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Abstract

We argue that object subcategories follow a long-tail dis-
tribution: a few subcategories are common, while many are
rare. We describe distributed algorithms for learning large-
mixture models that capture long-tail distributions, which
are hard to model with current approaches. We introduce a
generalized notion of mixtures (or subcategories) that allow
for examples to be shared across multiple subcategories. We
optimize our models with a discriminative clustering algo-
rithm that searches over mixtures in a distributed, “brute-
force” fashion. We used our scalable system to train tens
of thousands of deformable mixtures for VOC objects. We
demonstrate significant performance improvements, partic-
ularly for object classes that are characterized by large ap-
pearance variation.

1. Introduction
It is well-known that the frequency of object occurrence

in natural scenes follows a long-tail distribution [26]: for
example, people and windows are much more common than
coffins and ziggurats (Fig. 1a). Long-tails complicate anal-
ysis because rare cases from the tail still collectively make
up a significant portion of the data and so cannot be ig-
nored. Many approaches try to minimize this phenomenon
by working with balanced datasets of objects categories
[10]. But long-tails still exist for object subcategories: most
people tend to stand, but people can assume a large num-
ber of unusual poses (Fig.1b). We believe that current ap-
proaches may capture iconic object appearances well, but
are still limited due to inadequate modeling of the tail.

In theory, multi-mixture or subcategory models should
address this, with possibly large computational costs: train
a separate model for different viewpoints, shape deforma-
tion, etc. Empirically though, these approaches tend to satu-
rate early in performance after a modest number of mixtures
[34, 20, 12, 16, 14].

We argue that the long-tail raises three major challenges
that current mixture models do not fully address: (1) The
“right” criteria for grouping examples into subcategories is
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(a) The number of examples by object class in SUN dataset
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(b) Distributions of the visibility patterns for bus and person

Figure 1: Long tail distributions exist for both object cat-
egories and subcategories. (a) shows the number of exam-
ples by object class in the SUN dataset. The blue curve in
the inset show a log-log plot, along with a best-fit line in
red. This suggests that the distribution follows a long-tail
power law. (b) shows the distributions of the keypoint visi-
bility patterns for bus and person from PASCAL (using the
manual annotations of [6]), which also follow a long-tail.
We describe methods for automatically discovering long-
tail distributions of subcategories with a distributed, “brute-
force” search without using additional annotations.

not clear. Various approaches have been suggested (includ-
ing visual similarity [12], geometric similarity [5], semantic
ontologies [10]), but the optimal criteria remains unknown.
(2) Even given the optimal criteria, it is not clear how to
algorithmically optimize for it. Typical methods employ
some form of clustering, but common algorithms (e.g., k-
means) tend to report clusters of balanced sizes, while we
hope to get long-tail distributions. (3) Even given the opti-
mal clustering, how does one learn models for rare subcat-
egories (small clusters) with little training data?

In our work, we address all three challenges: (1) We
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Figure 2: We describe overlapping subcategory models that
allow for training data to belong to multiple clusters with a
large variation in size. For example, frontal (red) and side-
view (blue) buses may share a large number of 3

4 -view ex-
amples, and both are much more common than multi-body
articulated buses (yellow). We show that such models bet-
ter characterize objects with “long-tail” appearance distri-
butions.

posit that the optimal grouping criteria is simply recog-
nition accuracy. But this presumably requires a “brute-
force” search over all possible clusterings, and an evaluation
of the recognition accuracy of each grouping, which appears
hopeless. (2) We introduce a discriminative clustering al-
gorithm that accomplishes this through distributed compu-
tation, making use of massively-parallel architectures. We
show that long-tail cluster sizes naturally emerge from our
algorithm. (3) To address the lack of training data for small
clusters, we allow rare subcategories to share training exam-
ples with dominant ones, introducing a notion of a overlap-
ping subcategories. Such fluid definitions of categories are
common in psychology [25]. For example, a sport utility
vehicle could be equally classified as a truck or a car. Over-
lapping subcategories allow for cluster label assignment to
decouple across subcategories, crucial for our distributed
optimization.

Noteably, our clustering algorithm does not explicitly en-
force long-tail distributions as priors. Rather, our underly-
ing hypothesis is that long-tail distributions are an emergent
property of the “optimal” clustering, when measured with

respect to recognition accuracy. We verify this hypothesis
experimentally. It is possible that brute-force clustering of
other data types with respect to other criteria may not pro-
duce long-tails. Rather, our experimental results reflect an
empirical property of our visual world, much like the em-
pirical analysis of Fig. 1.

We review related work in Sec. 2, introduce our general-
ized subcategory model and discriminative optimization al-
gorithm in Sec. 3, and present results in Sec. 4. We demon-
strate that our long-tail mixture-models significantly outper-
form prior work on benchmark detection datasets, in some
cases achieving a factor of 2 improvement.

2. Related work
Subcategory discovery: Estimating subcategories is

surprisingly hard; clustering based on keypoints [16, 5] and
appearance [11, 3] have provided only modest performance
increases [34]. [13] uses combined appearance, shape, and
context information to discover a small number of com-
mon subcategories for object classification, however the
rare cases are thrown away as “outliers”. One attractive
approach is to use a discriminative model to re-rank and
identify other nearby training examples for clustering. This
is often implemented through latent mixture assignment in
a max-margin model [14] or discriminative k-means [30].
In practice, such methods are sensitive to initialization and
can suffer from miscalibration [27]. We describe a discrim-
inative clustering algorithm that searches over all initializa-
tions in a distributed fashion without ever comparing scores
across different models during training. Finally, our models
allow for overlapping clusters. This differs from soft as-
signment in that the total contribution of an example need
not be 1; indeed, we show that certain examples are much
more dominant than others (consistent with Rosch’s proto-
type theory [24]).

Sharing across categories: There has been much work
on sharing information between object category models
[26, 4, 18]. Most related is [18], which allows an object
class to borrow examples from similar categories, e.g. some
armchairs can be used to train sofa models. While this ap-
proach yields modest performance gains (1.4%AP), we pro-
duce larger gains presumably due to our brute-force opti-
mization over subcategory labels and sharing. Another at-
tractive formalism is that of attributes, or generic properties
shared across object categories [17, 15, 29]. One could in-
terpret binary subcategory labels as a binary attribute vec-
tor; indeed, we perform multi-dimensional scaling on such
a vector to generate the visualization in Fig. 2. Our ap-
proach differs from much past work in that our “attributes”
are latently inferred in a data-driven manner.

Sharing across subcategories: Various approaches
have also explored sharing across subcategories. For ex-
ample, it is common to share local features across view-
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Figure 3: Our overall pipeline. We learn a massive num-
ber of candidate subcategory models in parallel, each ini-
tialized with its own training example and particular clus-
ter size. We train each subcategory with a discriminative
meanshift algorithm that iterates between selecting exam-
ples for sharing and learning detectors given those exam-
ples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of tens
of thousands of candidate subcategory models in parallel.
This large set of models will later be pruned. We initialize
our subcategory models by learning a discriminative tem-
plate for each positive example using exemplar SVMs [20].
We visualize exemplar root templates in Fig. 4. In terms of
category detection accuracy, they perform reasonably well
(25% AP). But because it easy to overfit to a single exam-
ple, many templates include noisy features from the back-
ground.

Regularization: To help smooth out noisy gradients,
let us retrain subcategory model m with the Nm highest-
scoring positive examples under the exemplar model. We
visualize these templates for Nm = 50 in Fig. 4. They
almost double performance, producing an AP of 42%. Intu-
itively, the Nm neighbors act as a regularizer for each exem-
plar, smoothing out the noisy gradients. Indeed, averaging
across Nm similar training examples maybe more natural
than penalizing the squared norm of a template, as is typ-
ically done to prevent overfiting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomena
that we will investigate further.

Iteration: We make two further observations. First, one
can iterate the procedure and find the Nm highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is indepen-

Iter0

Iter1

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize gradients in the back-
ground, such as the tree in the top-left corner of the top-left
image. Retraining with the Nm = 50 highest-scoring ex-
amples (bottom) smooths out the template, de-emphasizing
such noisy gradients (since they tend not be found in the
Nm neighbors). This significantly improves performance
to 42%. This suggests that optimal subcategory clusters
may be overlapping, and maybe computed independantly
for each subcategory. [Deva: Remake figure with larger
templates]

dant of the choice of another cluster, suggesting these iter-
ations can be performed independantly and in parallel. We
show that such a distributed, iterative algorithm is garuan-
teed to converge since it can be formalized as joint optimiza-
tion of a well-defined (discriminative) objective function.
We call the resulting algorithm discriminative meanshift-
clustering.

Cluster-size: Selecting the optimal cluster size Nm is
tricky. We want large Nm for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small Nm so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat Nm as a subcategory-specific regu-
larization parameter that is tuned on validation data (much
as one tunes the C regularization parameter for SVMs).
Specifically, we learn models for a range of Nm � N =
{50, 100, 200, 400, 800, 1600} values. Given a dataset with
P positives, we learn a total of K = |N |P candidate sub-
categories mixtures in parallel, spanning both examples and
cluster sizes. After training this large redundant set, we se-
lect a subset on validation data.

3.2. Discriminative meanshift-clustering

We formalize the iterative algorithm introduced in the
previous section. We do so by writing a objective function
for jointly training all K subcategory models, and describe
a coordinate descent optimization produce that naturally de-
couples across subcategories.
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Figure 3: Our overall pipeline. We learn a massive number
of candidate subcategory models in parallel, each initialized
with its own training example (an exemplar) and particu-
lar cluster size. We train each subcategory with a discrim-
inative clustering algorithm that iterates between selecting
examples for sharing and learning detectors given those ex-
amples. Finally, we select a subset of candidate subcategory
detectors for each object class as to maximize recognition
accuracy. We show that this selection naturally produces
subcategories with long-tail distribution of sizes.

based mixtures of an object [28, 33]. Typically, subcate-
gory mixtures are supervised, but not always [21]. We share
global examples rather an local parts, as the former is more
amenable to brute-force distributed optimization.

3. Learning long-tail subcategory models
In this section, we describe our approach for learning

long-tail subcategory models. We model each subcategory
with a single-mixture deformable part model (DPM) [14].
Our overall pipeline is summarized in Fig. 3. We explain
each step in detail in the following.

3.1. Initialization

We begin by training a large “overcomplete” set of thou-
sands to tens of thousands of candidate subcategory models
in parallel. This large set of models will later be pruned.
We initialize our subcategory models by learning a discrim-
inative template for each positive example using exemplar
SVMs [20]. We visualize exemplar root templates for cars
in Fig. 4. In terms of category detection accuracy, they per-
form reasonably well (25% AP). But because it is easy to
overfit to a single example, many templates include noisy
features from the background.

Sharing as regularization: To help learning more re-
liable templates for the rare examples, we retrain subcate-
gory model m with the nm highest-scoring positive exam-
ples under the exemplar model. We consider the sharing as
a form of “regularization” that prevents overfitting to noisy
gradients. To demonstrate the effect of sharing, we visual-
ize the exemplar templates and the retrained templates for
nm = 50 in Fig. 4. The templates “regularized” by shared
examples have less noisy gradients and almost double per-
formance, producing an AP of 42%. Indeed, “averaging”

Figure 4: We visualize examples training images on the
top. We show initial exemplar models trained with them
in the middle. These templates perform well (25% AP on
VOC2007), but sometimes emphasize incorrect gradients,
such as the foreground tree in the center image. Retrain-
ing with the nm = 50 highest-scoring examples (bottom)
smooths out the template, de-emphasizing such noisy gra-
dients (since they tend not be found in the nm neighbors).
This significantly improves performance to 42%. This sug-
gests that optimal subcategory clusters may be overlapping,
and maybe computed independently for each subcategory.

across nm similar training examples maybe more natural
than penalizing the squared norm of a template, as is typi-
cally done to prevent overfitting. This motivating example
suggests that subcategory clusters need not be mutually ex-
clusive and may overlap. In fact, we find that some positive
examples are shared by many subcategories, a phenomenon
that we will investigate later in Fig. 9.

Iteration: We make two further observations. First, one
can iterate the procedure and find the nm highest scoring
examples with the retrained subcategory model and repeat.
The optimal choice of neighbors for one cluster is inde-
pendent of the choice of another cluster, suggesting these
iterations can be performed independently and in parallel.
We show in Sec. 3.2 that such a distributed, iterative algo-
rithm is guaranteed to converge since it can be formalized
as joint optimization of a well-defined (discriminative) ob-
jective function.

Cluster-size: Selecting the optimal cluster size nm is
tricky. We want large nm for common cases. Rare clus-
ters are particularly hard to model; from one perspective,
they should use a small nm so that learned detectors aren’t
polluted by visually dissimilar examples. On the other
hand, models learned from very small clusters may tend
to overfit because they are trained with less data. As ar-
gued above, we treat nm as a subcategory-specific regular-
ization parameter that is tuned on validation data. Specifi-
cally, we learn models for a log-linear range of nm ∈ N =
{50, 100, 200, 400, 800, 1600} values. Given a dataset of
positives P , we learn a large set of candidate subcategories
mixtures M (|M | = |N ||P |) in parallel, spanning both ex-
amples and cluster sizes. After training this large redundant
set, we select a subset on validation data.



3.2. Discriminative clustering with sharing

We formalize the iterative algorithm introduced in the
previous subsection. We do so by writing a objective func-
tion for jointly training all |M | subcategory models, and de-
scribe a coordinate descent optimization that naturally de-
couples across subcategories.

Let us write a mixture of templates (can be part models
or simply rigid templates) as

f(x) = max
m

wm · x where m ∈M (1)

where m indicates a subcategory mixture component. M
is the set of all mixture components . wm is the template
for m. x is an example. Given a training dataset (xi, yi)
where yi ∈ {−1, 1} (for the detection problem), we explic-
itly write the non-convex learning objective as a function
of both mixture models {wm} and binary latent variables
zim ∈ {0, 1} that take on the value 1 if the ith positive be-
longs to mixture component m. [23] refers to the |P |× |M |
binary matrix of Z = [zim] as the “latent matrix”, where
|P | is the number of positive examples:

L(w,Z) =
∑
m∈M

[1
2
||wm||2 (2)

+ C
∑
i∈pos

zim max(0, 1− wm · xi)

+ C
∑
i∈neg

max(0, 1 + wm · xi)
]
.

A standard latent SVM problem without sharing in [14]
can be written as a joint minimization over (w,Z) subject
to the constraints the rows of Z sum to 1 (

∑
m zim = 1):

each positive example i is assigned to exactly one mixture
component.

We now replace the hard-assignment constraint∑
m zim = 1 with

∑
i zim = nm. Now we sum over i

instead of m. This means that rather than forcing each
positive to be assigned to exactly one mixture component,
we force the mixture component m to consist of nm

examples. This constraint allows a single positive example
i to be used to learn multiple mixtures, which provides a
natural form of sharing between mixtures.

We describe a coordinate descent optimization algorithm
for optimizing (2) subject to our new linear constraints:

1. (Sharing) minZ L(w,Z): Compute wm · xi for i ∈
pos. Sort scores and set zim for the nm highest values
to 1.

2. (Learning) minw L(w,Z): Learn wm with a convex
program (SVM) using nm positives and all negatives.

Step 1 optimizes latent assignment Z while keeping tem-
plate weights w fixed. In detail, this step assigns nm pos-
itive examples to each template wm so as to minimize the

hinge loss. The loss is exactly minimized by assigning the
nm highest scoring positives to m. Step 2 optimizes w
while fixing Z. This step is a standard SVM problem. As
both steps decrease the loss in (2), it is guaranteed to con-
verge to a local optima.

Unlike other clustering methods such as k-means, both
of the above steps can be performed independently and in
parallel for all |M | clusters.

3.3. Greedy model selection

For each object class, we generate a pool of |M | candi-
date subcategory models. Typically, |M | is in the thousands
to tens of thousands. Many of these subcategory models
will be redundant due to sharing. We want to compress the
models by selecting a subset S ⊆M .

We cast this as a combinatorial optimization problem:
for a possible subset S, compute its average precision per-
formance AP (S) on a validation set, and select the subset
that maximizes AP. To evaluate AP (S), we run each sub-
category model m ∈ S on the validation set, eliminate over-
lapping detections from the subset S with non-maximum
suppression (NMS), and compute a precision-recall curve.

The search over all powersets of M is clearly intractable,
but we find a greedy strategy to work quite well. Initialize
S = {} and repeatedly find the next-best mixture m to turn
“on”:

1. m∗ := argmax
m

AP (S ∪m)

2. S := S ∪m∗

A natural stopping condition is an insufficient increase in
AP. In practice, we stop after instantiating a fixed number
(|S| = 50) of subcategories. The first such instantiated sub-
category tends to model a dominant cluster trained with a
large nm, while latter instantiations tend to consist of rare
cases with small nm.

To ensure that subcategory scores are comparable dur-
ing NMS, we first calibrate the scores across models by
mapping them to object class probabilities [22]. We use
the same set of validation images for calibration and model
selection. Calibration and selection is fast because the
computationally-demanding portion (training a large pool
of detectors and running them on validation images) is par-
allelized across all |M | subcategory models. We visualize
instantiated mixtures in Fig. 5 and Fig. 9.

4. Experimental results
Map-reduce: Our approach requires training and eval-

uating tens of thousands of DPMs across large numbers of
object categories. In order to manage learning at this scale,
we have implemented an in-house map-reduce version of
the DPM codebase [1] . Map-reduce [7, 8] is an architec-
ture for parallel computing. In our system, we use mappers
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Figure 5: For two categories (bus and person), we plot the size of each subcategory cluster, as well as the number of true
positive detections of that subcategory on test images (left). Both tend to follow a long-tail distribution; some subcategories
are dominant, while many are rare. We visualize average images and templates associated with select subcategories on
the right. We find that bus subcategories correspond to bus viewpoint, while person subcategories correspond to different
truncations, poses, and interactions with objects such as horses and bicycles.

to collect positive examples and negative images, and use
mixture-specific reducers to learn the mixture models. This
distributed architecture allows us to learn mixtures in par-
allel according to the formulation of (2).

Computation: Because our distributed training algo-
rithm can be parallelized across |M | cores, each iteration of
our learning algorithm is no slower than training a single-
mixture DPM. We perform a fixed number (6) of discrimi-
native clustering iterations, but find that cluster labels tend
to stabilize after 3 iterations. At test-time, our long-tail sub-
category models are equivalent to running |S| = 50 single-
mixture DPMs in parallel, which takes about 1 second per
image in our in-house implementation.

Benchmarks: Following much past work, we evaluate
our detection system on PASCAL VOC 2007. Addition-
ally, in order to test our implementation of DPMs (Dist-
DPMs), we evaluate our DistDPMs on the Columbia Dog
Breed Dataset [19] and the CUHK Cat Head Dataset [31].
The Columbia Dog dataset consist of 8000 dog images
obtained from various repositories, while the CUHK Cat
Dataset consists of 10000 Flickr images of cats. We used
their standard training/test split: roughly 50%/50% for dogs
and 70%/30% for cats.

Distributed DPMs: Before evaluating our proposed
long-tail subcategory (LTS) models, we first verify that our

map-reduce DPM implementation can reproduce the state-
of-the-art voc-release4 models of [1, 14], when we use the
same number of mixtures and the same latent hard assign-
ment strategy (no sharing) as in [1]. We compare to the
raw detectors without any post-processing (bounding-box
prediction or contextual rescoring) in Table 1. Our imple-
mentation produces an average AP of 28.1%, compared to
31.8% from [1]. The 3% drop is mainly due to the fact that
[1] uses max-regularization over all mixtures and learns 3
pairs of mirrored mixtures rather than the 6 separate mix-
tures in our implementation. Both of these are hard to de-
couple and parallelize, but known to help the empirical per-
formance.

Even given this shortcoming, we will show our code-
base can be used to construct state-of-the-art subcategory
models. We also verify that our re-implementation produces
state-of-the-art performance on other benchmark datasets in
Fig. 7.

Long-tail subcategories (LTS). We use a subset of the
VOC2011 training set (that does not overlap with the 2007
dataset) as validation data to greedily select our long-tail
subcategory models (Sec. 3.3). Interestingly, we find that
greedy selection on the original training data works well,
producing only a 2% drop from the 50-LTS numbers in
Table 1. We compare to previously published results that
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voc-rel5[2] 32.4 57.7 10.7 15.7 25.3 51.3 54.2 17.9 21.0 24.0 25.7 11.6 55.6 47.5 43.5 14.5 22.6 34.2 44.2 41.3 32.5
LEO[32] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6
DPM-WTA[9] 19 48 03 10 16 41 44 9 15 19 23 10 52 34 20 10 16 28 34 34 24
ESVM[20] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7
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Our 6-DistDPM 26.6 54.3 9.4 14.4 24.8 46.5 50.5 12.8 14.1 26.3 14.0 3.2 57.7 43.2 35.2 10.1 16.9 18.2 41.6 41.2 28.1
Our 50-LTS 34.1 61.2 10.1 18.0 28.9 58.3 58.9 27.4 21.0 32.3 34.6 15.7 54.1 47.2 41.2 18.1 27.2 34.6 49.3 42.2 35.7

Table 1: Average precision for different object categories in PASCAL 2007 dataset. We compare our approach to the existing
methods on the same benchmark. The first two rows contain the results reported in the released code of [1, 2] without
any post-processing. Our parallel implementation with the same number of mixtures (6-DistDPM) is shown in the second
last row. The last row is our long-tail subcategory model (LTS), which significantly improves performance, particularly on
difficult categories with large appearance variation (Fig. 6).
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Figure 6: We plot precision-recall curves for PASCAL VOC 2007 categories. We show “hard” classes on the top row,
where the baseline 6-mixture DPM (in green) performs poorly. These classes tend to have rich appearance variation (due to
viewpoint, subclass structure, and occlusion from other objects). Scaling the baseline to 50-mixture DPM (in cyan) yields
worse performance due to lack of training examples for each mixture component. Our 50-mixture long-tail subcategory
model (LTS, in red) provides a significant improvement in such cases. The “easy” classes in the bottom row show similar
trend. We further examine this performance increase in Fig. 10.

use the same feature set (HOG) without contextual post-
processing, as the choice of features/post-processing is or-
thogonal to our work. We obtain the highest performance
in 15/20 categories and the best overall performance. When
compared to our in-house DPM implementation, our long
tail models increase performance from 28.1% to 35.7%. We
diagnose this performance increase (relative to our in-house
implementation) in the following.

Hard vs easy classes: We split up the set of classes into
hard vs easy, depending on baseline performance. We hy-
pothesize that low baseline performance is indicative of a
long tail (more varied appearances) that are not well mod-
eled by the 6 mixtures of a standard DPM. We more than
double the average precision of the baseline for such cate-

gories (Fig. 10). On “easier” classes, 50-LTS still perform
best, but 6-DPM is a close second. We posit that a smaller
number of mixtures sufficiently captures the limited appear-
ance variation of such classes. We plot performance versus
the number of mixtures on the validation set in Fig. 8. For
“easy” classes such as car, we find that a few mixtures do
well. For “hard” classes with more appearance variation
(such as cats), we find that adding additional mixtures, even
beyond 50, will likely improve performance.

50-LTS vs exemplars: We first compare to existing non-
parametric models based on exemplar SVMs [20, 11]. One
may hypothesize that rare subcategories (in the tail) are well
modeled with a single exemplar. Our long-tail models with
sharing considerably outperform such methods in Table 1,
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DistDPM outperforms the previously reported best methods
on both datasets. Our improvement is particular large on the
dog dataset, which arguably is more challenging due to the
larger appearance variations of a dog face.
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Figure 8: The performance as a function of the number of
mixtures. For “easy” classes such as car, we find that a few
mixtures do well. For “hard” classes with more appearance
variation (such as cats), we find that adding additional mix-
tures, even beyond 50, improves performance.
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Bus image popularity 

Figure 9: This plot reveals “popular” positive training im-
ages that are selected by many subcategories. Popular train-
ing images (in red) are prototypes that are representative of
the category. Unpopular or rare images (such as multi-body
articulated bus, in orange) are used by less subcategories.

suggesting that sharing is still crucial for the rare cases.
50-LTS vs 50-DPM: We also compare to the widely-

used latent mixture-assignment algorithm of [14] for large
number of mixtures. At |S| = 50, although it seems that
50-LTS and 50-DPM have the same capacity, our approach
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Figure 10: We separately analyze “hard” PASCAL classes
with large appearance and viewpoint variations {bird, cat,
dog, sheep, plant, table, sofa and chair}; these typically
have lower average precision (AP) than other classes. On
hard classes, our LTS doubles the AP of DPMs, increas-
ing accuracy from 12% to 25%. On easier categories, our
LTS model still outperforms 6-mixture DPMs by 5%. To
analyze these improvements, we first scale DPMs to large
(50) mixtures (50-DPM), which consistently underperform
the DPMs with 6 mixtures (6-DPM). When 50-DPMs are
initialized with our 50-LTS models, performance increases
(suggesting that poor latent variable initialization is one rea-
son to blame). When these models are allowed to share
training examples, we see the largest performance increase,
suggesting our overlapping subcategory models are cru-
cial for large-mixture representations.

consistently performs significantly better. The improvement
may arise from two factors: (1) Our mixtures are trained
with a brute-force search that avoids the local minima of
latent reassignment. (2) Our mixtures share training ex-
amples across clusters. We now analyze the improvement
due to (1) vs (2). We focus on examining the improvement
due to “hard” classes. The similar observations apply to
the“easier” classes too.

Effect of brute-force search: One might argue that
discriminative latent-reassignment may also benefit from a
brute-force search over initializations of the latent variables.
To help answer this, we initialize latent reassignment of 50-
DPM using our 50-LTS detectors. This ensures that latent
reassignment is initialized with a set of 50 good models that
produce an AP of 25% (on the “hard” classes). This better
initialization increases performance of 50-DPM from 7% to
13% AP, suggesting that latent-reassignment in [14] does
suffer from local-minima.

Effect of overlapping subcategories: The above exper-
iment also points out a conspicuous drop in performance;
when initializing with 50 good detectors (25%AP), hard la-
tent reassignment (that eliminates sharing by forcing each
positive example to belong to a single cluster) dramatically
drops performance to 13%AP. This suggests that the gains
due to sharing are even more important than the gains due
to better initialization. In our algorithm, initialization and
sharing are intimately intertwined.

Conclusion: Many current approaches to object recog-
nition successfully model the dominant iconic appearances



of objects, but struggle to model the long tail of rare ap-
pearances. We show that distributed optimization and ex-
ample sharing partially address this issue. We introduce a
discriminative clustering algorithm that naturally allows for
example sharing and distributed learning. We use this al-
gorithm to perform a “brute-force” search over subcategory
initialization and subcategory size, and demonstrate that the
resulting models significantly outperform past work on dif-
ficult objects with varied appearance. We posit that our per-
formance is now limited by the lack of training data for the
rare subcategories in the tail. We may need large training
datasets to fully encounter the set of rare cases. Our analy-
sis suggests that “big-rare-data”, which focuses on rare ex-
amples not already seen, may be more beneficial than tradi-
tional “big-data”.
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