures the relative energy
of Xi and Xj disagreeing and C is a constant repre-
senting the energy when all nodes take on the same
state. Minimizing this energy function can be inter-
preted as the problem of finding a bi-partition of the
graph G(ϑ) where the cost of a partition is simply the
sum of the weights ϑij of edges cut. Given a minimal
weight partition, we can find a corresponding optimal
state X by assigning all the nodes in one partition to
state 0 and the complement to state 1. Since the edge
weights ϑij may be negative, such a minimum weight
partition is typically non-empty.

2.1 Tree Decomposition and Edge
Consistency

To tackle more general pairwise MRFs, we consider
the problem of finding a lower-bound on the mini-
mum energy configuration. One promising approach
is to decompose θ into tractable subproblems which
each can be solved independently. For example, Wain-
wright et al. (2005) consider tree subproblems that are
subgraphs of the original graph. The decomposition

approach is quite appealing as one can consider sub-
problem decomposition into other structures beyond
trees such as planar graphs (Globerson and Jaakkola,
2007a), outer-planar graphs (Batra et al., 2010), k-
fans (Kappes et al., 2010), or some heterogeneous mix
of subproblems.

Let t index subproblems defined over the same set of
variables with parameter vectors θt that sum up to the
original parameter vector θ =

∑
t θ
t. Since the energy

function is linear in θ we can bound the energy of the
MAP by

min
X

E(X, θ) = min
X

∑
t

E(X, θt) (3)

≥ max
{θt}∑
t θ

t=θ

∑
t

min
Xt

E(Xt, θt) (4)

The inequality arises because the minimization inside
the sum may choose different solutions for each sub-
problem. However, if the solutions {Xt} to all the
subproblems agree, then the lower-bound is tight. The
maximization on the right hand side of Equation 4 is
a convex optimization problem with respect to the pa-
rameters {θt}, so if the minimum of each E(Xt, θt) can
be found efficiently, then the tightest such bound can
be computed using standard constrained subgradient
techniques.

Our approach starts with a problem decomposition
that is mathematically equivalent to the tree decom-
position used in tree-reweighted belief propagation
(TRW) (Wainwright et al., 2005; Kolmogorov, 2006).
Consider the simplest tree decomposition in which we
break the original graph into the collection of trees,
each of which consists of a single edge. To accomplish
this, a node Xi with degree di will be duplicated di
times, once for each incident edge. We will use Xt

i to
refer to the copies of variable Xi in our tree decompo-
sition, where the range of the index t may depend on
which variable Xi we are considering. We can bound
the MAP energy by

EMAP ≥ max
{θt}∑

t θ
t
i;u=θi;u

min
{Xt}

∑
i,t

∑
u

θti;uX
t
i;u+

∑
(i,j)

∑
u,v

θij;uvX
tij
i;uX

tji
j;v (5)

where (i, j) are the edges in the original graph, and tij
is the copy of node i which is adjacent to a copy of
node j in the collection of single edge subproblems.

This lower-bound is the same as the bound given by
any decomposition into trees that covers every edge
in the original graph. In practice, it is more efficient
to consider larger trees, reducing the total number of



duplicate nodes in the decomposition. In our experi-
ments, we follow Yarkony et al. (2010) in assembling
these edges into a single “covering tree” which has the
fewest number of duplicated nodes and covers every
edge in the original graph. In this case, the minimiza-
tion over {Xt} is carried out in a single pass of dynamic
programming over a tree which has the same edges as
the original graph. The duplicate unary parameters
θti;u are then modified using subgradient or fix point
updates in order to maximize agreement between du-
plicate copies of each Xi.

A powerful tool for understanding the maximization
in Equation 5 is to work with the Lagrangian dual.
Equation 5 is an integer linear program over X, but
the integrality constraints can be relaxed to a linear
program over continuous parameters µ representing
min-marginals which are constrained to lie within the
marginal polytope, µ ∈ M(G). The set of constraints
that define M(G) are a function of the graph struc-
ture G and are defined by an (exponentially large) set
of linear constraints that restrict µ to the set of min-
marginals achievable by some consistent joint distri-
bution (see Wainwright and Jordan, 2008). Lower-
bounds of the form in Equation 5 correspond to relax-
ing this set of constraints to the intersection of the con-
straints enforced by the structure of each subproblem.
For the tree-structured subproblems, this relaxation
results in the so-called local polytope L(G) which en-
forces marginalization constraints on each edge. Since
L(G) is an outer bound on M(G), minimization yields a
lower-bound on the original problem. For any relaxed
set of constraints, the values of µ may not correspond
to the min-marginals of any valid distribution, and so
are referred to as pseudo-marginals.

While enforcing consistency over edges is guaranteed
to give an integral solution for tree-structured graphs,
it will not yield true min-marginals for more general
graphs. In such a case, it is necessary to consider
adding higher-order constraints in order to tighten the
outer bound. One natural class of higher-order con-
straints beyond edge consistency is to enforce consis-
tency over cycles of the graph. This can be achieved
in various ways. For example, one can triangulate the
graph and introduce constraints over all triplets in the
resulting triangulation. However, this involves O(n3)
constraints which is impractical in large-scale inference
problems. A more efficient route is to only add a small
number of constraints as needed, e.g., using a cutting-
plane approach (Sontag and Jaakkola, 2007; Sontag
et al., 2008; Komodakis and Paragios, 2008). In the
following section we propose a new class of subprob-
lems/constraints that enforce consistency over large
collections of cycles in planar graphs.

2.2 Binary Planar Subproblems and Cycle
Consistency

We would like to exploit the tractability of binary pla-
nar problems in tightening the lower-bound. There
is clearly not a one-to-one mapping from our D-state
MRF to a binary planar problem in general. However,
if the pairwise potentials happened to take on only two
values across the D × D possible states along every
edge, then we could first project down to an equiva-
lent binary problem and then lift the solution back to
the original state space.

To be precise, for a given subproblem k with nodes Xk
i ,

suppose we partition the state space of the original
variables Xi into two subsets Ski ∪ S̄ki = {1 . . . D}. We
allow for each node i in each subproblem k to have a
distinct partition. We will say that the potentials θk

are of the planar binary type if G(θk) is planar, θki;u = 0

and θkij is of the form:

θkij(Xi, Xj) =

{
ϑkij : (Xk

i ∈ Ski )⊕ (Xk
j ∈ Skj )

0 : otherwise

where ⊕ denotes exclusive-or. Then we can define a
projected energy function of the form shown in Equa-
tion 2 with binary variables X̂k

i where X̂k
i = 1 ⇐⇒

Xk
i ∈ Ski and edge weights ϑkij . The solution to this

binary problem can be found efficiently. Furthermore,
we can lift it back to a solution with the same energy in
the original state space by setting Xk

i to some element

of Ski when X̂k
i = 1 and to some element of S̄ki oth-

erwise. Since the pairwise potentials are constant on
these sets, it does not matter which value we choose;
all such solutions have the same energy.

It turns out that such binary, planar subproblems have
a simple interpretation in terms of the constraints they
enforce in the relaxation of the marginal polytope M.
It can be shown that the marginal polytope for such a
problem is precisely the set of cycle constraints on the
binary graph, closely connecting the use of planar sub-
problems and algorithms that enforce or repair cycle
consistency.

A particularly simple and appealing subset of bina-
rized problems are problems in which the sets are all
of the form Ski = {ui} for some single state ui. We re-
fer to these as one-versus-all problems and use them
exclusively in our implementation.

3 Bound Optimization

Our algorithm will optimize a lower-bound consisting
of a combination of the tree-structured problem and
several binary subproblems. We write this optimiza-



tion problem as:

EMAP ≥ max
{θt,θ0,θk}

min
{Xt,Xk}

∑
i,t

∑
u

θti;uX
t
i;u+

∑
(i,j)

∑
u,v

θ0ij;uvX
tij
i;uX

tji
j;v+∑

(i,j),k

∑
u,v

θkij;uvX
k
i;uX

k
j;v (6)

subject to the constraints:∑
t

θti;u = θi;u∑
k

θkij;uv + θ0ij;uv = θij;uv

θk is of the planar binary type

By convention, index t always runs over the copies of
nodes Xt

i in the tree structured problem and index k
always runs over copies in the planar problems. We use
θ0ij to denote the allocation of the pairwise potentials
to the tree structured subproblem.

In optimizing the bound, we are trying to find an
allocation of the unary parameters among copies of
the nodes in the tree and allocations of the pairwise
parameters across the tree and binary planar sub-
problems. A straightforward approach to solving this
bound optimization problem is to use projected sub-
gradient techniques. For a fixed value of the X vari-
ables, the function is linear in θ with linear equality
constraints. In the optimization, one alternates be-
tween (1) solving for the X using dynamic program-
ming to find {Xt} and perfect matching to find {Xk}
and (2) updating θ using a projected-gradient step.

3.1 Parameter updates

In the supplemental material we derive the gradient
updates and projections for a given setting of the X
variables. In this section, we give a concise expression
for the complete rule updates which combine both the
gradient and projection steps.

We first need some notation to pick out those sets of
binary subproblems which are relevant to a given edge
state. For a pair of states (u, v) along an edge (i, j),
consider the collection of pairs (s1, s2) where si are
subsets of the state values, si ⊂ {1, . . . , D}, given by

Sij;uv = {(s1, s2) : (u ∈ s1)⊕ (v ∈ s2)};

S indexes all subsets of states in which the configu-
ration Xi = u,Xj = v would produce disagreement.
Also, let Qij;s1,s2 = {k : (s1 = Ski ) ∧ (s2 = Skj )} be
the set of binary problems containing those subsets for
nodes i and j respectively.

Let X̂k
ij = (Xk

i ∈ Ski )⊕(Xk
j ∈ Skj ) be the indicator that

in the solution to the kth planar subproblem, Xk
i and

Xk
j took on disagreeing states. Similarly, let X̂0

ij;s1s2
=

(X
tij
i ∈ s1) ⊕ (X

tji
j ∈ s2) be the indicator that the

copies of Xi and Xj which share edge (i, j) in the tree
disagreed with respect to the binary projection onto
sets (s1, s2).

We can then describe the parameter updates com-
pactly in terms of these index sets and indicators

θti;u = θti;u + λ

(
Xt
i;u −

∑
sX

s
i;u

di

)
(7)

θ0ij;uv = θ0ij;uv + λ
∑

(s1,s2)∈Sij;uv

(
X̂0
ij,s1s2 −

∑
`∈Qij;s1s2

X̂`
ij + X̂0

ij,s1s2

|Qij;s1s2 |+ 1

)

ϑkij = ϑkij + λ

(
X̂k
ij −

∑
`∈Q

ij;Sk
i
Sk
j

X̂`
ij + X̂0

ij;Sk
i S

k
j

|Qij;Sk
i S

k
j
|+ 1

)

where di is the number of duplicate copies of node i in
the tree structured problem. Note that the number of
sets in S is small, since Qij,s1s2 is empty except for at
most K pairs (s1, s2), where K is the number of added
planar subproblems.

While the notation is rather hairy, these updates have
a very intuitive explanation. If the optimal state node
in the tree structured problem disagrees with the aver-
age of its duplicates, the energy for being in that state
is increased and the energy for being in all other states
is decreased. If edge (i, j) in the tree takes on state
u, v but one or more planar subproblems suggests that
either i 6= u or j 6= v then the cost of this state pair
along the tree edge is increased. Similarly, if an edge
in a subproblem k is cut, then the energy for being
cut can be increased by taking away from the covering
tree and the other planar subproblems which share the
edge parameter.

3.2 Repairing Cycles

As there are a huge number of possible binary prob-
lems that could be added, we will only use a small set
specified by {S1, S2, . . . SP }. We suggest the following
procedure for successively choosing them:

1. Optimize the current bound until convergence.

2. Find the lowest energy decoding X, providing an
upper-bound.

3. If the lower-bound and current upper bound are
equal then terminate; the current solution is a
MAP solution.

4. Otherwise add a new binary subproblem and re-
turn to step 1.



In order to compute an upper-bound in step 2, we se-
lect a contiguous subtree of the covering tree in which
each variable appears exactly once (i.e., a spanning
tree of the original graph), and adopt the configura-
tion taken on by those copies. We ensure that such a
spanning tree exists by explicitly instantiating it when
the covering tree is constructed.

Suppose that X is a decoding for our most recently
computed upper-bound found in step 2. To construct
a new binary subproblem, we simply specify the col-
lections SP+1 by SP+1

i = {Xi}. In other words, we
create a new binary subproblem that checks whether
each node i is equal or not equal to its value in the
current upper-bound.

When a subproblem is added it restricts the set of in-
consistent solutions available to any given cycle, and
removes some number of these solutions. However, un-
like a true cutting plane technique, it does not guar-
antee an increase in the lower bound; it removes one
or more inconsistent solutions, but cannot ensure that
there are no other inconsistent solutions with the same
energy. However, we find that in practice this serves
as a powerful heuristic.

An interesting special case is when D = 2. For binary
problems, there is only a single planar binary subprob-
lem to be added and this suffices to enforce all cycle
constraints. Furthermore, one can combine the cov-
ering tree and planar subproblem into a single larger
planar problem containing additional nodes which can
be optimized very efficiently. See Yarkony et al. (2011)
for details.

For D > 2 our method enforces a set of binary cy-
cle constraints that tighten the local polytope relax-
ation, but are not sufficient to enforce full cycle con-
sistency of the original D-ary variables. David Sontag
provided an example construction in which the set of
binary cycle constraints are not sufficient to find the
true MAP energy for D > 2 (Sontag, 2010, page 38).
However, in our experiments (and in those reported
by Sontag (2010)) it appears that this situation arises
infrequently.

Our cycle repair process is generally similar to that of
Komodakis and Paragios (2008), which also incremen-
tally repairs violated cycles in a dual decomposition
framework. Unlike that work, our cycle repair process
adds large collections of cycles (defined by the planar
binary graph), giving it the potential to repair many
cycles simultaneously.

4 Experimental Results

We demonstrate the performance of our algorithm
with planar binary subproblems (PSP) on two sets of

randomly generated potentials and compare against
max-product linear programming (MPLP) (Sontag
et al., 2008).

4.1 Problem Instances

Our synthetic data consist of two types of problems.
For problems of the first type (type-I), each model con-
sists of a grid of size N ×N with N ∈ {10, 20, 30} and
D = 3 states per node, with random potentials defined
as:

θij;uv ∼ U [−1, 1]

θi;u = 0

where U [−1, 1] is a uniform distribution on [−1, 1].

We also generated a second class of problems (type-
II), also consisting of grids of size N × N with N ∈
{10, 20, 30} and 3 states per node, but with potentials
described as follows:

θij;uv ∼

 U [−2, 2] |u− v| = 1
0 u = v
16 o.w.

θi;u ∼ U [−1, 1]

Intuitively, this potential enforces a soft constraint
that nodes in state 1 and nodes in state 3 are not neigh-
bors. This type of layered potential occurs in many
real-world problems, such as image labeling tasks in
computer vision. For example, a scene where water
borders the beach, the beach borders the land, but the
water cannot border the land. This type of potential
is also of theoretical interest since it tends to induce
longer loops in the set of necessary cycle constraints.

4.2 Implementation

We implemented the bound optimization using
the BlossomV minimum-weight perfect matching
code (Kolmogorov, 2009) and a Bundle Trust sub-
gradient solver (Schramm and Zowe, 1992) to opti-
mize the lower bound. At each iteration, we obtain
an upper-bound by extracting a configuration of vari-
ables from the covering tree (see Section 3.2). When
the lower bound has converged, the most recently gen-
erated upper-bound configuration is used to create a
new binary subproblem to be added to the collection.
In our experiments we terminated the algorithm if it
had not managed to find the MAP solution after 10
subproblems had been added.

In our implementation, both types of random poten-
tials are multiplied by 100 and then rounded to the
nearest integer, so that a duality gap less than one
provides a certificate that the best upper-bound solu-
tion does in fact achieve the MAP energy.
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Figure 1: (a) Example runs of PSP (red) and MPLP (black) on a single 20× 20 grid problem instance (type-II
potentials). Both algorithms continue to repair cycles until the duality gap is closed or the stopping criteria are
satisfied. Pink stars indicate the addition of planar subproblems. (b) Average convergence behavior across 200
problem instances.

We explored initializing the algorithm either with no
binary subproblems or “hot starting” with three bi-
nary subproblems in which Ski = k for every node i
and the three states k = 1, 2, 3. These subproblems are
simple binary projections which capture that a given
node is in state k or in state “other”. We found that
for the randomly generated type-I problems, these ini-
tial subproblems did not help overall performance but
for type-II problems they decreased the total running
time of the algorithm by 10-15x. This is presumably
because the type-II problems behave locally like a bi-
nary problem and hence the one-versus-other subprob-
lem can immediately enforce consistency on all these
local cycles.

4.3 Results

We compared performance with the implementation of
MPLP (Sontag et al., 2008; Globerson and Jaakkola,
2007b) provided by the authors online. MPLP first
runs an optimization corresponding to the tree re-
weighted lower bound (TRW) then successively tight-
ens the bound by trying to identify cycles whose con-
straints are significantly violated and adding those
sub-problems to the collection. For grids it enumer-
ates and estimates the benefit of adding each square
of four variables.

Figure 1(a) plots the upper and lower-bounds as a
function of time for each algorithm on a 20 × 20
grid problem instance with type-II potentials. Pink
markers indicate the time points when new subprob-
lems were added in our algorithm. Figure 1(b) shows
convergence behavior averaged over 200 problem in-
stances. Bounds are plotted relative to a MAP energy
of 0.

Figure 2 plots the time until the duality gap is closed
by our algorithm versus the time for MPLP for each
problem instance. In some cases MPLP added all of
its feasible subproblems but failed to close the duality
gap. Similarly, in some cases, our algorithm (PSP)
failed to close the duality gap within its fixed number
of subproblems. Points where MPLP (PSP) found the
MAP but the other failed are plotted along the right
(resp top) edge of the scatter plot.

In type-I problems, MPLP tends to optimize its lower
bound more quickly than PSP, but PSP manages to
close the duality gap for (and thus solve) slightly more
problems overall. On type-II problems, however, PSP
tends to be faster overall, and manages to find the
MAP on significantly more problems than MPLP.

5 Discussion

In this work we have described a new variational al-
gorithm for finding minimum energy configurations in
planar non-binary MRFs. Our bounds perform incre-
mental cycle repair starting from the tree reweighted
(TRW) bounds, adding many cycles at each step
through a planar problem construction. Unlike ap-
proaches that incrementally add small batches of
cycles, we are able to rapidly tighten the bound
by adding many potentially violated cycles at once.
Our algorithm is competitive with state-of-the-art ap-
proaches, with significantly improved performance in
models with longer dependency cycles.
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A Projected Subgradient Updates

Here we derive the projected subgradient updates for a
collection of planar subproblems (indexed by k) and a
single tree-structured problem (indexed by 0). Begin
with the unary parameters θi;u which are allocated
among copies θti;u that appear in the covering tree.
Taking the gradient of the first term in Equation (6)
with respect to {θt} yields the update rule

θti;u = θti;u + λXt
i;u

However, this neglects the constraint that these pa-
rameters must sum up to the original parameter∑
t θ
t
i;u = θi;u. We can project the gradient step onto

this constraint surface which yields the the valid up-
date

θti;u = θti;u + λ

(
Xt
i;u −

∑
sX

s
i;u

di

)
where di is the number of duplicate copies of node i.
One can easily demonstrate that this update rule pre-
serves the equality constraint by summing both sides
of the update equation over all copies t.

The updates for the pairwise parameters take a similar
form, adjusting each parameter by an amount propor-
tional to the disagreement between its indicator vari-
able and the average of the corresponding indicator
variables in other subproblems. However, we have an
additional restriction that we can only transfer “dis-
agreement” terms between the tree and the binary pla-
nar subproblems.

In order make this explicit let us decompose the pair-
wise parameters of the tree-structured problem into
the original pairwise energies plus a collection of dis-
agreement costs:

θ0ij;uv = θij;uv +
∑

(s1,s2)∈Sij;uv

ϑ0ij,s1s2

where s1, s2 are subsets of the state values, si ⊂
{1, . . . , D}, and

Sij;uv = {(s1, s2) : (u ∈ s1)⊕ (v ∈ s2)};

is the collection of subset pairs in which the configura-
tion Xi = u,Xj = v would produce disagreement. In
practice, the only elements of Sij;uv we care about in
the sum are those corresponding to some edge in the
planar subproblems we have instanced.

This notation enables us to write the reparameteriza-
tion constraint succinctly as

ϑ0ij,s1s2 +
∑

k:Sk
i =s1,S

k
j =s2

ϑkij = 0 ∀ i, j, s1, s2

Recall the indicator variables for disagreement along
edge ij in our planar subproblem solutions:

X̂k
ij = (Xk

i ∈ Ski )⊕ (Xk
j ∈ Skj )

We can similarly define a disagreement indicator for
the tree-structured problem with respect to some sub-
set pair (s1, s2) by

X̂0
ij,s1s2 = (X

tij
i ∈ s1)⊕ (X

tji
j ∈ s2)

In terms of these disagreement indicators, it is easy to
show that projected subgradient updates to the planar
parameters can be written as

ϑkij;Sk
i S

k
j
← ϑkij;Sk

i S
k
j
+λ

X̂k
ij −

∑
`∈Q

ij;Sk
i
Sk
j

X̂`
ij + X̂0

ij,Sk
i S

k
j

|Qij;Sk
i S

k
j
|+ 1


where

Qij;Sk
i S

k
j

= {` : (S`i = Ski ) ∧ (S`j = Skj )}

is the set of planar subproblems (including k) that have
the same subset pair as k along edge ij.

The pairwise parameter updates of the tree affect only
{ϑ0}, in a manner analogous to the planar update.

ϑ0ij;s1s2 ← ϑ0ij;s1s2+λ

(
X̂0
ij,s1s2 −

∑
`∈Qij;s1s2

X̂`
ij + X̂0

ij,s1s2

|Qij;s1s2 |+ 1

)
.

We would prefer to update the θ0 parameters directly,
eliminating the need to keep track of the ϑ0. Plug-
ging into the definition of θ0 yields the update from
Equation (7) given in the paper

θ0ij;uv ← θ0ij;uv+λ
∑

(s1,s2)∈Sij;uv

(
X̂0
ij,s1s2−

∑
`∈Qij;s1s2

X̂`
ij + X̂0

ij,s1s2

|Qij;s1s2 |+ 1

)
.


