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Abstract. We introduce a novel algorithm for hierarchical clustering on
planar graphs we call “Hierarchical Greedy Planar Correlation Cluster-
ing” (HGPCC). We formulate hierarchical image segmentation as an ul-
trametric rounding problem on a superpixel graph where there are edges
between superpixels that are adjacent in the image. We apply coordi-
nate descent optimization where updates are based on planar correlation
clustering. Planar correlation clustering is NP hard but the efficient Pla-
narCC solver allows for efficient and accurate approximate inference. We
demonstrate HGPCC on problems in segmenting images of cells.

1 Introduction

We approach the problem of image segmentation in the framework of hierarchical
segmentation where the goal is to group the pixels into a hierarchical structure
where contiguous groups of pixels are divided and further subdivided. At the
coarsest level of the hierarchy, all pixels are in the same region. At the finest
level of the hierarchy each pixel is its own region. Each boundary that is present
at a given level of the hierarchy is present in each finer level of the hierarchy.

Hierarchical segmentation can be understood as assigning confidence to var-
ious boundaries where boundaries present in coarser levels of the hierarchy are
estimated to be more reliable. Hierarchical segmentation has been done primarily
using agglomerative clustering, with the Ultrametric Contour Maps Algorithm
being the state of the art (Arbelaez et al., 2011). Here we frame hierarchical
segmentation as an ultrametric rounding problem (Ailon and Charikar, 2005;
Yarkony, 2012).

Model the data to be clustered as the nodes of a graph where each pair of
nodes is connected with an edge e that is associated with a real valued weight Xe.
For any real value α let Y αe := [Xe ≥ α] where [ ] is the indicator function. Now
consider the unweighted graph Gα with edges connecting nodes only if Y αe = 0.
If X is an ultrametric then for all α and e, Y αe = 0 if and only if the pair of



nodes connected by e are in the same component of Gα. Ultrametrics define a
natural model of hierarchical grouping where the threshold α specifies the level
of the hierarchy. If α is large then Gα has few regions while if α is small it has
many regions. Edges present in Gα are present in Gα+v for all v > 0.

Given an initial graph and set of (sparse) edges where each edge e is asso-
ciated with a real valued target Te, the objective of ultrametric rounding is to
assign a new set of values {Xe} to the edges which satisfies the property of being
an ultrametric and is minimally distorted from the targets (either in an L1 or
L2 sense). In our application nodes correspond to superpixels and edges indicate
adjacency. Superpixels (Ren and Malik, 2003) are small compact groups of pixels
which can be produced by various approaches. Superpixels are the most elemen-
tary unit in our hierarchical segmentation approach. We connect neighboring
superpixels with an edge and associated score Te that defines how strong the
image boundary is locally between the two superpixels. Large Te are associated
with stronger visual indications of an edge between the superpixels connected
by edge e. The goal of finding the closest ultrametric X to T can thus be inter-
preted as finding a hierarchical segmentation which is consistent with the local
evidence encoded in T . Edges only connect nodes whose corresponding super-
pixels are immediately adjacent in the image. Thus our graph is planar which
allows for many computational advantages which is the focus of this paper.

We focus on the application of segmenting cells in biological images. Cell
segmentation is one of the prerequisite tasks in answering many biological ques-
tions related to both basic understanding of cell function and interpretation
of pathological states. Recent emerging research efforts in diverse cell lines and
microscopic imaging techniques require robust and automatic algorithms for per-
forming segmentation, particularly in high-throughput experiments. While cell
imaging with fluorescent labels or other chemical staining can provide contrast
on objects of interest for easy segmentation, it is not ideal for studying cells
under natural conditions. Without such dyes, cells are much harder to segment.
Cells in brightfield or phase contrast images are only distinguishable by their
outer membrane. Other major challenges of segmenting cells from these images
are: touching cells, weak or broken boundaries, large variations on boundary
pattern, and false boundaries due to artifacts or other sub-cellular structures.

2 Related Work

2.1 Related Work on Clustering

Hierarchical clustering has been considered since early machine learning. Ag-
glomerative clustering is the primary way in which this has been approached
in the domain of computer vision. The seminal ultrametric contour maps algo-
rithm (UCM) (Arbelaez et al., 2011) is the clearest application of this approach
in image segmentation. UCM associates with each pair of superpixels i, j a dis-
tance metric Dij . Dij is initially a function of image features. UCM initializes
each superpixel as an independent region. UCM proceeds by merging the pair of
adjacent regions whose average distance metric between superpixels across the



boundary is minimal. Usually this is average weighted by the length lij of the
boundary between the superpixels. Let B(Q1, Q2) be the set of edges between
the superpixels making up region Q1 and Q2. The weighted average distance is
computed as:

D̄(Q1, Q2) =

∑
[i,j]∈B(Q1,Q2)

lijDij∑
[ij]∈B(Q1,Q2)

lij
(1)

(2)

In the UCM algorithm, when two regions Q1 and Q2 are merged, each edge be-
tween the superpixels spanning across the two regions is set to the average value
D̄(Q1, Q2). This assure that the resulting set of distances forms an ultrametric.
UCM continues grouping the pair of regions whose average distance is minimal
until all superpixels are in the same region. UCM is a fast greedy method which
is quite successful but does not claim to minimize the ultrametric distortion.

Ultrametric rounding for image segmentation has been explored in a regime
in which each Xe may only take on a set of fixed discrete values (Yarkony, 2012)
using the formulation of (Ailon and Charikar, 2005). Our work significantly
departs from this line as it does not restrict X to take on a set of discrete values.

2.2 Related Work on Cell Segmentation

Many efforts have been devoted very recently in cell segmentation based on
boundaries. In (Liu et al., 2014) cell segments are selected from a UCM-based
hierarchical segmentation region candidates through an integer linear program-
ming (ILP) formulation. Each region candidate has a score predicted from SVM
classifier, that takes part of its input from a cell contour shape model. This
technique tries to find the best segmented cells from multiple hierarchical lay-
ers. However, the dependency on a common cell shape may not likely to apply
this technique on cells evolve or deform such as the fibroblast cells in (Wu et al.,
2012). However, the fact that in (Wu et al., 2012) the segmentation is formulated
as a partial matching problem between cell boundaries obtained from consecutive
frames in time-lapse images limits its applicability to static images. An interac-
tive cell segmentation approach to correct erroneous segmentation is proposed
very recently (Su et al., 2014). It uses an augmented affinity graph to efficiently
incorporate and propagate corrected labels for an updated partitioning of the
superpixels. But this method explicitly uses phase retardation features (Su et al.,
2013) to generate superpixels so as to enable efficient corrections on superpixel
level. Yet another method in (Zhang et al., 2014a) combines detection of cell
centers and clustering cell boundary points in an ILP fashion. But this method
is primarily designed for cells with convex shapes with similar sizes.

3 Ultrametric Rounding

We start by formulating ultrametric rounding as an optimization problem. Con-
sider a graph G with edges indexed by e. G is often a sparse graph meaning



that most pairs of nodes are not connected. We denote the desired ultrametric
as X which is indexed by e. Here we assume Xe is a real valued in the range
[0, 1]. For X to be an ultrametric it must be the case that if we remove the set of
edges for which Xe is greater than any given value α we do not remove any edges
within a connected component of the resulting graph. This can be enforced by
the constraint that for any cycle C in our graph containing an edge e between
adjacent superpixels separated by a boundary (a pair where Xe ≥ α), at least
one other boundary is present along every cycle C connecting them. We write
this as:

∑
e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀C ∈ Cycles : ê ∈ C (3)

where [ ] to denotes the indicator function whose value is 1 if the condition is
true and otherwise outputs a zero. An equivalent definition is that for an edge
in a cycle there must be at least one other edge in the cycle whose value is as
large or larger.

max
e∈C−ê

Xe ≥ Xê ∀C ∈ Cycles : ê ∈ C (4)

We call the above inequalities “ultrametric inequalities”. Each edge e is as-
sociated with a target value Te ∈ [0, 1]. Finding the ultrametric X closest to T
in an Lp sense (p is 1 or 2 depending on the desired norm) is the objective of
ultrametric rounding. We write the optimization problem below.

min
X

∑
e

|Xe − Te|p (5)

s.t. max
e∈C−ê

Xe ≥ Xê ∀{C ∈ Cycles : ê ∈ C}

(6)

3.1 Correlation Clustering

When constructing our solver for minimizing ultrametric distortion we rely heav-
ily on repeated calls to a solver for correlation clustering on a planar graph. Thus
we now briefly discuss correlation clustering (Bansal et al., 2002; Kim et al., 2011;
Yarkony et al., 2012; Bagon and Galun, 2011; Andres et al., 2012, 2013, 2011).
Correlation clustering is a powerful clustering criteria in which each pair of nodes
(in our case adjacent superpixels) is associated with a real valued term θe where
e indexes the edge between the two nodes. Correlation clustering groups the
nodes into regions so as to minimize the sum of the θe terms of edges spanning
the boundary. We define the presence of a boundary using binary indicator vec-
tor Y which is indexed by e. Here Ye = 1 if and only if there is a boundary on
edge e. Notice that if θe > 0 then it is desirable to set Ye = 0 and if θe < 0
it is desirable to set Ye = 1. However Y has to be set so that a clustering is



produced. This means that no Ye can be set to 1 in the middle of a region.
These constraints are called cycle inequalities and they are the discrete binary
analog of the ultrametric inequalities in Eq 3, 4. The form of cycle inequalities
are written below. ∑

e∈C−ê

Ye ≥ Yê ∀{C ∈ Cycles, ê ∈ C} (7)

Correlation clustering is a natural clustering criteria because the number of
regions is not a user defined hyper-parameter that must be hand tuned for each
problem. Instead it is a function of the potentials θ themselves. Notice that if θ
is exclusively positive then all superpixels are in the same region in the optimal
solution. Also notice that if all θ terms are negative then each superpixel is in
its own region in the optimal solution.

Solving the correlation clustering problem is NP hard even for planar graphs
(Bachrach et al., 2011). However for many problems in computer vision the
PlanarCC algorithm (Yarkony et al., 2012) can solve them exactly usually in
seconds or fractions of seconds. PlanarCC is a dual column generation algorithm
operating only on planar graphs. PlanarCC provides upper and lower bounds
on the optimal value of the objective. The upper bound is associated with a
partition Y that achieves this value. In practice the upper and lower bounds are
identical or nearly identical for problems in the domain of image segmentation
(Yarkony et al., 2012) meaning that the solution is verified to be the global
optima. PlanarCC provides fast performance for image segmentation problems
in computer vision notably on the benchmark Berkeley Segmentation Data Set
(BSDS)(Martin et al., 2001).

4 The Hierarchical Greedy Planar Correlation Clustering
Algorithm (HGPCC)

We now consider the problem of minimizing ultrametric distortion as in Eq 5.
We employ a coordinate descent approach in which at each step we identify
optimal setting of X in a particular space that includes that current solution.
We alternate between three unique coordinate descent steps which are described
below. When we apply an update we denote the current setting of our solution
as X0, and the output as X1. We initialize X0 to be the zero vector. At all times
during our algorithm our solution describes an ultrametric. Two out of the three
coordinate updates use the PlanarCC algorithm which requires planarity of the
graph in order to work. To satisfy planarity in our application we have edges
between each adjacent pair of superpixels and no other edges.

4.1 Update One: Shifting the Values in the Ultrametric While
Preserving their Order

Consider optimizing over X subject to the constraint that the ordering of X
does not change. We frame this as an optimization problem which is potentially
a linear or quadratic program depending on the norm applied on the ultrametric.



min
X

∑
e

|Te −Xe|p (8)

s.t. Xe ≥ Xê ∀e, ê : X0
e ≥ X0

ê

Let Λb be the set of edges that take on the b’th smallest unique value specified
by X0. Our goal is to find new values λb to assign to each set of edges Λb. Let
|λ| denote the the number of unique values in X0 and |Λb| the cardinality of Λb.

min
λ

∑
b

∑
e∈Λb

|Te − λb|p = min
λ

∑
b

|Λb||Te − λb|p (9)

s.t. λb ≤ λb+1

In addition to solving the optimization above as a linear/quadratic program
we can approach it as a dynamic program on a chain structured Markov random
field. For each variable λb we create a node that has cost to take on each possible
value αb of Zb(αb) which is defined below.

Zb(αb) =
∑
e∈Λb

|Te − αb|p = |Λb||Te − αb|p (10)

We also have a pairwise potential over each pair of adjacent b values Zb,b+1(αb, αb+1)
which is defined below.

Zb,b+1(αb, αb+1) =∞[αb > αb+1] (11)

This pairwise potential simply enforces that the ordering of the values of b re-
mains constant. We discretize the space of possible values for λ terms making
sure to include all unique values in X0. For example we can include 1000 uni-
formly distributed points between min(T ) and max(T ) in addition to all unique
values of X0. We denote the set of all such values as Ω.

Computing the optimal λ in the above graphical model can be done using
dynamic programming in time O(|Ω||λ|). Once we solve for λ we simply set each
index of X to its associated value in λ. Thus X1

e is set to λb ∀b,∀e ∈ Λb.

4.2 Update Two: Raising the Values of X to α in Large Groups

We now introduce a coordinate update that raises the values in X in large groups
over long ranges of value while preserving the ultrametric property of X. This is
a coordinate update parameterized by a randomly chosen value α on the range
of [min(T ),max(T )]. Here α is different every time this update is done.

During this update we optimize X over the space of ultrametrics subject to
the constraint that Xe ∈ {X0

e ,max(X0
e , α)} for all e. We denote this space as

Ŝ(X0, α) and the super-space that does not enforce the ultrametric property as
S(X0, α). We now write the objective of this update formally.

X1 = arg min
X∈Ŝ(X0,α)

∑
e

|Te −Xe|p (12)



Notice that in the space S(X0, α) the only possible violations to the ultra-
metric property come in the form of ultrametric inequalities of pairs of cycle C,
and edge ê such that: ∀e ∈ C, X0

e < α and Xê = α.
Using this we write a version of the ultrametric inequalities needed to ensure

that any X ∈ S(X0, α) also lies in Ŝ(X0, α).

max
e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀{C ∈ Cycles , ê ∈ C} (13)

Notice that we can replace the max in the above equation with a
∑

. This
is because each of the inequalities can be only violated if all terms under the
sum/max are zero.∑

e∈C−ê

[Xe ≥ α] ≥ [Xê ≥ α] ∀{C ∈ Cycles ê ∈ C} (14)

We write our coordinate update as an instance of correlation clustering. We use
binary indicator Ye as an indicator for [Xe ≥ α] and edge potentials θ given by:

θe =
{
|α− Te|p − |X0

e − Te|p ∀ e s.t. X0
e < α

−∞ o.w.

where edges with potential −∞ are required to be active in the final solution.
The resulting correlation clustering problem is then

min
Y

θeYe (15)

s.t.
∑

e∈C−ê

Ye ≥ Yê ∀(C ∈ Cycles, ê ∈ C) (16)

After computing Y we simply set X1
e ← α iff (Ye = 1 and X0

e < α); otherwise
set X1

e ← X0
e .

Implementation Detail Since we already established that no edge e s.t. X0
e ≥

α is involved in any necessary ultrametric inequality in S(X0, α) and their θ
terms are negative then we can simply remove (ignore) those edges from the
graph and set their values in X1 to X0. This saves us from having −∞ as the
value of an edge potential.

Another way of ignoring edges such that X0
e ≥ α is as follows. For each such

edge set θe = 0. Next then solve for Y . Finally set X1
e ← X0

e for all such edges.
We use this approach as it avoids instantiating multiple graph structures.

4.3 Update Three: Lowering the Values of X for a Subset of X

We now discuss a coordinate update that lowers the values in X for all values
that take on a unique value in X so as to reduce the ultrametric distortion of
X. This update parameterized by a randomly chosen value α on the range of
[min(T ),max(X)). Here α is different every time we perform this update. Let



the set of all unique values in X0 be denoted λ0. Here λ0 is sorted with λ0
0 being

the smallest and λ0
|λ| being the greatest. Let µ be the smallest value in λ0 greater

than α.
We optimize over the space of solutions in which each Xe such that X0

e = µ
may take on either α or µ and all Xe such that X0

e 6= µ must continue to take
on their current value. We denote the space of solutions that meet these proper-
ties as V (X0, α) and the subset of that space corresponding to ultrametrics as
V̂ (X0, α). We now formally write the optimization over the space V̂ (X0, α).

X1 = arg min
X∈V̂ (X0,α)

∑
e

|Te −Xe|p (17)

The ultrametric inequalities needed to enforce that an X ∈ V (X0, α) is also
in V̂ (X0, α) are written below.

max
e∈C−ê

[Xe > α] ≥ [Xê > α] ∀{C ∈ Cycles ê ∈ C} (18)

As in the previous subsection (see the transition from Eq 13, to Eq 14) we can
replace the max with a

∑
allowing us to write our coordinate update as an

instance of correlation clustering with Ye as an indicator for [Xe > α]. The
correlation clustering objective is described by the potentials

θe =

−|α− Te|
p + |X0

e − Te|p. ∀e s.t. X0
e = µ

−∞ ∀e s.t. X0
e > µ

∞ ∀e s.t. X0
e ≤ α

where the edges with negative and positive infinite weights are required to be
cut or not cut respectively.

After solving the optimization above we simply set X1
e ← α iff (Ye = 0 and

X0
e = µ); otherwise set X1

e ← X0
e . Note that this operation can be performed in

parallel with a unique value α chosen between each pair of adjacent µ. As in the
previous section we can ignore the edges that must be boundaries in the solution
meaning (X0

e > α) as they are not involved in any violated cycle inequalities
and furthermore must be set to 1. Ignoring them is done by setting their θ value
to zero. Similarly we can merge any superpixels that are connected by an ∞
valued potential. Merging superpixels was not done in our experiments but can
conceivably make inference faster.

4.4 Final Procedure

Updates can be performed in any order. Furthermore one can complete multiple
updates of one type in a row. For our experiments we consider one iteration
to be completing updates 1,2,1,3. We repeat this iteration many times in our
experiments.



4.5 Optimality in PlanarCC

For our experiments we used the PlanarCC code provided by the authors of
(Yarkony et al., 2012). We operated this code unchanged. PlanarCC attacks an
NP hard problem so it is conceivable that its lower and upper bounds are not
tight at convergence or when a user would want an anytime solution. Thus when
we terminate PlanarCC which we run for no more than a minute we take the
best anytime solution generated (including the solution corresponding to the
initial solution). We never saw this time limit reached.

5 Experiments

In order to evaluate the generality and robustness of our approach, we test
it on datasets that differ in sample preparation and imaging equipment and
conditions.

Data set one: These are bright field Diploid yeast cell images from (Zhang
et al., 2014a), in which both out-of-focus and in-focus cells exist and are cluttered
together. And the cells of interest are only the in-focused ones, i.e. those with
least contrast on cell boundaries. Apart from this, cell boundaries can be partially
missing and with diverse appearances, even in the same cell.

Data set two: These are phase-contrast HeLa cell images from (Arteta et al.,
2012). It presents a high variability in cell shapes and sizes, as opposed to the
ellipse like cells in data set one. These images have relatively lower resolution,
where cell boundaries are disturbed by the bright halo owing to this specific
imaging technique.

5.1 Producing Problem Instances

The edge probability map is predicted from a trained classifier using ilastik
(Sommer et al., 2011), an open-source toolkit that relies on a family of generic
nonlinear image features and random forests, to estimate the probability of be-
longing to a cell boundary edge for each individual pixel. We use a small labeled
training data set.

To compute superpixels we use a watershed transformation then smooth
the result using a gaussian filter. Finally we compute the average boundary
probability along each superpixel boundary thus providing a value Pbe for every
edge e. UCM operates on this raw probability. We take the log odds ratio to
convert that to an energy which is then used as the targets for HGPCC. The
equation for the targets is written below.

Te = − log(
1− Pbe
Pbe

) (19)

For HGPCC we experimented with L1 and L2 norms in the log odds ratio
space. In Fig 1 we display the results of UCM and of HGPCC for an image in



Fig. 1. Top Row: UCM segmentation thresholding X at values various thresholds.
Bottom Row: HGPCC segmentation thresholding X at values at the same thresholds
as UCM. We indicate boundaries in red.

the data set one. Once the nearest ultrametric to T is solved for in log odds
space we convert X to a probability by a sigmoid operation.

With regards to the quality of the segmentations we found no significant
qualitative difference between UCM and HGPCC. That being said HGPCC has
multiple advantages over UCM. First it is an energy minimization formulation
which allows for structured learning and principled mathematical extensions to
be used. Second HGPCC is robust to indications of no boundaries being placed
on actual boundaries, which may result in the merging of these boundaries at
finer positions in the hierarchy for UCM than desirable.

5.2 Experimental Comparisons: Distortion and Timing

For problems in data set one and data set two we completed 500 iterations
of HGPCC. For each iteration we completed updates 1,2,1,3 in that order. We
found that HGPCC converged very rapidly. Furthermore the time to complete an
iteration of HGPCC decreases at first then after convergence begins to increase
again. We compared against the UCM algorithm which since it is not an iterative
algorithm was not timed. It is very fast compared to our approach. We found
that HGPCC produces lower distortion ultrametrics than UCM very early during
optimization.

When plotting the distortion we applied the following normalization scheme.
All distortions including the output of UCM are normalized by subtracting off
the lowest value of HGPCC for a given instance and dividing by the gap between
the lowest and highest distortions of HGPCC for a given instance. All results
are averaged across the data sets. All results are plotted in Fig 2.
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Fig. 2. We show the convergence of HGPCC as a function of time and iteration and
compare it to the final result of UCM (which is not timed). We use the data set one and
data set two and color their results red and blue respectively. Dotted lines correspond to
UCM and solid lines to HGPCC. Left Column) Distortion as a function of time. Center
Column) Distortion as a function of iteration. Right Column) Time for an iteration of
HGPCC as a function of iteration.



6 Conclusion

We present a novel fast algorithm for finding low distortion ultrametrics on
planar graphs. Our method exploits the fact that correlation clustering can often
be done efficiently on planar graphs with very high degrees of accuracy. Our
method is an analog of alpha expansion/alpha beta swap (Boykov et al., 2001)
as both make large efficient moves in the space of values for their variables. This
work extends the family of PlanarCC (Yarkony et al., 2012; Andres et al., 2013;
Zhang et al., 2014b) methods so as to include efficient hierarchical clustering.
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